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Overview

Lecture 4

• Low-density parity-check (LDPC) codes

• Iterative decoding on the factor graph

• Density evolution

Lecture 5: Modern Channel Coding 2
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Overview

Information theory

• Random codes with infinite block length achieve the channel
capacity.

Traditional block codes

• Fixed block length
• Algebraic code designs
• Often difficult to decode

Convolutional codes

• Encoding and decoding of sequences, no (or not necessarily) fixed
block length.

• Efficient decoding with trellis based decoding (Viterbi or BCJR
algorithm).

• Strong codes only with high constraint length (→ high decoding
complexity)

Traditional design goals

• Design codes with good distance properties
(e.g., large minimum distance).

• Establish dependencies between a large number of bits
(large memory).
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Turbo Codes
– Encoder Structure

[U. Madhow, Fundamentals of Dig. Comm., 2008]

• Two (or more) parallel component encoders encode permuted
versions of the information word u.

• Component codes: recursive convolutional codes with rate Rc i

(often Rc i = 1).

• Interleaver
• Pseudo-random permutation (Π) of the information bits u

(→ random coding).
• Fixed interleaver length → Turbo codes are block codes.
• Large memory, constraints between bits which are separated in time.

• Systematic bits and parity bits are multiplexed to the codeword of
the Turbo code.

• Code rate R = 1/(1 +
∑

i 1/Rc i )
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Turbo Codes
– Encoder Structure

Example

π

D

D X2 = [111 . . . 10 . . . 0]

X1 = [10 . . . 0]

B = [110 . . . 0]

[10 . . . 010 . . . 0]

[110 . . . 0]

• Recursive codes have a long impulse response; they are necessary in
order to be able to create high-weight codewords.

• Interleaver avoids that both codewords at the output of the
component encoders have low weight.

→ Low-weight codewords can occur. However, the probability for this
is low due to the interleaver.
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Turbo Codes
– Decoder Structure

[U. Madhow, Fundamentals of Dig. Comm., 2008]
• Component decoders

• Two component decoders corresponding to the component encoders.
• Soft-input/soft-output decoding; decoders generate a posteriori

probabilities (APPs) for the information bits Pr(u|y).

• Factorization of the APP for bit ui (Bayes’ rule)

Pr(ui |y) =
Pr(ui , y)

Pr(y)
=

Pr(yi |ui )Pr(y\i |ui ) Pr(ui )

Pr(y)

• The same factorization expressed with log-likelihood ratios (LLRs)

Lout (u) = log

(
Pr(ui = 0|y)

Pr(ui = 1|y)

)
= L

(
Pr(yi |ui = 0)

Pr(yi |ui = 1)

)
︸ ︷︷ ︸

Lchannel (ui )

+ L

(
Pr(y\i |ui = 0)

Pr(y\i |ui = 1)

)
︸ ︷︷ ︸

Lcode (ui )

+ L

(
Pr(ui = 0)

Pr(ui = 1)

)
︸ ︷︷ ︸

Lin(ui )
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Turbo Codes
– Iterative Decoding

[U. Madhow, Fundamentals of Dig. Comm., 2008]

• Output LLRs contain three contributions
• Lin(u): a priori distribution/information

• Lchannel (ui ): LLR for the channel observation yi of bit ui

(direct observation)
• Lcode (ui ): extrinsic information on ui provided by y\i (indirect

observation); new information following from the code constraints.

• Decoding schedule
• Run the decoders 1 and 2 and generate Lcode (u) for both decoders.
• The decoders exchange the extrinsic information Lcode (u).
• The extrinsic information Lcode (u) of the one decoder becomes after

interleaving/de-interleaving the a priori information Lin(u).

• Start a new iteration and run the decoders again.
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Turbo Codes
– Example

1 0 1 0 0
0 1 1 1 1
0 1 1 0 0
1 0 0 0 1
0 0 0 1

→ BEC →
(binary erasure

channel)
7/24 bits erased

C = 0.71

x 0 1 0 0
x 1 x 1 1
0 x x 0 0
1 0 x x 1
0 0 0 1

Parallel concatenated single-parity-check codes

• information word B = [1010 0111 0110 1000] is written in a matrix
→ block interleaver

• 2 single-parity-check codes (SPCCs) are applied to the columns and
rows

• iterative decoding between the 2 SPCC decoders

1. horiz. decoder

1 0 1 0 0
x 1 x 1 1
0 x x 0 0
1 0 x x 1
0 0 0 1

2. vert. decoder

1 0 1 0 0
0 1 x 1 1
0 1 x 0 0
1 0 x 0 1
0 0 0 1

3. horiz. decoder

1 0 1 0 0
0 1 1 1 1
0 1 1 0 0
1 0 0 0 1
0 0 0 1
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BCJR Algorithm

[U. Madhow, Fundamentals of Dig. Comm., 2008]

• Named after the inventors (Bahl, Cocke, Jelinek, and Raviv).

• Soft-input/soft-output decoding algorithm for trellis codes;
trellis based derivation of the a posteriori probabilities Pr(u|y).

• Observation: each state transition sk → sk+1 defines uniquely a
code symbol vk and an information symbol uk .

• APPs for the symbols uk , vk can be derived from the APPs of the
state transitions s ′ → s (branch APPs)

Pr(uk = b|y) =
1

Pr(y)

∑
(s′,s)∈Ub

Pr(s′, s, y) and Pr(vk = b|y) =
1

Pr(y)

∑
(s′,s)∈Vb

Pr(s′, s, y)

with the sets Ub,Vb of state transitions (s ′, s) associated with the
realization b of the respective bit.
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BCJR Algorithm

• Factorization of the branch probability

Pr(s′, s, y) = Pr(sk =s′, sk+1 =s, yk−1
1 , yk , y

K
k+1)

= Pr(yK
k+1|sk+1 =s)︸ ︷︷ ︸
βk (s)

Pr(yk , sk+1 =s|sk =s′)︸ ︷︷ ︸
γk (s′,s)

Pr(sk =s′, yk−1
1 )︸ ︷︷ ︸

αk−1(s′)

→ βk (s) considers the future observations yK
k+1.

→ γk (s′, s) corresponds to the observation yk of the current state
transition (s′, s).

→ αk−1(s′) considers the past observations yk−1
1 .

• Forward recursion for deriving αk (s)

αk (s) = Pr(sk+1 = s, yk
1 ) =

∑
s′

Pr(sk+1 = s, sk = s′, yk , y
k−1
1 )

=
∑

s′
Pr(yk , sk+1 = s|sk = s′) Pr(sk = s′, yk−1

1 )

=
∑

s′
γk (s′, s)αk−1(s′)

with the initialization α0(s ′) = 1 for s ′ = 0 and α0(s ′) = 0 else.
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BCJR Algorithm

• Backward recursion for deriving βk−1(s ′) follows in a similar way:

βk−1(s ′) =
∑

s

βk (s)γk (s ′, s)

with the initialization βK (s) = 1 for s = 0 and α0(s) = 0 else.

• The γ-term can be derived as

γk (s ′, s) = Pr(yk , sk+1 =s|sk =s ′)
(a)
=

Pr(yk |sk+1 =s, sk =s ′) Pr(sk+1 =s|sk =s ′)

(b)
=

Pr(yk |(uk , vk )) Pr(uk )1(s′,s)

with 1(s′,s) = 1 if (s ′, s) is a valid state transition and 1(s′,s) = 0
else.

• (a) follows from Bayes’ rule,
• (b) holds since (s′, s) uniquely defines (uk , vk ) and since for a given

state s′ the transition to s is driven by the information bit uk .

• Implementation: BCJR is implemented in log-domain to avoid
numerical instabilities due to low numbers.
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Performance Analysis
– Simulation

[U. Madhow, Fundamentals of Dig. Comm., 2008]

Example

• Rate-1/3 Turbo code with recursive convolutional codes (5, 7)8

• Waterfall region: can be predicted by analyzing the convergence of
the iterative decoding.

• Error-floor region (at high SNR): analysis of the distance properties
and union bound.
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Performance Analysis
– Union Bound

• With the input/parity-weight enumerator function Aturbo(w , p):

Pe ≤
∑

w

∑
p

w

K
Aturbo(w , p)Q

(√
2EbR(w + p)

N0

)
(a)
≤

∑
w

∑
p

w

K
Aturbo(w , p)e

− Eb R
N0

w
e
− Eb R

N0
p

(b)
≤

∑
w

w

K
W wAturbo(P|w)

∣∣∣∣∣
W =P=e

− Eb R
N0

and by using

(a) the upper bound Q(x) ≤ e−
x2

2 ;
(b) the conditional parity weight enumerator function

Aturbo (P|w) =
∑

p

Aturbo (w , p)Pp

.
→ How to derive Aturbo (P|w)?
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Performance Analysis
– Union Bound

• Assumption: random interleaver that maps one weight-w info word
into another weight-w info word with uniform probability 1/

(
K
w

)
.

• With the conditional weight enumerator functions
A1(P|w),A2(P|w) of the component encoders we get:

Aturbo(P|w) =
A1(P|w)A2(P|w)(

K
w

)
• Approximation of the conditional parity weight enumerator function

for convolutional codes:

A(P|w) ≈
nmax∑
n=1

A(P|w , n)

(
K

n

)
, nmax ≤ w ≤ K

where A(P|w , n) is the parity weight enumerator function for input
weight w and codewords consisting of n error events.
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Performance Analysis
– Union Bound

• By combining the results and using the approximation
(

K
l

)
≈ K l/l!

for large K , we get:

Aturbo(P|w) ≈
nmax∑
n1=1

nmax∑
n2=1

(
K
n1

)(
K
n2

)
(

K
w

) A1(P|w , n1)A2(P|w , n2)

≈
nmax∑
n1=1

nmax∑
n2=1

w !

n1!n2!
K n1+n2−wA1(P|w , n1)A2(P|w , n2)

≈ w !

(nmax !)2
K 2nmax−wA1(P|w , nmax )A2(P|w , nmax )

and with A1(P|w , n) = A2(P|w , n) = A(P|w , n)

Pe
∼
≤

K∑
w=wmin

wW w w !

(nmax !)2
K 2nmax−w−1A(P|w , nmax )2

∣∣∣∣∣∣
W =P=e

− Eb R
N0

Dominating term at high SNR: w = wmin

• Interleaver gain if Pe ∼ K−k , k > 0.
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Performance Analysis
– Union Bound

Non-recursive codes

• We have wmin = 1, nmax = w , and A(P|w , nmax ) = A(P|1, 1)w , and
it follows that

Pe
∼
≤

K∑
w=1

K w−1

(w − 1)!
W w A(P|1, 1)2w

∣∣∣∣∣
W =P=e

− Eb R
N0

.

→ The dominant term in the sum is w = 1.

• Observation: the performance does not improve with increasing
block length K , no interleaver gain!

Recursive codes

• We have wmin = 2, nmax = bw/2c
• Case 1: w =2k → nmax =k → dominating term decays with K−1.

Furthermore, A(P|w , nmax ) = A(P|2k, k) = A(P|2, 1)k .

• Case 2: w =2k + 1 → nmax =k → odd input weights decay with
K−2 and can be neglected; A(P|w , nmax ) = A(P|2k + 1, k).

• Case 1 gives us the effective free distance peff = 2 + 2pmin.

• Conclusion: Turbo codes have a low minimum free distance but the
interleaver gain (Pe ∼ K−1) guarantees error probabilities around
10−5 . . . 10−6.
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