Secondary structure stability, beta-sheet formation \& stability

Magnus Andersson

magnus.andersson@scilifelab.se

SciLifeLab

Recap of statistics

- Energy - Entropy
- Entropy - microstates - volume \& order
- Probability of being in a state i:

$$
w_{i}(T)=\frac{\exp \left(-\epsilon_{i} / k_{B} T\right)}{Z(T)}
$$

- Partition function:

$$
Z(T)=\sum_{i} \exp \left(-\epsilon_{i} / k_{B} T\right)
$$

Alpha helix formation

- Hydrogen bonds: i to i+4
- 0-4, 1-5, 2-6
- First hydrogen bond "locks" residues 1,2,3 in place

Alpha helix free energy

- Free energy of helix vs. "coil" states:

number of residues

H-bond free energy
Entropy loss of fixating one residue in helix

$$
\begin{aligned}
\Delta F_{\alpha}=F_{\alpha}-F_{\text {coil }} & =(n-2) f_{\mathrm{H} \text {-bond }}-n T S_{\alpha} \\
& =-2 f_{\mathrm{H} \text {-bond }}+n\left(f_{\mathrm{H} \text {-bond }}-T S_{\alpha}\right)
\end{aligned}
$$

$$
\Delta F_{\alpha}=f_{\mathrm{INIT}}+n f_{\mathrm{EL}}
$$

How does a helix form?

- Landau: Phases cannot co-exist in 3D
- First order phase transitions means either state can be stable, but not the mixture
- Think ice/water - either freezing or melting $n \propto V \propto r^{3}$
$A \propto r^{2} \propto n^{2 / 3}$ Surface tension costly!
- But a helix-coil transition in a chain is 1D!
- Interface helix/coil does not depend on N!

Helix stability

- Temperature dependence
- Elongation term dominant for large \mathbf{N}
- Why? Since it is raised to the power of N!

Formation...

- Rate of formation at position 1: $\mathrm{T}: \mid-\mathrm{residue}$ elongation
$t_{\text {INIT0 }}=\tau \exp \left(f_{\text {INIT }} / k T\right)$ $=\tau / \sigma$
- Rate of formation anywhere ($\mathrm{n} 0 \approx 1 / \sqrt{ } \sigma$):

- Propagation to all residues: $\operatorname{tn}_{0}=\tau / \sqrt{\sigma}$
- Total time is $\sim 2 \mathrm{t}_{\text {INIT, }}$ halftime thus $\sim \mathrm{t}_{\text {INIT }}$.
- Half time spent on initiation, half elongation!

Helix summary

- Very fast formation
- Both initiation \& elongation matters
- Quantitative values derived from CD-spectra
- Low free energy barriers, ~1kcal/mol
- Characteristic lengths 20-30 residues

Beta sheet formation

- Experimentally: Can take hours to weeks!
- But sometimes just a millisecond. Why?
- Is it initiation- or elongation-limited?
- Beta sheet formation appears to be a typical first-order phase transition!

Beta sheet formation

Hairpin
 (a)

Sheets vs. Helices

- Beta sheets are two-dimensional
- Interface area grows with \# residues
- Phases cannot coexist and there will be a first-order phase transition
- Structure interface:
- Sheet edges \& bends/loops

Beta sheet energies

- f_{β} : Free energy of residue inside a single beta hairpin, relative to the random coil
- Δf_{β} : Extra edge free energy
- Total free energy at edge is $f_{\beta+} \Delta f_{\beta}$
- U: Free energy of bend/coil per residue
- Since sheets can form we must have $\Delta f_{\beta}>0$ \& $U>0$!

Two Scenarios:

- $f_{\beta+} \Delta f_{\beta}<0$: A single long beta hairpin will be more stable than coil. Only a single turn required for formation
- $f_{\beta+} \Delta f_{\beta}>0$: Hairpins are only formed because of association with other residues into a beta sheet. Activation barrier is the formation of a sheet "nucleus"

Minimum strand length

- Consider the case when single hairpins are not stable.

$$
\Delta F=U+2 N\left(f_{\beta}+\Delta f_{\beta}\right)
$$

Turn All' residues face an edge

- Association with a new strand maintains edge, and gives us N new internal resides:

$$
\Delta F^{\prime}=-N f_{\beta}
$$

- Formation of next turn: $\Delta F^{\prime \prime}=U$
- Minimum strand length: $N_{\min }=U /\left(-f_{\beta}\right)$

Beta transition state

- Find the highest-free-energy intermedfate: Single hairpin with a following turn

$$
F^{\#}=U+2 N_{\min }\left(f_{\beta}+\Delta f_{\beta}\right)+U=2\left(U \Delta f_{\beta}\right) /\left(-f_{\beta}\right)
$$

Number of residues, M

The book goes into some detail to prove that this is the lowest possible transition state energy! Why is that important?

Beta formation rates

- Initiation at a given point:

$$
t_{\mathrm{INITO}} \approx \tau_{\beta} \exp \left(+F^{\#} / k T\right)
$$

- Initiation somewhere: ${ }^{t_{\text {INIT0 }} / N}$
- Initiation is entirely time-limiting
- Total formation time: $t \approx \tau_{\beta} \exp \left(F^{\#} / k T\right) / N$
- And remember that we had:

$$
F^{\#}=U+2 N_{\min }\left(f_{\beta}+\Delta f_{\beta}\right)+U=2\left(U \Delta f_{\beta}\right) /\left(-f_{\beta}\right)
$$

Beta formation rates

- Rate depends on β-structure stability:

$$
t_{\beta} \approx \exp \left[A /\left(-f_{\beta}\right)\right]
$$

- Exponential dependence on residue beta stability explains wide range of formation times observed in experiments!

Beta sheet summary

- Unstable sheets are extremely slow to form (hours to weeks)
- Stable sheets can form in milliseconds
- Significant free energy barrier
- Beta sheet folding is a first-order phase transition

Helix-sheet comparison

- The alpha helix "avoids" the phase transition - the boundary area does not increase with helix size
- Leads to much lower barriers, which can be overcome in microseconds
- The high free energy barrier of sheets is likely one of the explanations to prion/ amyloid protein misfolding diseases

Misfolding - Prions

Misfolded form (right) is protease resistant

The in vivo state is only the second best here - but the free energy barrier to the

LAG PHASE

What is the Coil?

- Less well-defined state than native
- It is NOT a stretched out linear chain!
 What is the average chain

$$
\mathbf{h}=\sum_{i}^{N} \mathbf{r}_{i}
$$

$$
\begin{aligned}
\mathbf{h}^{2} & =\left(\sum_{i=1}^{N} \mathbf{r}_{i}\right)^{2} \\
& =\sum_{i=1}^{N} \mathbf{r}_{i}^{2}+\sum_{i=1}^{N} \sum_{j \neq i}^{N} \mathbf{r}_{i} \mathbf{r}_{j}
\end{aligned}
$$

Average coil length

$$
\begin{aligned}
\left\langle\mathbf{h}^{2}\right\rangle & =\left\langle\left(\sum_{i=1}^{N} \mathbf{r}_{i}\right)^{2}\right. \\
& =\left\langle\sum_{i=1}^{N} \mathbf{r}_{i}^{2}+\sum_{i=1}^{N} \sum_{j \neq i}^{N} \mathbf{r}_{i} \mathbf{r}_{j}\right\rangle \\
& =\sum_{i=1}^{N}\left\langle\mathbf{r}_{i}^{2}\right\rangle+\sum_{i=1}^{N} \sum_{j \neq i}^{N}\left\langle\mathbf{r}_{i} \mathbf{r}_{j}\right\rangle=N r^{2}
\end{aligned}
$$

Average coil length

- Some problems:
- Segments cannot have any orientation
- Angle potentials
- Generalized expression: $\left\langle\mathrm{h}^{2}\right\rangle=N r^{2}=L r$
- Rotational model:

$$
r=l(1+\langle\cos \alpha\rangle) /(1-\langle\cos \alpha\rangle)
$$

Excluded volume

- Real chains cannot cross themselves!
- Segment i can never overlap with j, even if they are very far apart
- Excluded volume effects!
$\sqrt{\left\langle\mathbf{h}^{2}\right\rangle} \approx N^{0.588} r$

Paul Flory
Nobel Prize 1974

Summary

- Alpha helix \& beta sheets form in very different ways, that give them different properties!
- All determined by free energy barriers!
- There are natural sizes of helices/sheets
- Folding rates can be predicted with very simple qualitative arguments
- You should understand both how \& why the are different (i.e. be able to explain)!

