

Lecture 5: Channel Coding 2 Advanced Digital Communications (EQ2410)¹

 $\begin{array}{c} \text{M. Xiao} \\ \text{CommTh/EES/KTH} \end{array}$

Monday, Feb. 3, 2016 10:00-12:00, B24

1/1

Overview

Lecture 4

- Low-density parity-check (LDPC) codes
- Iterative decoding on the factor graph
- Density evolution

Lecture 5: Modern Channel Coding 2

Notes			

¹Textbook: U. Madhow, Fundamentals of Digital Communications, 2008

Overview

Information theory

 Random codes with infinite block length achieve the channel capacity.

Traditional block codes

- Fixed block length
- Algebraic code designs
- Often difficult to decode

Convolutional codes

- Encoding and decoding of sequences, no (or not necessarily) fixed block length.
- Efficient decoding with trellis based decoding (Viterbi or BCJR algorithm).
- Strong codes only with high constraint length (→ high decoding complexity)

Traditional design goals

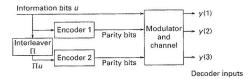
- Design codes with good distance properties (e.g., large minimum distance).
- Establish dependencies between a large number of bits (large memory).

3/1

Notes

M. Xiao CommTh/EES/KTH

Turbo Codes - Encoder Structure



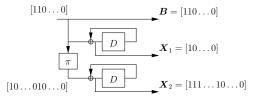
[U. Madhow, Fundamentals of Dig. Comm., 2008]

- Two (or more) parallel component encoders encode permuted versions of the information word \mathbf{u} .
- Component codes: recursive convolutional codes with rate R_{ci} (often R_{ci} = 1).
- Interleaver
 - Pseudo-random permutation (Π) of the information bits u
 (→ random coding).
 - Fixed interleaver length → Turbo codes are block codes.
 - Large memory, constraints between bits which are separated in time.
- Systematic bits and parity bits are multiplexed to the codeword of the Turbo code.
- Code rate $R = 1/(1 + \sum_{i} 1/R_{ci})$

Notes		
ivotes		

Turbo Codes - Encoder Structure

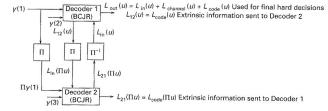
Example



- Recursive codes have a long impulse response; they are necessary in order to be able to create high-weight codewords.
- Interleaver avoids that both codewords at the output of the component encoders have low weight.
- → Low-weight codewords can occur. However, the probability for this is low due to the interleaver.

Lecture 5 Channel Coding 2 M. Xiao CommTh/EES/KTH

Turbo Codes - Decoder Structure



Component decoders

[U. Madhow, Fundamentals of Dig. Comm., 2008]

5/1

- Two component decoders corresponding to the component encoders.
- Soft-input/soft-output decoding; decoders generate a posteriori probabilities (APPs) for the information bits Pr(u|y).
- Factorization of the APP for bit u_i (Bayes' rule)

$$Pr(u_i|\mathbf{y}) = \frac{Pr(u_i,\mathbf{y})}{Pr(\mathbf{y})} = \frac{Pr(y_i|u_i)Pr(\mathbf{y}_{\setminus i}|u_i)Pr(u_i)}{Pr(\mathbf{y})}$$

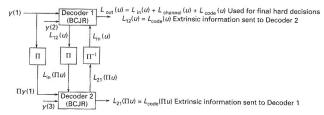
• The same factorization expressed with log-likelihood ratios (LLRs)

$$L_{out}(u) = \log\left(\frac{\Pr(u_i = 0|\mathbf{y})}{\Pr(u_i = 1|\mathbf{y})}\right) = \underbrace{L\left(\frac{\Pr(y_i|u_i = 0)}{\Pr(y_i|u_i = 1)}\right)}_{L_{channel}(u_i)} + \underbrace{L\left(\frac{\Pr(\mathbf{y}_{\setminus i}|u_i = 0)}{\Pr(\mathbf{y}_{\setminus i}|u_i = 1)}\right)}_{L_{code}(u_i)} + \underbrace{L\left(\frac{\Pr(u_i = 0)}{\Pr(u_i = 1)}\right)}_{L_{in}(u_i)}$$

Notes			

Notes		

Turbo Codes - Iterative Decoding



[U. Madhow, Fundamentals of Dig. Comm., 2008]

3 horiz decoder

- Output LLRs contain three contributions
 - L_{in}(u): a priori distribution/information
 - L_{channel}(u_i): LLR for the channel observation y_i of bit u_i (direct observation)
 - L_{code}(u_i): extrinsic information on u_i provided by y_{\(\circ\)i} (indirect observation); new information following from the code constraints.
- Decoding schedule
 - \bullet Run the decoders 1 and 2 and generate $L_{code}(u)$ for both decoders.
 - The decoders exchange the extrinsic information $L_{code}(u)$.
 - The extrinsic information $L_{code}(u)$ of the one decoder becomes after interleaving/de-interleaving the *a priori* information $L_{in}(u)$.
 - Start a new iteration and run the decoders again.

7/1

Notes

Lecture 5 Channel Coding 2 *M. Xiao* CommTh/EES/KTH

Turbo Codes – Example

1	0	1	0	0	ightarrow BEC $ ightarrow$	х	0	1	0	0
0	1	1	1	1	(binary erasure	x	1	x	1	1
0	1	1	0	0	channel)	0	x	x	0	0
1	0	0	0	1	7/24 bits erased	1	0	x	x	1
0	0	0	1		C = 0.71	0	0	0	1	

Parallel concatenated single-parity-check codes

1 horiz decoder

- information word $\mathbf{B} = [1010\ 0111\ 0110\ 1000]$ is written in a matrix \rightarrow block interleaver
- 2 single-parity-check codes (SPCCs) are applied to the columns and rows

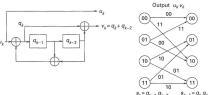
2 vert decoder

• iterative decoding between the 2 SPCC decoders

1	0	1	0	0					0		0			
x	1	х	1	1	0	1	х	1	1	0	1	1	1	1
0	X	х	0	0	0	1	х	0	0	0	1	1	0	0
1	0	х	х	1	1	0	х	0	1	1	0	0	0	1
0	0	0	1		0	0	0	1		0	0	0	1	

Notes			
·	·		·

BCJR Algorithm



[U. Madhow, Fundamentals of Dig. Comm., 2008]

- Named after the inventors (Bahl, Cocke, Jelinek, and Raviv).
- Soft-input/soft-output decoding algorithm for trellis codes;
 trellis based derivation of the a posteriori probabilities Pr(u|y).
- Observation: each state transition s_k → s_{k+1} defines uniquely a code symbol v_k and an information symbol u_k.
- APPs for the symbols u_k, v_k can be derived from the APPs of the state transitions $s' \to s$ (branch APPs)

$$\Pr(u_k = b | \mathbf{y}) = \frac{1}{Pr(\mathbf{y})} \sum_{(s', s) \in U_b} \Pr(s', s, \mathbf{y}) \text{ and } \Pr(v_k = b | \mathbf{y}) = \frac{1}{Pr(\mathbf{y})} \sum_{(s', s) \in V_b} \Pr(s', s, \mathbf{y})$$

with the sets U_b , V_b of state transitions (s', s) associated with the realization b of the respective bit.

Notes

Lecture 5 Channel Coding 2 *M. Xiao* CommTh/EES/KTH

BCJR Algorithm

• Factorization of the branch probability

$$\Pr(s', s, \mathbf{y}) = \Pr(s_k = s', s_{k+1} = s, \mathbf{y}_1^{k-1}, y_k, \mathbf{y}_{k+1}^K)$$

$$= \underbrace{\Pr(\mathbf{y}_{k+1}^K | s_{k+1} = s)}_{\beta_k(s)} \underbrace{\Pr(y_k, s_{k+1} = s | s_k = s')}_{\gamma_k(s', s)} \underbrace{\Pr(s_k = s', \mathbf{y}_1^{k-1})}_{\alpha_{k-1}(s')}$$

- $\rightarrow \beta_k(s)$ considers the future observations \mathbf{y}_{k+1}^K .
- $\to \gamma_k(s',s)$ corresponds to the observation y_k of the current state transition (s',s).
- $\rightarrow \alpha_{k-1}(s')$ considers the past observations \mathbf{y}_1^{k-1} .
- Forward recursion for deriving $\alpha_k(s)$

$$\alpha_{k}(s) = \Pr(s_{k+1} = s, \mathbf{y}_{1}^{k}) = \sum_{s'} \Pr(s_{k+1} = s, s_{k} = s', y_{k}, \mathbf{y}_{1}^{k-1})$$

$$= \sum_{s'} \Pr(y_{k}, s_{k+1} = s | s_{k} = s') \Pr(s_{k} = s', \mathbf{y}_{1}^{k-1})$$

$$= \sum_{s'} \gamma_{k}(s', s) \alpha_{k-1}(s')$$

with the initialization $\alpha_0(s')=1$ for s'=0 and $\alpha_0(s')=0$ else.

Notes				
Notes				
Notes				
Notes				
	Notes			

BCJR Algorithm

• Backward recursion for deriving $\beta_{k-1}(s')$ follows in a similar way:

$$eta_{k-1}(s') = \sum_s eta_k(s) \gamma_k(s',s)$$

with the initialization $\beta_K(s) = 1$ for s = 0 and $\alpha_0(s) = 0$ else.

ullet The γ -term can be derived as

$$\gamma_{k}(s',s) = \Pr(y_{k}, s_{k+1} = s | s_{k} = s')
\stackrel{(a)}{=} \Pr(y_{k} | s_{k+1} = s, s_{k} = s') \Pr(s_{k+1} = s | s_{k} = s')
\stackrel{(b)}{=} \Pr(y_{k} | (u_{k}, v_{k})) \Pr(u_{k}) \mathbf{1}_{(s',s)}$$

with $\mathbf{1}_{(s',s)}=1$ if (s',s) is a valid state transition and $\mathbf{1}_{(s',s)}=0$ else.

- (a) follows from Bayes' rule,
- (b) holds since (s', s) uniquely defines (u_k, v_k) and since for a given state s' the transition to s is driven by the information bit u_k.
- Implementation: BCJR is implemented in log-domain to avoid numerical instabilities due to low numbers.

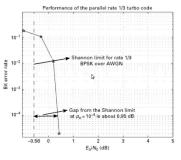
11 / 1

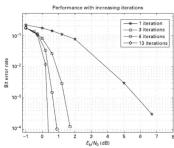
Natas

Lecture 5
Channel Coding 2

M. Xiao
CommTh/EES/KTH

Performance Analysis – Simulation





[U. Madhow, Fundamentals of Dig. Comm., 2008]

Example

- Rate-1/3 Turbo code with recursive convolutional codes $(5,7)_8$
- Waterfall region: can be predicted by analyzing the convergence of the iterative decoding.
- Error-floor region (at high SNR): analysis of the distance properties and union bound.

INOLES			

Notes			

M. Xiao CommTh/EES/KTH

Performance Analysis - Union Bound

• With the input/parity-weight enumerator function $A_{turbo}(w, p)$:

$$P_e \le \sum_{w} \sum_{p} \frac{w}{K} A_{turbo}(w, p) Q\left(\sqrt{\frac{2E_b R(w + p)}{N_0}}\right)$$

$$\stackrel{(a)}{\leq} \sum_{w} \sum_{p} \frac{w}{K} A_{turbo}(w, p) e^{-\frac{E_b R}{N_0} w} e^{-\frac{E_b R}{N_0} p}$$

$$\stackrel{(b)}{\leq} \sum_{w} \frac{w}{K} W^{w} A_{turbo}(P|w) \bigg|_{W=P=e^{-\frac{E_{b}R}{N_{0}}}}$$

and by using

- (a) the upper bound $Q(x) \le e^{-\frac{x^2}{2}}$; (b) the conditional parity weight enumerator function

$$A_{turbo}(P|w) = \sum_{p} A_{turbo}(w, p)P^{p}$$

 \rightarrow How to derive $A_{turbo}(P|w)$?

13/1

M. Xiao CommTh/EES/KTH

Performance Analysis - Union Bound

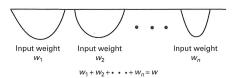
- Assumption: random interleaver that maps one weight-w info word into another weight-w info word with uniform probability $1/\binom{K}{W}$.
- With the conditional weight enumerator functions $A_1(P|w), A_2(P|w)$ of the component encoders we get:

$$A_{turbo}(P|w) = rac{A_1(P|w)A_2(P|w)}{{K \choose w}}$$

• Approximation of the conditional parity weight enumerator function for convolutional codes:

$$A(P|w) \approx \sum_{n=1}^{n_{max}} A(P|w,n) {K \choose n}, \quad n_{max} \leq w \leq K$$

where A(P|w,n) is the parity weight enumerator function for input weight w and codewords consisting of n error events.



Notes			

Notes			

Performance Analysis - Union Bound

• By combining the results and using the approximation $\binom{K}{I} \approx K^I/I!$ for large K, we get:

$$\begin{array}{lll} A_{turbo}(P|w) & \approx & \displaystyle \sum_{n_{1}=1}^{n_{max}} \sum_{n_{2}=1}^{n_{max}} \frac{\binom{\kappa}{n_{1}} \binom{\kappa}{n_{2}}}{\binom{\kappa}{w}} A_{1}(P|w,n_{1}) A_{2}(P|w,n_{2}) \\ \\ & \approx & \displaystyle \sum_{n_{1}=1}^{n_{max}} \sum_{n_{2}=1}^{n_{max}} \frac{w!}{n_{1}! n_{2}!} K^{n_{1}+n_{2}-w} A_{1}(P|w,n_{1}) A_{2}(P|w,n_{2}) \\ \\ & \approx & \displaystyle \frac{w!}{(n_{max}!)^{2}} K^{2n_{max}-w} A_{1}(P|w,n_{max}) A_{2}(P|w,n_{max}) \end{array}$$

and with $A_1(P|w, n) = A_2(P|w, n) = A(P|w, n)$

$$P_{e} \quad \stackrel{\sim}{\leq} \quad \left. \sum_{w=w_{min}}^{K} wW^{w} \frac{w!}{(n_{max}!)^{2}} K^{2n_{max}-w-1} A(P|w,n_{max})^{2} \right|_{W=P=e}^{-\frac{E_{h}R}{N_{0}}}$$

Dominating term at high SNR: $w = w_{min}$

• Interleaver gain if $P_e \sim K^{-k}$, k > 0.

15 / 1

Notes

Lecture 5 Channel Coding 2 *M. Xiao* CommTh/EES/KTH

Performance Analysis – Union Bound

Non-recursive codes

• We have $w_{min} = 1$, $n_{max} = w$, and $A(P|w, n_{max}) = A(P|1, 1)^w$, and it follows that

$$P_{e} \stackrel{\sim}{\leq} \sum_{w=1}^{K} \frac{K^{w-1}}{(w-1)!} W^{w} A(P|1,1)^{2w} \bigg|_{W=P=e^{-\frac{E_{b}R}{N_{0}}}}.$$

- \rightarrow The dominant term in the sum is w = 1.
- Observation: the performance does not improve with increasing block length K, no interleaver gain!

Recursive codes

- We have $w_{min} = 2$, $n_{max} = \lfloor w/2 \rfloor$
 - Case 1: $w = 2k \rightarrow n_{max} = k \rightarrow$ dominating term decays with K^{-1} . Furthermore, $A(P|w, n_{max}) = A(P|2k, k) = A(P|2, 1)^k$.
 - Case 2: $w=2k+1 \rightarrow n_{max}=k \rightarrow$ odd input weights decay with K^{-2} and can be neglected; $A(P|w,n_{max})=A(P|2k+1,k)$.
- Case 1 gives us the effective free distance $p_{eff} = 2 + 2p_{min}$.
- Conclusion: Turbo codes have a low minimum free distance but the interleaver gain $(P_e \sim K^{-1})$ guarantees error probabilities around $10^{-5} \dots 10^{-6}$.

Notes				