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The wave equation in vacuum

Wave equations can be derived for B, E and A.

Waves in vacuum, i.e. no free charge or currents; then ¢=const!
Using Fourier transformed quantities in the Coloumb gauge:

E(w,k) =iwA(w,k) , Bwk)=ikxA(wk) , ike*A(wk)=0

Ampere’s law:

ik xB+ioE/c* =puJ =) kx(kxA)+w’/c’A =-u,J

where kx (k xA)=k(k*A)-k/’A = -k|’'A
Homogeneous wave equation:

(K - /c?)A =0

Solutions exists for: (|k|2 -’ /c2) =0 , the dispersion equation!
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Dispersion relations

« A wave satisfying a dispersion equation is called a Wave Mode.

« Solutions to the dispersion equation can be written as a relation
between w and k called a dispersion relation, e.q.

(|k|2 -’ /cz) =0 = w=w,(K)

— Note: here wis the frequency and w,/(k) is a function of k

— the sub-index M is for wave mode.

— the function w,, represents the dielectric response and therefore is
a property of the media

 Example: In vacuum the dispersion relation reads:
o =zxklc = ©,,.K) ==kl

l.e. light waves
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Refractive index

« Dispersion relations can be written using the refractive index n

ke ¢ "speed of light"

n=— = ~
o w/k| "phase velocity"

« A dispersion relation for a wave mode can be rewritten...
— by replacing w? = (Ik ¢ /n)?

n=n, (K)
— or by replacing k =ke, , k =wn/c
n=n,(w.e,)
« The dispersion relation for waves in vacuum then reads
n==x|

i.e. the phase velocity of vacuum waves is the speed of light
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Degrees of freedom of the plane wave

The solution to the wave equation is a sum of plane waves.
A(x,1) = A exp(ik * x —iot)

The dispersion relation determines the refractive index

— i.e. a relation between w and k for a given direction of
propagation

A(x,t) = A exp(ik * x —im,, (k)?)
Is there anything else we can say about the solution?

Example: If the wave is launched by an antenna, which
degrees of freedom are determined by

— the antenna?
— the media?
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The wave equation in dispersive media

Ex: Temporal Gauge, ¢=0, the fields are described by A alone
E(wkK)=iwA(w,k) , B(wk)=ik xA(w,k)
Ampere’s law:

ik xB+ioE/c’ =puJ == kx(kxA)+(w/c)'A=-ul

J =aA

ind, i ijerj

.4, Where J_,, external drive and J, 4 is induced parts

ext ext

where «;; is polarisation response tensor
Inhomogeneous wave equation:
/c2

2
C

AijAj = —FMOJ

exp, I

Wave operator

where A, = ?(kikj —|k|26ij) +K,

1 i
Dielectric tensor: K, =0, +——a, kxkx..

ij
w°E,
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Dispersion relations in dispersive media

 Homogeneous wave equation:
A, (0.k)A (wk)=0

(the book includes only the Hermitian part AH, but this is a technicality
At the end of this calculations we get the same dispersion relation)

« Solutions exist if and only if:
A (0k) = det| A, (0.k)| =0

this is the dispersion equation.
« From this equation the dispersion relation can be derived

w =w,,(K)

where
A (o, k)k)=0
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Non-linear and linear eigenvalue problems *

« This wave equation is a non-linear eigenvalue problem...meaning?

« Remember linear eigenvalue problems:
for a matrix A find the eigenvalues A and the eigenvectors x such that:

Ax -Ax =(A -AI)x =0
or alternatively
(A; =20, )x; = A,(Mx; =0

Thus for the linear eigenvalue problem A;is linear in A .
- Our wave equation has the same form, except Ay(w) is non-linear in w .

 Thus, we are looking for the eigenvalues w,, and the eigenvectors A to
the equation

Ay (@, K)A, =0

Exercise: show that when K;j=Ki{k), the wave equationis a linear eigenvalue problem in «?.
However, inertia in Eq. of motion (when deriving media responce) gives K; =Kji(w,k).
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Polarization vector

« So the wave equation is an eigenvalue problem
— The eigenvalue is the frequency
— The normalised eigenvector is called the polarisation vector, e;(Kk)

A(w,, (k) k)
‘A(WM (k)’k)‘

e, (k)= the direction of the A-field!

— Note: the A-field is parallel to the E-field
* The polarisation vector is complex — what does this mean?
— e.g. takee,=(2,1,0)/ 52 then the vector potential is

A(2,x) Re{ [2,i,0 ] exp(ik- x +ioot)} =
= [ 2cos(k: x+ o) , cos(k- X+t +90°) , 0 ]

— The difference in “phase” of ¢,,;, and e,,, (in complex plane; one being
real and the other imaginary) makes 4, and 4, oscillate 90° out of
phase — elliptic polarisation!
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Longitudinal & Transverse waves

Definition:

Longitudinal & Transverse waves
have e,, parallel & perpendicular to k

Examples:

« Light waves have E || A perpendicular to k, i.e. a transverse wave

« Sounds waves (wave equation for the fluid velocity v)
have v || k, i.e. a longitudinal wave.
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Linear algebra: cofactors *

An (i,j):th cofactor, Aj;of a matrix A is the determinant of the “reduced”
matrix, obtained by removing row i and column , times (-1)"*

In tensor notation (you don’t have to understand why!):

1 A12 A13 A A
)\’ai = _gabcgilebjAcl €.g. }\'21 = (_1)i+j det % = (_1)i+j N N
2 A32 A33
A A
32 33 T
Alternative definition for cofactors: reduced matrix
Aik)\'kj = A(Sij

— Thus, for A=0 each column (A4;, Ay, A3 )T is an eigenvector!
It can be shown that

ES
Ay = 1k € mi€ mj

where A, is the trace of A and ¢,,; are the normalised eigenvectors
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Linear algebra: determinants

The determinant can be written as (Melrose page 139)

abc™ ijl

det[A]=é8 .M AL,

Derivatives (note that the three derivates are identical)

J 1 I o,
A AD] =D e Ay =Ty —

Cofactors 4,/

Special case; take derivative w.r.t. the one tensor component

J oA
Kdet[A(An,Alz,Am,Azz...)] A = A,

] Yy
L
0 0

ni-~ jm
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Linear algebra: Taylor expansion

 The determinant of this matrix is a function of the matrix
components

det|A]= F(A,,A,,...)

* Perturbing the matrix components A, = A +6A,; we can then
Taylor expand

det| A +8A] = f(A, +0A,) =

9 ~
= f(Ay)+ o = F(A)OA; +OBA’) =

7)

- det[A]+ ——det[ AJBA, + OOA) -

y

=det[A]+N,0A, + OBA?)
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Damping of waves

We're now ready to show that for low amplitude waves:

— the Hermitian part of A; provides the dispersion relation

— the anti-Hermitian part of the dielectric tensor K#; describes wave
damping, i.e. the decay of the wave

Consider a plane wave with complex frequency w+iw;,
A(x,t) = Ai exp(w,t)exp(ik *X —iot)

— The wave amplitude decays at a rate -w,
— Note: the wave energy (~|EJ?) decays at a rate y=—2w,
The dispersion relation

det[Aij (@ +iw, ,k)] = det[A’; (@ +iw, k) + A (w + ia),,k)] =0

Exercise: show that A‘=K“
To simplify this expression we will assume weak damping ...
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Weak damping of waves

Assume the damping to be weak by:

K; =0 and w, —0

l

Also assume w,~ K4

— Interpretation of the relation w;~ K4: reduce K4 by factor, then w; reduces by
the same factor, thus the they go to zero together

Expand in small o, :

Aij(u) +im, ,k) ~ A, (0.k)+iw, aiAij(u),k) +0(w,”)
W

~ Al (wk)+K;(0k)+io, iA’;.J{.(oo,k) +iw, iK;(u),k) +0(w,”)
. 0w . 0w
— Vo
1storder in Both small, i.e. ~wP
Dispersion equation then reads
IN" (0 k)

det[Ag +5A,.j] =0 , 8, =K (k) +io, +0(w,”)

— Next: Expand the determinant in small 6A;
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Weak damping of waves

The dispersion equation (repeated from previous page):

A" (w k)

det[Ag +5A,.J.] -0 , 8A, =K (0 k) +io, L +O(@,%)

Taylor expand the determinant
det| A +0A, | = det| A |+ 6A,2, + O(0A,?)

— where A; are the cofactors of

. “y - ” . é) H _ & H
NOTE: (see “Linear Algebra’ pages): 4, —Aj(wk) - gdet[AU]
The dispersion equation can then be written as

det| A% (.k)|+ 2,K (k) +io, O%det[A;’. (wk)|+0(@,%) =0
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Weak damping of waves

Note that the dispersion equation with weak damping has
both real and imaginary parts

— The matrix of cofactors is Hermitian, thus A, K;# is imaginary
— Also: det(A,”) is real

0 = Re{det[ A(w k) ]} ~ det] A% (w k)] + O@,?)

0= Im{det Aw ,k):} ~-id,K (0 k) + o, %det[A{.’; (w ,k)] +0(w,")

The first equation gives dispersion relation for real frequency
w =w, (k) such that: det[Ag (0, (k),k)] +0(w,”) =0

and the second equations gives the damping rate

ir K (0, K)K)

W, = +0(a),2)

”_get| A" (k)]

Jw w =0 4, (k)
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Energy dissipation rate, yy,

« Alternatively we can form the energy dissipation rate,
l.e. rate at which the wave energy is damped y,, = - 2w,

— express the cofactor in terms of polarisation vectors A, = A,

keMieLj
Y = =200, (KR, () €3, (K)K (1, (K) K)e,, ()|
—
Vector Matrix Vector

Note: this is related to the hermitian part of the conductivity, 05’ o iK;;.‘
% . A * H
Ymu & eMi[lKij ]eMj X €30, €y

— here R,,is the ratio of electric to total energy

A lwK
RM (k) _ > ss( ) [
w——det| A (k)]
L Jw Jor= (k)

and plays an important role in Chapter 15
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Determinant and the cofactors in the general case

*

Explicit forms of dispersion equation and cofactors

Write A in terms of the refractive index » and
the unit vector along k, i.e. k =k/|K|

A, = ;—( k. —\kfé )+K — A, =n (KK —6..)+Kij

Brute force evaluation give

det[A] =n*kx K. —n(KKKK —KKK”KSJ)+det[ ]

A i i s

The cofactors (related to the eigenvector) are

4 2
A;j=n'KK, —n (KinK -0, kKKK, -kKxK. -KKK, )

ijor s juis

+%6ij(1{“2 _KNKW) +K. K, +K K,

2016-02-04 Dispersive Media, Lecture 6 - Thomas Johnson
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The group velocity

« The propagation of waves is a transfer of energy

— e.g. the light from the sun transfer energy to earth
 It's warm in the sun since the sunlight bring energy!

 Consider a wave package from an antenna ‘_MW\/\[WVWV\/\MM_
— Does this package travel with the phase velocity? ~

In dispersive media the answer is no!!

"Wave group" by Kraaiennest - Own work.
W\/\/\/W\/\/\/W/\/\/\/\/\M/\A/\M Licensed under GFDL via Commons -
https://commons.wikimedia.org/wiki/File:Wave

_group.gifffmedia/File:Wave_group.gif

The velocity at which the shape of the wave's amplitudes
(modulation/envelope) moves is called the group velocity

* The group velocity is often the velocity of information or energy

— Warning! There are exceptions; experiments have shown that group velocity
can go above speed of light, but then the information does not travel as fast
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The velocity of a wave package, 1(2)

The concept of group velocity can be illustrated by the motion of a wave
package

— This motion can easily be identified for a 1D wave package

— travelling in a wave mode with dispersion relation: w = w,, (k)

— assuming the wave is almost monochromatic — linearise the dispersion relation:
dw,,,

w,(k=w,,+0,,(k-k,) , o, =
M (k) Mo Mo ( O) MO dk complex conjugate of the
first term: below denoted c.c.

¥
E(w,k) = A(K)3(w - w0, (k) + A" (=k)d(w + w,, (k))

Let the wave have a Fourier transform

To study how the wave package travel in space-time, take the
inverse Fourier transform

E(t,r) = ﬁ j dooj dkA(k)ﬁ(u) -, (k))exp{ikx — ioot} +c.C.

= Ry dkA(k)expyikx —iw,, (k)t; +c.c.
el | { |
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The velocity of a wave package, 2(2)

 Now apply the assumption of having “almost chromatic waves”

W, (k)=w,,+0,,k-k)=

E(t,x)~ ﬁ [ dkA(k)explikx - iw,, (k)t} +c.c.=

e‘i(m mo+0 yoko)t @

= im fdkA(k)exp{ik(x -, t)} +C.C.= e"i(“’M"*“"M"k")’fcn(x -, t) +C.C.

—00

— i.e. if a wave package is centered around x=0 at time =0, then at time =T wave
package has the identical shape but now centred around x =',,, T

1

0 oo‘MIOT )
 \Wave package moves with dm
a speed called the group velocity : | v, =®'},, = WMO
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Examples of group velocities

Let us start with the ordinary light wave:

w, (K) =ck =cq/kk,

— The group velocity:

J 0
Vo = &k L(k)—gck CK,

1

— The phase velocity:

o, (k)

Vo i = A K; = CK,

2016-02-04 Dispersive Media, Lecture 6 - Thomas Johnson
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Hamilton’s equations of motion for rays

The concept of group velocity can be used when studying rays
How do you follow the path of a ray in a dispersive media?

— Hamilton studied this problem in the mid 1800’s and
developed a particle theory for waves; i.e. like photons!
(long before Einstein)

— Hamilton’s theory is now known as Hamiltonian mechanics

— Hamilton’s equations for the mechanical motion of particles:

— where

. JH(p,q.t)
qz'(t) = 1
op;
. JH(p,q,t)
p(t) =-
0q,

* g;,=(x,y,z) are the position coordinates
* p;=(mv,mv,mv,) are the canonical momentum coordinates

« The Hamiltonian H is the sum of the kinetic and potential energy

But what are ¢, p, and H for waves?

2016-02-04
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Hamilton’s equations for rays *

 What are ¢, p,and H for waves?
— The position coordinates ¢; =(x,y,z)

— In quantum mechanics the wave momentum is hk ;
in Hamilton’s theory the momentum is p;=(k,.k,.k,)

— The Hamiltonian energy H is wy(k) (energy of wave in quanta hw),
i.e. the solution to the dispersion relation for the mode M!

« Consequently, the group velocity of a wave-particle of mode M is:

Jw,, (K)
Jk

« The second of Hamilton equations tells us how k changes when
passing through a weakly inhomogeneous media, i.e. one Iin
which the dispersion relation changes slowly as the wave
propagates through the media, w,[(k,q)

k B ﬁa)M (k,q) Warning! Hamiltons equations only work for
- 9 almost homogeneous media. If the media changes
q rapidly the ray description may not work!
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Ex. 1: Isotropic, not spatially dispersive, media

Isotropic, not spatially dispersive, media: K (w) = K(w)Jd,

unit vector, kx=Kk/k

Place z-axis along k : A, = nz(Kin —6lj)+K,.j = 0 K-n* 0
(n = refractive index) L0 0 K,
Dispersion equation: (K-} K=0' <y utucine s
2 S 2 ¢
Dispersion relations: o= K(m " ((D) B K(oo)
K(w)=0

— Note: K(w)=0 means oscillations, NOT waves! (See section on Group velocity)
The waves n?=K(w) are transverse waves

— Plug dispersion relation into A to see that the eigenvectors are
perpendicular to Kk !

Polarisation vectors of transverse waves are degenerate
(not unique eigenvector per mode); discussed in detail in Chapter 14.
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Ex. 1: Isotropic media — electron gases

« Consider high frequency waves; most medias behave like an electron gas

Whe
Kij :Kdij: 1—? 61]

« High frequency waves:
2
w
g =Kw)=1-—73
wiy(K) = c*k? + w3,

Cc

\/w%e/czk2+1

Ki

: 9
— The group velocity: vgpy; = ﬁ\[wge + c2k2 =
l

— The phase velocity: v, p; = \/wge/czkz + 1 ck;

— Note:
* phase velocity may be faster than speed of light
* group velocity is slower than speed of light

Information travel with v, , cannot travel faster than speed of light
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Ex 2: Isotropic media with spatial dispersion

Isotropic media with spatial dispersion; align z-axis: e,=x

K" 0 0]
K, (0k)=K"(0.k)cx, +K (0.k)d, -xx,)=| 0 K" 0
0 0 K"

Dispersion equation
K (0, k)K" (w,k)-n*] =0

Transverse dispersion relation K" (w,k)-n* =0
— Again the transverse waves are degenerate.

The longitudinal dispersion relation K*(w,k) =0

— Dispersion give us a longitudinal wave!
(eigenvector parallel to k)

2016-02-04 Dispersive Media, Lecture 6 - Thomas Johnson
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Ex 3: Birefringent media

Uniaxial and biaxial crystals are “birefringent”

— A light ray entering the crystal splits into two rays;
the two rays follow different paths through the crystal.

— Why?
Consider a uniaxial crystal;
— align z-axis with the distinctive axis of the crystal

(K(w) O 0 )
Kw)=| 0 K(w) 0
. 0 0 K,(o)

— Align coordinates k in x-z plane;
let 8 be the angle between z-axis and k.

K =(sin@,0 , cosO)

2016-02-04 Dispersive Media, Lecture 6 - Thomas Johnson 33



Birefringent media (cont.)

Dispersion equation in uniaxial media
2 2 + 2 2 2
(Kl—n )[KLK" -n (Klsm 6+ K, cos 6)] =0

Two modes, different refractive index (naming conventions may differ!)
— The (ordinary) O-mode: n02 =K,
KK,
K sin’0 + K, cos’ 0

— The (extraordinary) X-mode: nX2 =

O-mode: is transverse: e, (k) =(0 , 1, 0)
— E-field along the crystal plane

X-mode: is not transverse and not longitudinal:
e, (k) (K, cos6, 0, K, sin6)

— E-field has components both along and perpendicular to crystal plane

2016-02-04 Dispersive Media, Lecture 6 - Thomas Johnson 34



Wave splitting

» Let alight ray fall on a birefringent crystal with electric field
components in all directions (x,y,z).

— The y-component will enter the crystal as an O-mode!
(polarisation vector is in y-direction)

— The x,z-components as X-modes
(polarisation vectoris in xz-plane)

« The O-mode and X-mode have different refractive index
— they travel with different speed i g \f'.-“'_'- ey

,-Z S
— i.e. the wave will refract .
differently!

Crystal on graph paper" by APN MJM - Own work. Licensed under CC BY-SA 3.0 via Commons -
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Summary

We've studied plane wave solutions in dispersive media
— Plane waves are describes by: {E, Kk, w}

Wave equation is a eigenvalue problem

— Dispersion equation

— Dispersion relation — eigenvalue, w = wp(K)

— Polarisation vector — eigenvector, ey = Ep;/|Ey|

Common polarisations:

— Longitudinal (E || k) & transverse (E L k)
— Elliptical polarisation: complex polaristion vector, e.g. ey, = [2, i, 0]
» Phase difference between x- and y-components

The group velocity is the velocity of the wave envelope
— In practice it’s also the velocity for transport of energy/information
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Summary

« Uniaxial crystals have been shown to be birefringent
— Two modes, O-mode and X-mode with different refractive indexes, n
- n depends on angle between E and normal to crystal plane
— Incoming waves split into two modes - refract with different angles!
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