Dielectric response of plasmas
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Overview

* Magnetoionic theory
— anisotropic/gyrotropic
« Cold plasmas
— Alfven velocity
 Warm plasmas

— Distributions functions
 Maxwellian distributions

— The Vlasov equation
— Landau resonance
— Longitudinal and transverse response of warm plasmas
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Reminder: Equations for calculating the dielectric response

E- & B-field exerts force on particles in media

mv=q(E+vxB) solveforv!

The induced motion of charge particles form a current
and a charge density

0
Jm ia — nv . meia+VoJmeia=O
ed spegesq at_ p d d

(n=particle density)

The response can be quantified in e.g. the conductivity o

Ji(k,m) =0,(k,0)E (k,w)
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Dielectric response for plasmas

« A first example of a plasma model is the Magnetoionic theory:
— Assume: ions are static; unperturbed by the wave field (no response)

— Assume: electrons are cold; they are initially static, but move in the presence
of the wave field

— Assume: the plasma has a static and homogeneous magnetic field;
align the coordinate system: B, = B¢,

« What is the dielectric response of a magnetoionic media?
— align also y-axis such that: k = k e +ke,
— the response of the electrons is then given by Newtons equation

\ =1(E+VxB)
m

— Next: add a friction with the ions (a force —-mv;v) and use v =1

i=L(E+ixB)-v,i
m
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Dielectric response for plasmas (2)

* Note that the magnetic field has two components;
a wave component and a static component

B-B,, +B,

wave

— Thus the Lorentz force is non-linear:  mr x (Bwave +B0)
« Assuming that the wave amplitude is small, then we can neglect B,,,.

i‘—i’xeziB0+vf' -4
m m

— here we can identify the cyclotron frequency Q2=gB,/m

* Fourier transform: —w?r +ior x eZQ _ ioovf — iE
m

2. : q L
—0°7; + W€ ;; 1,05, 2 — iV, 1, = ;Ei Note: e; =0;; €,

. : q
[(u) + wf)él.j — zeiﬂQ]rJ. = —%El.

Matrix in the indexes i, j
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Dielectric response for plasmas (3)

* Write equation as a matrix equations:

W+iv,  —iQ 0 |[rn E, |
: : : : q
[(m +zvf)6ij —zaij3§2][rj] = 1Q  w+iv, 0 nl=_ E,
0 0 W+IV, || 7] E;
Inverting the matrix i 0+ iv
. ; ar - M11=M22=(a)+iv )2f_92
h g M, M, 0 ||E, !
—_1 Q2
g = o M, M, 0 |E, - M12=_M21=(a)+iv e
7y 0 0 M,||E, 1 /
M, = :
. W+Iiv,
The current is then -
C_OI’IdUCtiVil‘y O-ij! - ]
Mll M12 0 El
j=ng(-ior) =-igw>|M,, M, 0 |E,
0 0 M;|lE,]
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Dielectric response for plasmas (4)

The dielectric tensor in the magnetoionic theory then reads:

W,  w+iv,
i : T §=1-— )2 2
. S —-iD 0 W (w+iv,) -Q
]
K;|=[6,+—o0,|=|iD S 0 W’ 0
! €,V 1D=-—7" T2 2
0 0O P W (w+iv,)” -Q
2
0)
or P=1- P
! w(w +1iv,)

K; =S(8, ~bb,)+ Pbb, ~iDeb,
where b, are the components of the unit vector parallel

This dielectric response tensor is:

to the magnetic field

— Anisotropic; response is different for E in the x, y, or z direciton.

— Gyrotropic: the off-diagonal terms (involving D) are perpendicular to a

characteristic direction of the media
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Hermitian part of the dielectric tensor

s

g1 =\ _ 1],
K” =~ (K+K™)=2||iD
2 2|1,

\-

1/'5 D 0] [ §
=o||ip s 0|+|¢-iD)
o o Pl | o0
1’ s -ip 0] [
o | Y i(D")
0O 0 P 0

DO | =

—iD O
S 0

0O P

0 |=

P+P"

/

®s) (D} o
i®{D} R{s} 0
0

=Dy 04
* 0
P,

Transpose make

= —iD* and iD*

change place

0 R{P}
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Antihermitian part of the dielectric tensor

1

A T*

K =5(K—K )=
s —ip o] [s

iD S 0|-|GD) S

o o pf 0o o pPJ

3{s} -iS{p} 0
=i|i3{Dp} s} 0
0 0 P}

*

(-iD)’ 0
ES 0 _

*

1
2
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Cold plasma dielectric response

« A commonly used representation of the plasma is the cold plasma

— lons and electrons are initially in a stationary equilibrium,
they move only in the presence of a wave field.

— Usually the friction between ions and electrons are neglected.

— Each species is then described by the
» charge ¢
°* mass mVv
 position rv (or velocity v¥)
Here v =i represent the ions and v =e represent the electrons
NOTE: v is not a tensor index!

* The linearlised equation of motion for species v, when B,=B, e,

mit -qg1t xB,=q'E

P -1 xe, Q' =-LE

m

— Where "=qvB,/m"
— this equation is solved like in the magnetoionic theory
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Cold plasma dielectric response (2)

* The solution of the equation of motion for species v is

qv Muv M,
= v lev M,,

m
0 0

\4

v

v v a)
1r - M, =My, = ) V2
0 E, w -Q
y y Q"
0 Ez 1 M, =-M,, =w2—§2v2
M33V__E3_ .1
M33 =
w

*  With many species the current is a sum over the all species:

Mllv M12V 0 El

j= Y3 =Yg (ior') = Y -igw?, M, M, 0 ||E,
Y Y Y 0 0 M, ||E,]
-Mllv Mlzv O -

— thus also the conductivity ) y y
is a sum over species: O = E —1Egw,, | M, My, 0
v 0 0 M,
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Cold plasma dielectric response (3)

* Low frequency limit w << Q”, w,

The dielectric tensor for the cold plasma reads

— I.e. non-dispersive in S'!

S
= |iD
0

l
€\

¢’ c?
S=...=1+ ~

D=..=0

Low frequency tensor:

— compare: uniaxial crystal

iD 0
S 0
0

— describes Alfven wave and

plasma oscillations (see next lecture)

14

X ]

P-

VA2 VA2 <— V, is the Alfven velocity

/v, 0 0

0 c*IV,>
0 0
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Cold plasma dielectric response (4)

* High frequency limit o >> Q¥

5 | gt

v

Main term comes from the electrons: w,, > w,;

Like an electron gas!
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Overview

* Magnetoionic theory

— anisotropic/gyrotropic
* Cold plasmas

— Alfven velocity
 Warm plasmas

— Distributions functions
 Maxwellian distributions

— The Vlasov equation
— Landau resonance
— Longitudinal and transverse response of warm plasmas
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Kinetic descriptions of gases and plasmas

Gases and plasmas are made up of particles that
move “randomly”

— This randomness makes them pratially
impossible to predict exactly

Instead: study them statistically :

— Selecta velocity grid:
Vvi=i *dv for i=0,1,2...

— Construct histgram over particle velocity
« counter number of particle in each grid cell
— A density of particles in a velcity-space
i 6N(Vi)
Jv) = 5
N
Distribution function="density in r and v space”

— i.e. combine real and velocity space

— boxes: (x,x + dx), (v,, v, +dv,), (y,y + dy), ...
ON (v, VysV,)

FV) = F 6y, 2v,0,,v,) = Oxdydzdv Ov dv,

—>

No. particles, N

grid cells

velocity
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The Maxwellian distribution function

* The "most” important/common distribution function is called the
Maxwellian distribution function. For a gas/plasma with mass per
particle m, temperature 7 and density »

2
M n 1%
V) = exp| -
IO = myy P [ 2V2]
— here V'is the thermal velocity; T=m V2

 E.g. when a gas or a plasma relaxed over a long time it will approach
an equilibrium state. This state can be shown to be a Maxwellian!

— The Maxwellian maximizes the entropy

2/4/16 Dispersive Media, Lecture 4 - Thomas Johnson 16



Response of a warm plasma

In Maxwells equations we need to know the charge density and
current deinsity.

— How can we calculate them from the distribution function?
Note that the number density of particles

ON(v_,v,,v,)
nx) =y 6xay§z = ) FxV O By,

velocities cells velocities cells

How to calculate the density » and the average fluid velocity <v> :

' =ff(v)d3v
n<v> = fvf(v)d3v

Thus, for an ensamble of species v (e.g. ion and electron)
p=Yg'n' =Yg [ @a
J= Eq\’n\’<V>V = Eqvafv(v)aﬂv
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Response of a warm plasma

When subject to a wave field, the equation of motion reads

m'v.(t,r,v) = qV[Ei + 8ijkVJ'Bk:I

The distribution then evolves according to the Viasov equation
(continuity equation in real and velocity space)

J\

J\

(9 9 d
—+Vv,— +v,(t,r,v)— tr,v)=0
o Viox, ( ) ,}f( ) =
K 3 q

6t “ox. m"

[/

— v, —+ [E (¢,r)+e,v B/t r)] }f (z,r,v)=0

Note: the wave field perturbs both E, B and f, thus this equations is
non-linear in the perturbation!
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Response of a warm plasma (2)

Separate unperturbed and perturbed quantities
F(ry) = W)+ ()

E(t,r,v) =0+ E'(z,r,v)

B(t,r,v) =0+B'(t,r,v)

A\

The Vlasov equation:

0 0 i
{ qv [Eil + &5V B, ] }flv(t rVv) =-—

gt ‘ox. m

14
[ |

- [E +e,v B, | a.fM”(v)

Non-linear terms
Linearlised equations and use Faraday’s law B' =k xE'/w

d 0 Y k 0
{—+v.—}flv(t,r,v) __4 [E +€,3€mY — mll—va(v)
m" ()

ot ' 0x v,

i i

: . 1v T 1 Mv
Fourier transform: f (w,k,v)—lwmv [&m = k v] Emavlf (v)

Resonance when part|cles travel
at phase velocity of the wave!
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L andau-resonance

The resonance in the solution to the linearised Vlasov
equation is related to a damping

1y _
frw k) =———

— This was first realised by Lev Landau in 1946
— This type of damping is called Landau damping.

What is the physics of this resonance?
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The physics of the Landau-resonance

Consider a plane wave E ~exp(ik ® x —iwt)
Let a particle travel with the constant velocity x = vt

E ~exp(ik ® vt —iot) =exp(i[k * v-w]t) = exp(-iw'?)

Thus, the particles will see a field oscillating with the frequency o’
— w’is the Doppler shifted velocity! Particle Acceleration

The resonance condition w —=k® v =0, m
pé’

— i.e. the Doppler shifted frequency is zero .
_ i.e. particle travels with the same speed as the wave """
— i.e. the E-field will accelerate the particle forever —the wave is damped!

Note: we have linearised the equations, thus we assume that
changes in particle velocity are small no matter now long the
acceleration time!

— in reality non-linear effects come in play - damping remains unchanged
only if the dissipation (I') is more important than non-linearity
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Response of a warm plasma (3)

« The current is obtained from the integral over velocity space

J.(0,k) = Eqvf v ¥ (w,kv)dV

— using the perturbed distribution from the previous page

Um ki

fwkv)=— [&m

Mv
iwmY Em avl gl W

w—K-v

Add a weak dissipation to

* The current can be written as allow for use of Plemej formula

v Kk,
' (0,k) =1 i [ 15, M w)dy
Jn(@,k) {leozwmfl’m w-Kkev+i0 nVVVf ) }
1

I
The conductivity tensor!
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Plemei formula in kinetic plasmas

« In cold plasmas the Plemej formula appear for resonances like:
1
Nw—9+m
— where Q is a natural frequency of the system.

— l.e. only at exactly the correct resonance
is there an antihermitian tensor component

— In many practical situation the w-spectrum is discrete and
no mode match the resonance condition exactly — no damping.

* |n warm plasmas the resonance condition is
1
w-Ke*v+i0
— l.e. all particles travelling with the right speed are in resonance.

— For smooth distributions there are always some particle with the
right speed.

— Thus, there is an antinermitian part of the dielectric tensor, and thus
damping, for a wide range of frequencies!

~y
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Response of a warm plasma (3)

After some algebra it is possible to rewrite the dielectric tensor as
a tensor with different longitudinal and transverse responses.

K. =K'xx, + KT(6l.j - KiKi)

— The key parameter in the reponse is the ratio between the phase
velocity and the thermal velocity: y, = m/2kV”

— Thus, the thermal velocity is at the Landau resonance if y, = 1/+/2

* The tensor components reads: MT
/ ) 21 . The plasma
0 : : :

KL =1+E P [1 —¢()’v)+i\/g)’v exp(—yvz)] dispersion function

~\kV :

T /(Dpv ’ . 2 y"/ \

K =1+E\ " [<i>(yv)—n/5yv exp(-Y, )]F

' 2 fz 2 0 ! £\ 3= ’

_ -2 -t Fig. 10.1 The real part (solid curve) and the imaginary par

¢(Z) - 2Z€ fO € dt %dotted curve) i)fpt.hz E)lagila disp)ersignti"nnct.io% (10).,21;). t
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Damping in warm plasma

« Consider longitudinal waves
— the damping is then proportional to (see later lectures for details)

S»S{KL}=2((UW) \/;yvexp(_yvz)

kv

e The maximum damping is for y, = 1/4/2~0.7 , or w/k~V,, ,
i.e. when the phase velocity of the wave is similar to the thermal velocity
— this the when the Landau resonance is most effective

¢(z) A

2 1

0 -

Zz

Fig. 10.1 The real part (solid curve) and the imaginary part
(dotted curve) of the plasma dispersion function (10.27).
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