

Wave equations and properties of waves in ideal media

T. Johnson

"Wave group" by Kraaiennest - Own work. Licensed under GFDL via Commons - https://commons.wikimedia.org/wiki/File:Wave_group.gif#/media/File:Wave_group.gif

Outline

- The wave equation in vacuum define:
 - Dispersion equation / dispersion relations / refractive index
- Wave equations in dispersive media
 - Generalise the dispersion equation as a non-linear eigenvalue problem
 - Polarisation vectors and longitudinal/transverse waves
- Damping rates and the antihermitian part of the dielectric tensor
 - Some math for wave equations; mainly linear algebra
- The group velocity
- Waves in ideal media
 - Isotropic media
 - Spatial dispersive media
 - Uniaxial crystalsE.g. birefringent crystals

"Crystal on graph paper" by APN MJM - Own work. Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Crystal_on_graph_paper.jpg#/media/File:Crystal_on_graph_paper.jpg

The wave equation in vacuum

- Wave equations can be derived for B, E and A.
- Waves in vacuum, i.e. no free charge or currents; then ϕ =const! Using Fourier transformed quantities in the Coloumb gauge:

$$\mathbf{E}(\omega, \mathbf{k}) = i\omega \mathbf{A}(\omega, \mathbf{k})$$
, $\mathbf{B}(\omega, \mathbf{k}) = i\mathbf{k} \times \mathbf{A}(\omega, \mathbf{k})$, $i\mathbf{k} \cdot \mathbf{A}(\omega, \mathbf{k}) = 0$

Ampere's law:

$$i\mathbf{k} \times \mathbf{B} + i\omega \mathbf{E}/c^2 = \mu_0 \mathbf{J}$$
 \Longrightarrow $\mathbf{k} \times (\mathbf{k} \times \mathbf{A}) + \omega^2/c^2 \mathbf{A} = -\mu_0 \mathbf{J}$

where
$$\mathbf{k} \times (\mathbf{k} \times \mathbf{A}) = \mathbf{k}(\mathbf{k} \cdot \mathbf{A}) - |\mathbf{k}|^2 \mathbf{A} = -|\mathbf{k}|^2 \mathbf{A}$$

Homogeneous wave equation:

$$\left(\left|\mathbf{k}\right|^2 - \omega^2/c^2\right)\mathbf{A} = 0$$

• Solutions exists for: $(|\mathbf{k}|^2 - \omega^2/c^2) = 0$, the *dispersion equation*!

Dispersion relations

- A wave satisfying a dispersion equation is called a Wave Mode.
- Solutions to the dispersion equation can be written as a relation between ω and k called a *dispersion relation*, e.g.

$$(|\mathbf{k}|^2 - \omega^2/c^2) = 0 \implies \omega = \omega_M(\mathbf{k})$$

- Note: here ω is the frequency and $\omega_{\mathcal{M}}(\mathbf{k})$ is a function of \mathbf{k}
- the sub-index M is for wave mode.
- the function ω_M represents the dielectric response and therefore is a property of the media
- Example: In vacuum the dispersion relation reads:

$$\omega = \pm |\mathbf{k}|c \implies \omega_{M+}(\mathbf{k}) = \pm |\mathbf{k}|c$$

i.e. light waves

Refractive index

Dispersion relations can be written using the refractive index n

$$n = \frac{|\mathbf{k}|c}{\omega} = \frac{c}{\omega/|\mathbf{k}|} \sim \frac{\text{"speed of light"}}{\text{"phase velocity"}}$$

- A dispersion relation for a wave mode can be rewritten...
 - by replacing $\omega^2 = (|\mathbf{k}| c/n)^2$

$$n \equiv n_M(\mathbf{k})$$

- or by replacing $\mathbf{k} = k\mathbf{e}_k$, $k = \omega n/c$ $n = n_M(\omega, \mathbf{e}_k)$

The dispersion relation for waves in vacuum then reads

$$n = \pm 1$$

i.e. the phase velocity of vacuum waves is the speed of light

Degrees of freedom of the plane wave

The solution to the wave equation is a sum of plane waves.

$$A_i(\mathbf{x},t) = \hat{A}_i \exp(i\mathbf{k} \cdot \mathbf{x} - i\omega t)$$

- The dispersion relation determines the refractive index
 - i.e. a relation between ω and k for a given direction of propagation

$$A_i(\mathbf{x},t) = \hat{A}_i \exp(i\mathbf{k} \cdot \mathbf{x} - i\omega_M(\mathbf{k})t)$$

- Is there anything else we can say about the solution?
- Example: If the wave is launched by an antenna, which degrees of freedom are determined by
 - the antenna?
 - the media?

The wave equation in dispersive media

• Ex: Temporal Gauge, ϕ =0, the fields are described by **A** alone

$$\mathbf{E}(\omega, \mathbf{k}) = i\omega \mathbf{A}(\omega, \mathbf{k})$$
, $\mathbf{B}(\omega, \mathbf{k}) = i\mathbf{k} \times \mathbf{A}(\omega, \mathbf{k})$

Ampere's law:

$$i\mathbf{k} \times \mathbf{B} + i\omega \mathbf{E}/c^2 = \mu_0 \mathbf{J}$$
 \Longrightarrow $\mathbf{k} \times (\mathbf{k} \times \mathbf{A}) + (\omega/c)^2 \mathbf{A} = -\mu_0 \mathbf{J}$

• Split $J=J_{ext}+J_{ind}$, where J_{ext} external drive and J_{ind} is induced parts

$$J_{\text{ind, }i} = \alpha_{ij} A_j$$

where α_{ii} is polarisation response tensor

Inhomogeneous wave equation:

$$\Lambda_{ij}A_j = -\frac{c^2}{\omega^2}\mu_0 J_{\exp,i}$$

Dielectric tensor:
$$K_{ij} = \delta_{ij} + \frac{1}{\omega^2 \varepsilon_0} \alpha_{ij}$$

Wave operator

$$\Lambda_{ij} A_j = -\frac{c^2}{\omega^2} \mu_0 J_{\text{exp}, i} \quad \text{where } \Lambda_{ij} = \frac{c^2}{\omega^2} \left(k_i k_j - |\mathbf{k}|^2 \delta_{ij} \right) + K_{ij}$$
etric tensor: $K_{ij} = \delta_{ij} + \frac{1}{\omega^2} \alpha_{ij}$

Dispersion relations in dispersive media

Homogeneous wave equation:

$$\Lambda_{ij}(\omega, \mathbf{k}) A_j(\omega, \mathbf{k}) = 0$$

(the book includes only the Hermitian part Λ^H , but this is a technicality At the end of this calculations we get the same dispersion relation)

Solutions exist if and only if:

$$\Lambda (\omega, \mathbf{k}) = \det \left[\Lambda_{ij}(\omega, \mathbf{k}) \right] = 0$$

this is the dispersion equation.

From this equation the dispersion relation can be derived

$$\omega = \omega_{\scriptscriptstyle M}(\mathbf{k})$$

where

$$\Lambda \left(\omega_M(\mathbf{k}), \mathbf{k} \right) = 0$$

Non-linear and linear eigenvalue problems

- This wave equation is a non-linear eigenvalue problem...meaning?
- Remember *linear eigenvalue problems*: for a matrix $\bf A$ find the eigenvalues λ and the eigenvectors $\bf x$ such that:

$$\mathbf{A}\mathbf{x} - \lambda\mathbf{x} = (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = 0$$

or alternatively

$$(A_{ij} - \lambda \delta_{ij}) x_j = \Lambda_{ij}(\lambda) x_j = 0$$

Thus for the linear eigenvalue problem Λ_{ii} is linear in λ .

- Our wave equation has the same form, except $\Lambda_{ii}(\omega)$ is non-linear in ω .
- Thus, we are looking for the eigenvalues ω_M and the eigenvectors **A** to the equation

$$\Lambda_{ij}(\omega_M, \mathbf{k})A_j = 0$$

Exercise: show that when $K_{ij}=K_{ij}(\mathbf{k})$, the wave equation is a linear eigenvalue problem in ω^2 . However, inertia in Eq. of motion (when deriving media responce) gives $K_{ii}=K_{ii}(\omega,\mathbf{k})$.

Polarization vector

- So the wave equation is an eigenvalue problem
 - The eigenvalue is the frequency
 - The normalised eigenvector is called the *polarisation vector*, $\mathbf{e}_{M}(\mathbf{k})$

$$\mathbf{e}_{M}(\mathbf{k}) = \frac{\mathbf{A}(\omega_{M}(\mathbf{k}), \mathbf{k})}{|\mathbf{A}(\omega_{M}(\mathbf{k}), \mathbf{k})|}$$
 the direction of the A-field!

- Note: the A-field is parallel to the E-field
- The polarisation vector is complex what does this mean?
 - e.g. take $\mathbf{e}_M = (2, i, 0) / 5^{1/2}$, then the vector potential is

$$\mathbf{A}(t,\mathbf{x}) \propto \text{Re}\left\{ \begin{bmatrix} 2, i, 0 \end{bmatrix} \exp(i\mathbf{k} \cdot \mathbf{x} + i\omega t) \right\} =$$

$$= \begin{bmatrix} 2\cos(\mathbf{k} \cdot \mathbf{x} + \omega t), \cos(\mathbf{k} \cdot \mathbf{x} + \omega t + 90^{\circ}), 0 \end{bmatrix}$$

- The difference in "phase" of e_{MI} and e_{M2} (in complex plane; one being real and the other imaginary) makes A_I and A_2 oscillate 90° out of phase - elliptic polarisation!

Longitudinal & Transverse waves

Definition:

Longitudinal & Transverse waves have e_M parallel & perpendicular to k

Examples:

- Light waves have $\mathbf{E} \parallel \mathbf{A}$ perpendicular to \mathbf{k} , i.e. a transverse wave
- Sounds waves (wave equation for the fluid velocity v)
 have v || k, i.e. a longitudinal wave.

Outline

- The wave equation in vacuum define:
 - Dispersion equation / dispersion relations / refractive index
- Wave equations in dispersive media
 - Generalise the dispersion equation as a non-linear eigenvalue problem
 - Polarisation vectors and longitudinal/transverse waves
- Damping rates and the antihermitian part of the dielectric tensor
 - Some math for wave equations; mainly linear algebra
- The group velocity
- Waves in ideal media
 - Isotropic media
 - Spatial dispersive media
 - Uniaxial crystalsE.g. birefringent crystals

"Crystal on graph paper" by APN MJM - Own work. Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Crystal_on_graph_paper.jpg#/media/File:Crystal_on_graph_paper.jpg

Linear algebra: cofactors

- An (i,j):th <u>cofactor</u>, λ_{ij} of a matrix Λ is the determinant of the "reduced" matrix, obtained by removing row i and column j, times $(-1)^{i+j}$
- In tensor notation (you don't have to understand why!):

$$\lambda_{ai} = \frac{1}{2} \varepsilon_{abc} \varepsilon_{ijl} \Lambda_{bj} \Lambda_{cl} \quad \text{e.g.} \quad \lambda_{21} = (-1)^{i+j} \det \begin{vmatrix} \star & \Lambda_{12} & \Lambda_{13} \\ \star & \star & \star \\ \star & \Lambda_{32} & \Lambda_{33} \end{vmatrix} = (-1)^{i+j} \begin{vmatrix} \Lambda_{12} & \Lambda_{13} \\ \Lambda_{32} & \Lambda_{33} \end{vmatrix}$$
ernative definition for cofactors:

Alternative definition for cofactors:

$$\Lambda_{ik}\lambda_{kj}=\Lambda\delta_{ij}$$

- Thus, for $\Lambda=0$ each column $(\lambda_{1i}, \lambda_{2i}, \lambda_{3i})^T$ is an eigenvector!
- It can be shown that

$$\lambda_{ai} = \lambda_{kk} e_{Mi} e_{Mj}^*$$

where λ_{kk} is the *trace* of λ and e_{Mi} are the normalised eigenvectors

Linear algebra: determinants

The determinant can be written as (Melrose page 139)

$$\det[\Lambda] = \frac{1}{6} \varepsilon_{abc} \varepsilon_{ijl} \Lambda_{ai} \Lambda_{bj} \Lambda_{cl}$$

Derivatives (note that the three derivates are identical)

$$\frac{\partial}{\partial x} \det[\Lambda(x)] = \frac{1}{2} \varepsilon_{abc} \varepsilon_{ijl} \Lambda_{ai} \Lambda_{bj} \frac{\partial \Lambda_{cl}}{\partial x} = \lambda_{bj} \frac{\partial \Lambda_{bj}}{\partial x}$$
Cofactors λ_{bj} !

Special case; take derivative w.r.t. the one tensor component

$$\frac{\partial}{\partial \Lambda_{ij}} \det \left[\Lambda(\Lambda_{11}, \Lambda_{12}, \Lambda_{21}, \Lambda_{22}, ...) \right] = \lambda_{nm} \frac{\partial \Lambda_{nm}}{\partial \Lambda_{ij}} = \lambda_{ij}$$

$$\frac{\partial}{\partial \Lambda_{ij}} \delta_{im}$$

Linear algebra: Taylor expansion

 The determinant of this matrix is a function of the matrix components

$$\det[\Lambda] = f(\Lambda_{11}, \Lambda_{12}, ...)$$

• Perturbing the matrix components $\Lambda_{ij} \to \Lambda_{ij} + \delta \Lambda_{ij}$ we can then Taylor expand

$$\begin{split} \det \left[\Lambda + \delta \Lambda \right] &= f(\Lambda_{ij} + \delta \Lambda_{ij}) = \\ &= f(\Lambda_{ij}) + \frac{\partial}{\partial \Lambda_{ij}} f(\Lambda_{ij}) \delta \Lambda_{ij} + O(\delta \Lambda^2) = \\ &= \det \left[\Lambda \right] + \frac{\partial}{\partial \Lambda_{ij}} \det \left[\Lambda \right] \delta \Lambda_{ij} + O(\delta \Lambda^2) = \\ &= \det \left[\Lambda \right] + \lambda_{ij} \delta \Lambda_{ij} + O(\delta \Lambda^2) \end{split}$$

Damping of waves

- We're now ready to show that for low amplitude waves:
 - the Hermitian part of Λ_{ii} provides the dispersion relation
 - the anti-Hermitian part of the dielectric tensor K^{A}_{ij} describes wave damping, i.e. the decay of the wave
- Consider a plane wave with complex frequency $\omega + i\omega_I$

$$A_{i}(\mathbf{x},t) = \hat{A}_{i} \exp(\omega_{I} t) \exp(i\mathbf{k} \cdot \mathbf{x} - i\omega t)$$

- The wave amplitude decays at a rate - ω_l
- Note: the wave energy ($\sim |\mathbf{E}|^2$) decays at a rate $\gamma = -2\omega_I$
- The dispersion relation

$$\det\left[\boldsymbol{\Lambda}_{ij}\left(\boldsymbol{\omega}+i\boldsymbol{\omega}_{I},\mathbf{k}\right)\right]=\det\left[\boldsymbol{\Lambda}_{ij}^{H}\left(\boldsymbol{\omega}+i\boldsymbol{\omega}_{I},\mathbf{k}\right)+\boldsymbol{\Lambda}_{ij}^{A}\left(\boldsymbol{\omega}+i\boldsymbol{\omega}_{I},\mathbf{k}\right)\right]=0$$

Exercise: show that $\Lambda^A = \mathbf{K}^A$

To simplify this expression we will assume weak damping ...

Weak damping of waves

Assume the damping to be weak by:

$$K_{ij}^A \rightarrow 0$$
 and $\omega_I \rightarrow 0$

- Also assume $\omega_I \sim K^A$
 - Interpretation of the relation $\omega_I \sim K^A$: reduce K^A by factor, then ω_I reduces by the same factor, thus the they go to zero *together*
- Expand in small ω_I :

$$\begin{split} & \Lambda_{ij} \Big(\boldsymbol{\omega} + i \boldsymbol{\omega}_{I}, \mathbf{k} \Big) \approx \Lambda_{ij} \Big(\boldsymbol{\omega}, \mathbf{k} \Big) + i \boldsymbol{\omega}_{I} \frac{\partial}{\partial \boldsymbol{\omega}} \Lambda_{ij} \Big(\boldsymbol{\omega}, \mathbf{k} \Big) + O(\boldsymbol{\omega}_{I}^{2}) \\ & \approx \Lambda_{ij}^{H} \Big(\boldsymbol{\omega}, \mathbf{k} \Big) + K_{ij}^{A} \Big(\boldsymbol{\omega}, \mathbf{k} \Big) + i \boldsymbol{\omega}_{I} \frac{\partial}{\partial \boldsymbol{\omega}} \Lambda_{ij}^{H} \Big(\boldsymbol{\omega}, \mathbf{k} \Big) + i \boldsymbol{\omega}_{I} \frac{\partial}{\partial \boldsymbol{\omega}} K_{ij}^{A} \Big(\boldsymbol{\omega}, \mathbf{k} \Big) + O(\boldsymbol{\omega}_{I}^{2}) \end{split}$$

$$1^{\text{st order in } \boldsymbol{\omega}_{I}} \quad \text{Both small, i.e. } \sim \boldsymbol{\omega}_{I}^{2}$$

Dispersion equation then reads

$$\det\left[\Lambda_{ij}^{H} + \delta\Lambda_{ij}\right] = 0 , \delta\Lambda_{ij} = K_{ij}^{A}(\omega, \mathbf{k}) + i\omega_{I} \frac{\partial\Lambda_{ij}^{H}(\omega, \mathbf{k})}{\partial\omega} + O(\omega_{I}^{2})$$

- Next: Expand the determinant in small $\delta \Lambda_{ii}$

Weak damping of waves

The dispersion equation (repeated from previous page):

$$\det\left[\Lambda_{ij}^{H} + \delta\Lambda_{ij}\right] = 0 , \delta\Lambda_{ij} = K_{ij}^{A}(\omega, \mathbf{k}) + i\omega_{I} \frac{\partial\Lambda_{ij}^{H}(\omega, \mathbf{k})}{\partial\omega} + O(\omega_{I}^{2})$$

Taylor expand the determinant

$$\det\left[\Lambda_{ij}^{H} + \delta\Lambda_{ij}\right] = \det\left[\Lambda_{ij}^{H}\right] + \delta\Lambda_{ij}\lambda_{ij} + O\left(\delta\Lambda_{ij}^{2}\right)$$

- where λ_{ij} are the cofactors of
- NOTE: (see "Linear Algebra" pages): $\lambda_{ij} \frac{\partial}{\partial \omega} \Lambda^H_{ij}(\omega, \mathbf{k}) = \frac{\partial}{\partial \omega} \det \left[\Lambda^H_{ij} \right]$
- The dispersion equation can then be written as

$$\det\left[\Lambda_{ij}^{H}(\boldsymbol{\omega},\mathbf{k})\right] + \lambda_{ij}K_{ij}^{A}(\boldsymbol{\omega},\mathbf{k}) + i\omega_{I}\frac{\partial}{\partial \omega}\det\left[\Lambda_{ij}^{H}(\boldsymbol{\omega},\mathbf{k})\right] + O(\omega_{I}^{2}) = 0$$

Weak damping of waves

- Note that the dispersion equation with weak damping has both real and imaginary parts
 - The matrix of cofactors is Hermitian, thus $\lambda_{ii} K_{ii}^{A}$ is imaginary
 - Also: $\det(\Lambda_{ii}^{H})$ is real

$$0 = \operatorname{Re}\left\{\det\left[\Lambda(\omega, \mathbf{k})\right]\right\} \approx \det\left[\Lambda_{ij}^{H}(\omega, \mathbf{k})\right] + O(\omega_{I}^{2})$$

$$0 = \operatorname{Im}\left\{\det\left[\Lambda(\omega, \mathbf{k})\right]\right\} \approx -i\lambda_{ij}K_{ij}^{A}(\omega, \mathbf{k}) + \omega_{I}\frac{\partial}{\partial \omega}\det\left[\Lambda_{ij}^{H}(\omega, \mathbf{k})\right] + O(\omega_{I}^{2})$$

The first equation gives dispersion relation for real frequency

$$\omega = \omega_M(\mathbf{k})$$
 such that : $\det[\Lambda_{ij}^H(\omega_M(\mathbf{k}),\mathbf{k})] + O(\omega_I^2) = 0$

and the second equations gives the damping rate

$$\omega_{I} = \frac{i\lambda_{ij}K_{ij}^{A}(\omega_{M}(\mathbf{k}),\mathbf{k})}{\frac{\partial}{\partial\omega}\det\left[\Lambda_{nm}^{H}(\omega,\mathbf{k})\right]_{\omega=\omega_{M}(\mathbf{k})}} + O(\omega_{I}^{2})$$

Energy dissipation rate, γ_M

- Alternatively we can form the energy dissipation rate, i.e. rate at which the wave energy is damped $\gamma_M = -2\omega_I$
 - express the cofactor in terms of polarisation vectors $\lambda_{ij} = \lambda_{kk} e_{Mi} e_{Mj}^*$

$$\gamma_{M} = -2i\omega_{M}(\mathbf{k})R_{M}(\mathbf{k})\left\{e_{Mi}^{*}(\mathbf{k})K_{ij}^{A}(\omega_{M}(\mathbf{k}),\mathbf{k})e_{Mj}(\mathbf{k})\right\}$$
Vector Matrix Vector

Note: this is related to the hermitian part of the conductivity, $\sigma_{ij}^H \propto iK_{ij}^A$

$$\gamma_M \propto e_{Mi}^* \left[i K_{ij}^A \right] e_{Mj} \propto e_{Mi}^* \sigma_{ij}^H e_{Mj}$$

- here R_M is the ratio of electric to total energy

$$R_{M}(\mathbf{k}) = \left\{ \frac{\lambda_{ss}(\omega, \mathbf{k})}{\omega \frac{\partial}{\partial \omega} \det[\Lambda_{nm}^{H}(\omega, \mathbf{k})]} \right\}_{\omega = \omega_{M}(\mathbf{k})}$$

and plays an important role in Chapter 15

Determinant and the cofactors in the general case

- Explicit forms of dispersion equation and cofactors
- Write Λ in terms of the refractive index n and the unit vector along \mathbf{k} , i.e. $\kappa = \mathbf{k}/|\mathbf{k}|$

$$\Lambda_{ij} = \frac{c^2}{\omega^2} \left(k_i k_j - |\mathbf{k}|^2 \delta_{ij} \right) + K_{ij} \rightarrow \Lambda_{ij} = n^2 \left(\kappa_i \kappa_j - \delta_{ij} \right) + K_{ij}$$

Brute force evaluation give

$$\det[\Lambda] = n^4 \kappa_i \kappa_j K_{ij} - n^2 \left(\kappa_i \kappa_j K_{ij} K_{ss} - \kappa_i \kappa_j K_{is} K_{sj} \right) + \det[K]$$

The cofactors (related to the eigenvector) are

$$\lambda_{ij} \approx n^4 \kappa_i \kappa_j - n^2 \left(\kappa_i \kappa_j K_{ss} - \delta_{ij} \kappa_r \kappa_s K_{rs} - \kappa_i \kappa_s K_{sj} - \kappa_s \kappa_j K_{is} \right) + \frac{1}{2} \delta_{ij} \left(K_{ss}^2 - K_{rs} K_{sr} \right) + K_{is} K_{sj} + K_{ss} K_{ij}$$

Outline

- The wave equation in vacuum define:
 - Dispersion equation / dispersion relations / refractive index
- Wave equations in dispersive media
 - Generalise the dispersion equation as a non-linear eigenvalue problem
 - Polarisation vectors and longitudinal/transverse waves
- Damping rates and the antihermitian part of the dielectric tensor
 - Some math for wave equations; mainly linear algebra
- The group velocity
- Waves in ideal media
 - Isotropic media
 - Spatial dispersive media
 - Uniaxial crystalsE.g. birefringent crystals

"Crystal on graph paper" by APN MJM - Own work. Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Crystal_on_graph_paper.jpg#/media/File:Crystal_on_graph_paper.jpg

The group velocity

- The propagation of waves is a transfer of energy
 - e.g. the light from the sun transfer energy to earth
 - It's warm in the sun since the sunlight bring energy!
- · Consider a wave package from an antenna
 - Does this package travel with the phase velocity?

In dispersive media the answer is **no**!!

"Wave group" by Kraaiennest - Own work. Licensed under GFDL via Commons https://commons.wikimedia.org/wiki/File:Wave group.gif#/media/File:Wave group.gif

The velocity at which the shape of the wave's amplitudes (modulation/envelope) moves is called the group velocity

- The group velocity is *often* the velocity of information or energy
 - Warning! There are exceptions; experiments have shown that group velocity can go above speed of light, but then the information does not travel as fast

The velocity of a wave package, 1(2)

- The concept of group velocity can be illustrated by the motion of a wave package
 - This motion can easily be identified for a 1D wave package
 - travelling in a wave mode with dispersion relation: $\omega = \omega_M(k)$
 - assuming the wave is almost monochromatic linearise the dispersion relation:

$$\omega_M(k) \approx \omega_{M0} + \omega'_{M0}(k - k_0)$$
 , $\omega'_{M0} \equiv \frac{d\omega_{M0}}{dk}$

Let the wave have a Fourier transform

$$E(\omega,k) = A(k)\delta(\omega - \omega_M(k)) + A^*(-k)\delta(\omega + \omega_M(k))$$

 To study how the wave package travel in space-time, take the inverse Fourier transform

$$E(t,r) = \frac{1}{4\pi} \int_{-\infty}^{\infty} d\omega \int_{-\infty}^{\infty} dk A(k) \delta(\omega - \omega_M(k)) \exp\{ikx - i\omega t\} + \text{c.c.}$$
$$= \frac{1}{4\pi} \int_{-\infty}^{\infty} dk A(k) \exp\{ikx - i\omega_M(k)t\} + \text{c.c.}$$

The velocity of a wave package, 2(2)

Now apply the assumption of having "almost chromatic waves"

$$\begin{split} & \omega_{M}(k) \approx \omega_{M0} + \omega'_{M0}(k - k_{0}) \Rightarrow \\ & E(t, x) \approx \frac{1}{4\pi} \int_{-\infty}^{\infty} dk A(k) \exp\{ikx - i\omega_{M}(k)t\} + \text{c.c.} = \\ & = \frac{e^{-i(\omega_{M0} + \omega'_{M0}k_{0})t}}{4\pi} \int_{-\infty}^{\infty} dk A(k) \exp\{ik(x - \omega'_{M0}t)\} + \text{c.c.} = e^{-i(\omega_{M0} + \omega'_{M0}k_{0})t} fcn(x - \omega'_{M0}t) + \text{c.c.} \end{split}$$

- i.e. if a wave package is centered around x=0 at time t=0, then at time t=T wave package has the identical shape but now centred around $x = \omega'_{M0} T$

Wave package moves with a speed called the *group velocity*: $v_g = \omega'_{M0} \equiv \frac{d\omega_{M0}}{dk}$

$$v_g = \omega'_{M0} \equiv \frac{d\omega_{M0}}{dk}$$

Examples of group velocities

Let us start with the ordinary light wave:

$$\omega_L(\mathbf{k}) = ck = c\sqrt{k_i k_i}$$

– The group velocity:

$$v_{gM,i} = \frac{\partial}{\partial k_i} \omega_L(\mathbf{k}) = \frac{\partial}{\partial k_i} ck = c\kappa_i$$

– The phase velocity:

$$v_{phM,i} = \frac{\omega_L(\mathbf{k})}{k} \kappa_i = c\kappa_i$$

Hamilton's equations of motion for rays

- The concept of group velocity can be used when studying rays
- How do you follow the path of a ray in a dispersive media?
 - Hamilton studied this problem in the mid 1800's and developed a *particle theory for waves*; i.e. like photons! (long before Einstein)
 - Hamilton's theory is now known as <u>Hamiltonian mechanics</u>
 - Hamilton's equations for the mechanical motion of particles:

$$\dot{q}_{i}(t) = \frac{\partial H(p,q,t)}{\partial p_{i}}$$

$$\dot{p}_{i}(t) = -\frac{\partial H(p,q,t)}{\partial q_{i}}$$

- where
 - $q_i = (x, y, z)$ are the position coordinates
 - $p_i = (mv_x, mv_y, mv_z)$ are the canonical momentum coordinates
 - The Hamiltonian H is the sum of the kinetic and potential energy
- But what are q_i, p_i and H for waves?

Hamilton's equations for rays

- What are q_i, p_i and H for waves?
 - The position coordinates $q_i = (x, y, z)$
 - In quantum mechanics the wave momentum is $\hbar k$; in Hamilton's theory the momentum is $p_i = (k_x, k_y, k_z)$
 - The Hamiltonian energy H is $\omega_M(k)$ (energy of wave in quanta $\hbar\omega$), i.e. the solution to the dispersion relation for the mode M!
- Consequently, the group velocity of a wave-particle of mode M is:

$$\mathbf{v}_{gM} = \dot{\mathbf{q}} = \frac{\partial \omega_M(\mathbf{k})}{\partial \mathbf{k}}$$

• The second of Hamilton equations tells us how \mathbf{k} changes when passing through a weakly inhomogeneous media, i.e. one in which the dispersion relation changes *slowly* as the wave propagates through the media, $\omega_M(\mathbf{k}, \mathbf{q})$

$$\dot{\mathbf{k}} = -\frac{\partial \omega_M(\mathbf{k}, \mathbf{q})}{\partial \mathbf{q}}$$

Warning! Hamiltons equations only work for almost homogeneous media. If the media changes rapidly the ray description may not work!

Outline

- The wave equation in vacuum define:
 - Dispersion equation / dispersion relations / refractive index
- Wave equations in dispersive media
 - Generalise the dispersion equation as a non-linear eigenvalue problem
 - Polarisation vectors and longitudinal/transverse waves
- Damping rates and the antihermitian part of the dielectric tensor
 - Some math for wave equations; mainly linear algebra
- The group velocity
- Waves in ideal media
 - Isotropic media
 - Spatial dispersive media
 - Uniaxial crystalsE.g. birefringent crystals

"Crystal on graph paper" by APN MJM - Own work. Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Crystal_on_graph_paper.jpg#/media/File:Crystal_on_graph_paper.jpg

Ex. 1: Isotropic, not spatially dispersive, media

• Isotropic, not spatially dispersive, media: $K_{ij}(\omega) = K(\omega)\delta_{ij}$

• Place z-axis along
$$\mathbf{k} : \Lambda_{ij} = n^2 \left(\kappa_i \kappa_j - \delta_{ij} \right) + K_{ij} = \begin{pmatrix} K - n^2 & 0 & 0 \\ 0 & K - n^2 & 0 \\ 0 & 0 & K \end{pmatrix}$$
($n = \text{refractive index}$)

- Dispersion equation: $(K n^2)^2 K = 0$
- Dispersion relations: $\begin{cases} n^2 = K(\omega) \rightarrow n_M(\omega)^2 \equiv K(\omega) \\ K(\omega) = 0 \end{cases}$
 - Note: $K(\omega)=0$ means oscillations, NOT waves! (See section on Group velocity)
- The waves $n^2 = K(\omega)$ are transverse waves
 - Plug dispersion relation into Λ_{ij} to see that the eigenvectors are perpendicular to ${\bf k}$!
- Polarisation vectors of transverse waves are <u>degenerate</u>
 (not unique eigenvector per mode); discussed in detail in Chapter 14.

K is the square root of

the refractive index

Ex. 1: Isotropic media – electron gases

Consider high frequency waves; most medias behave like an electron gas

$$K_{ij} = K\delta_{ij} = \left(1 - \frac{\omega_{pe}^2}{\omega^2}\right)\delta_{ij}$$

High frequency waves:

$$n_M^2 = K(\omega) = 1 - \frac{\omega_{pe}^2}{\omega^2}$$
$$\omega_M^2(\mathbf{k}) = c^2 k^2 + \omega_{pe}^2$$

- The group velocity: $v_{g,M,i} = \frac{\partial}{\partial k_i} \sqrt{\omega_{pe}^2 + c^2 k^2} = \frac{c}{\sqrt{\omega_{pe}^2/c^2 k^2 + 1}} \kappa_i$
- The phase velocity: $v_{g,M,i} = \sqrt{\omega_{pe}^2/c^2k^2 + 1} \ c\kappa_i$
- Note:
 - phase velocity may be faster than speed of light
 - group velocity is slower than speed of light

Information travel with v_g , cannot travel faster than speed of light

Ex 2: Isotropic media with spatial dispersion

• Isotropic media with spatial dispersion; align z-axis: $\mathbf{e}_z = \mathbf{\kappa}$

$$K_{ij}(\omega, \mathbf{k}) = K^{L}(\omega, k) \kappa_{i} \kappa_{j} + K^{T}(\omega, k) (\delta_{ij} - \kappa_{i} \kappa_{j}) = \begin{bmatrix} K^{T} & 0 & 0 \\ 0 & K^{T} & 0 \\ 0 & 0 & K^{L} \end{bmatrix}$$

Dispersion equation

$$K^{L}(\omega,k)[K^{T}(\omega,k)-n^{2}]^{2}=0$$

- Transverse dispersion relation $K^{T}(\omega,k) n^2 = 0$
 - Again the transverse waves are degenerate.
- The longitudinal dispersion relation $K^L(\omega,k) = 0$
 - Dispersion give us a longitudinal wave!
 (eigenvector parallel to k)

Ex 3: Birefringent media

- Uniaxial and biaxial crystals are "birefringent"
 - A light ray entering the crystal splits into two rays;
 the two rays follow different paths through the crystal.
 - Why?
- Consider a uniaxial crystal;
 - align z-axis with the distinctive axis of the crystal

$$K(\omega) = \begin{pmatrix} K_{\perp}(\omega) & 0 & 0 \\ 0 & K_{\perp}(\omega) & 0 \\ 0 & 0 & K_{\parallel}(\omega) \end{pmatrix}$$

Align coordinates k in x-z plane;
 let θ be the angle between z-axis and k.

$$\kappa = (\sin\theta, 0, \cos\theta)$$

Birefringent media (cont.)

Dispersion equation in uniaxial media

$$(K_{\perp} - n^2) \left[K_{\perp} K_{\parallel} - n^2 \left(K_{\perp} \sin^2 \theta + K_{\parallel} \cos^2 \theta \right) \right]^2 = 0$$

- Two modes, different refractive index (naming conventions may differ!)
 - The (ordinary) O-mode: $n_O^2 = K_{\perp}$
 - The (extraordinary) X-mode: $n_X^2 = \frac{K_{\perp}K_{\parallel}}{K_{\parallel}\sin^2\theta + K_{\parallel}\cos^2\theta}$
- **O-mode**: is transverse: $\mathbf{e}_{O}(\mathbf{k}) = (0, 1, 0)$
 - E-field along the crystal plane
- X-mode: is not transverse and not longitudinal:

$$\mathbf{e}_{X}(\mathbf{k}) \propto (K_{\parallel} \cos \theta, 0, K_{\perp} \sin \theta)$$

E-field has components both along and perpendicular to crystal plane

Wave splitting

- Let a light ray fall on a birefringent crystal with electric field components in all directions (x,y,z).
 - The y-component will enter the crystal as an O-mode!
 (polarisation vector is in y-direction)
 - The x,z-components as X-modes (polarisation vector is in xz-plane)
- The O-mode and X-mode have different refractive index
 - they travel with different speed
 - i.e. the wave will refract differently!

"Crystal on graph paper" by APN MJM - Own work. Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Crystal_on_graph_paper.jpg#/media/File:Crystal_on_graph_paper.jpg

Summary

- We've studied plane wave solutions in dispersive media
 - Plane waves are describes by: $\{\mathbf{E}, \mathbf{k}, \omega\}$
- Wave equation is a eigenvalue problem
 - Dispersion equation
 - Dispersion relation eigenvalue, $\omega = \omega_M(\mathbf{k})$
 - Polarisation vector eigenvector, $e_M = \mathbf{E}_M/|\mathbf{E}_M|$
- Common polarisations:
 - Longitudinal (E || k) & transverse (E ⊥ k)
 - Elliptical polarisation: complex polaristion vector, e.g. $e_M = [2, i, 0]$
 - Phase difference between x- and y-components
- The group velocity is the velocity of the wave envelope
 - In practice it's also the velocity for transport of energy/information

Summary

- Uniaxial crystals have been shown to be birefringent
 - Two modes, O-mode and X-mode with different refractive indexes, n
 - n depends on angle between E and normal to crystal plane

Incoming waves split into two modes - refract with different angles!

