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Homework 3

Finite Differences and Absolute Stability

due February 11, 2016

Task 1: Finite Difference Scheme

Find the highest order finite differences approximation possible of the first derivative of u(x)
at the grid nodes x = xi based on four grid values ui−1, ui, ui+1 and ui+2, where ui := u(xi).
Assume equidistant grid spacing, i.e. ∆x := xi+1 − xi = xi − xi−1, for all i.

du

dx

∣∣∣∣
x=xi

≈ f(ui−1, ui, ui+1, ui+2)

a) Give the approximation of the derivative.

b) What is the leading error term? What is the order of this scheme?

c) Implement this scheme for the approximation of the derivative in a similar way as you did
in Task 2a) of Homework 1 and numerically assess the order of its accuracy (Hint. You
should consider the slope of the discretization error in the log-log plot). Note that you do
not need to compute truncation and round-off errors separately, just the global order of
accuracy is required.

Task 2: Stability Criterion

The range of absolute stability of the linear multistep 2nd order Adams–Bashforth method is
studied. This time-stepping method for an initial value problem of the form u′(t) = f(u, t), u(t0) =
u0 is:

un+1 = un +
∆t

2

[
3fn − fn−1

]
,

where

fn := f(un, tn), and tn := n∆t.

a) Is this an explicit or implicit method? Why?

b) Consider, like in Homework 1, the simple test equation (Dahlquist equation):

du

dt
= λu = f(u, t), λ ∈ C, t ≥ 0, (1)

u(0) = 1.

Derive for the 2nd order Adams–Bashforth representation of Eq. (1) the amplification
factor G(λ∆t) = un+1/un, and plot with MATLAB the stability region |G(λ∆t)| ≤ 1 in
the complex plane. Plot also the stability region of the Explicit Euler method (G(λ∆t) =
1 + λ∆t) and compare the two. What can you conclude from the plots? Why and when
should you use the 2nd order Adams–Bashforth method instead of the Euler Explicit
method?
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Task 3: The Modified Wavenumber

On an equispaced grid, the finite-difference derivative of a Fourier mode eikx can be found by
multiplying the function value on each node with the so-called modified wavenumber k̃(k).

To better understand this concept consider a periodic function

f(x+ pm) = f(x), m ∈ Z.

where p is the period length. Let f be the discrete representation of f(x) on the equidistant
grid where xj := j∆x, ∆x := p/N , j = 0, 1, . . . , N − 1,

f := [f0, f1, . . . , fN−1]
>, f0 = fN , where fj := f(xj).

For this task consider p = 2π and N = 20.

a) A first order right-sided finite differences discretization of the derivative f ′(x) can be
written as

f ′
num

:= [δf0, δf1, . . . , δfN−1]
> = D f,

where

δfj :=
fj+1 − fj

∆x
.

Use MATLAB to assemble the system matrix D (remember that f0 = fN ). Include D in
the written report.

b) Consider f(x) = eikx and derive the expression for the modified wavenumber k̃ for the
right-sided finite-difference scheme. Non-dimensionalise the wavenumber with the grid
spacing, i.e. derive the expression for k̃∆x.

c) From now on assume that k = 5 (i.e. consider a specific wave). Compute the derivative in
a discrete (δfj) and analytical (f ′(x)|x=xj ) manner at every grid point. Use the previously
defined D for the discrete derivative. Plot the real part for both the numerical and the
analytical derivative as a function of x.

d) Compute the vector µ with the elements

µj :=
δfj
fj

and compare it with the complex number ik̃, where k̃ is the modified wavenumber for
the right-sided finite differences as derived in b). Does this result confirm that the finite-
difference derivative of a Fourier mode eikx can be found by multiplying the function by
the modified wavenumber? i.e. does ik̃f = D f hold?


