IK1611, Spring term 2016 Dimensioning of Communication Systems

WELCOME!

Lena Wosinska, Matteo Fiorani and Jiajia Chen KTH/ICT/COS/ONLab

IK1611

Dimensioning of Communication Systems

LECTURE 1

COURSE INTRODUCTION

Lena Wosinska KTH/ICT/COS/ONLab

Course Introduction

- General information
 - Prerequisites and aim of the course
 - The course at a glance
 - Course material
- Introduction to queuing systems
 - Examples
 - A general queuing system
 - System parameters
 - Performance measures
- Some basic terminology
- Summary

F1

Lena Wosinska KTH/ICT/COS/ONLab

3

Prerequisites and aim of the course

Prerequisites:

Basics in communication systems and networks

Aim: after the course students shall be able to:

- define the basic queuing models for different communication systems
- dimension the systems in terms of capacity, delay and throughput.

F

Lena Wosinska KTH/ICT/COS/ONLab

The course at a glance

- □ Lectures, exercises, seminars, self study, etc. (TBD)
- Project
 - Work in the project group to solve the problem defined in the project
- Examination
 - Exam (written or oral, TBD) and the project work
 - Exam on Saturday 18/03, 08:00 13:00
 - The final grade based on results of both the written exam and the project

ΗI

Lena Wosinska KTH/ICT/COS/ONLab

5

Lectures/seminars

	Topic	Reading
L1	Introduction to queuing systems, basic terms, course overview, introduction to the project	Chapters 1 and 2,
L2	Probability theory, basic principles and random variables, Z- and L-transforms	Chapter 7
L3	Poisson process and Markov chains in continuous time	Chapter 8
L4	Queuing systems. Basic formulas	Chapter 3
L5	M/M/1 system, unlimited queue	Chapter 4.1
L6	M/M/1 system, limited queue and finite client population	Chapters 4.2 and 4.3
L7	Project	Project instruction
L8	M/M/m	Chapter 4.4
L9	M/M/m system, limited queue	
L10	M/M/m/m loss systems	Chapters 4.5,
L11	M/G/1 system	Chapter 5
L12	Queuing networks	Chapters 8
L13	Course summary	

F

Lena Wosinska KTH/ICT/COS/ONLab

Course material

- Text:
 - Maria Kihl, "Queuing systems"
- If you like a book:
 - Ng CheeHock, "Queuing Modeling Fundamentals", Wiley, 1998.
 - L. Kleinrock, "Queuing Systems, Volume 1, Theory", Wiley, 1975
 - D. Gross, C. M. Harris, "Fundamentals of Queuing Theory", Wiley, 1998

Be aware, the notations might differ!

- Supplementary material:
 - Erlang tables
 - Formula sheet
 - Instructions for the project

F1

Lena Wosinska KTH/ICT/COS/ONLab

7

Contacts

- Course responsible: Jiajia Chen (<u>jiajiac@kth.se</u>)
- Examiner: Lena Wosinska (<u>wosinska@kth.se</u>)
- □ Teaching assistant: Matteo Fiorani (<u>matteof@kth.se</u>)
- Address: Electrum, level 4, stairs B

F

Lena Wosinska KTH/ICT/COS/ONLab

Introduction to Queuing Systems

- Examples
- A general queuing system
- System parameters
- □ Performance measures

Lena Wosinska KTH/ICT/COS/ONLab

Ode to a Queue

"If you want to model networks Or a complex data flow A queue's the key to help you see All the things you need to know."

> Leonard Kleinrock, Ode to a Queue

F

Lena Wosinska KTH/ICT/COS/ONLab

Queuing problems

- Resource sharing systems
 - Customers with sporadic needs share a common resource
 - Communication networks and services
 - Computer systems
- The momentary need exceeds the available resource
 - Some users get served, others wait or are turned away
 - Waiting customers form a queue (hence the name)
- Examples
 - Execution of time-sharing processes in a computer
 - IP packets in a highly-loaded Internet router
 - A web server receiving many http requests
 - Morning rush hour in the subways and highways
 - The lunch service at a local restaurant

F1

Lena Wosinska KTH/ICT/COS/ONLab

11

Queuing theory

- Mathematical modeling of resource sharing systems
- A tool for dimensioning of
 - Networks for fixed and mobile telephony
 - Data communication, Voice over IP
 - Servers for network-based services

F

Description of a queuing system

- Stochastic processes
 - Arrivals
 - Service
- System parameters
 - Order of service
 - Buffer size
 - Number of servers
 - Number of service stages

FI

Lena Wosinska KTH/ICT/COS/ONLab

13

System dimensioning problems

- □ Given arrival intensity, traffic characteristic and requirements
 - Design a system that meets requirements on
 - Delay (waiting time and service time)
 - Loss probability
 - Number of customers in the system
 - Blocking probability

etc

- Given system and requirements
 - Define the arrival process that fits the system and requirements
 - Arrival rate can't be too high
 - Arrival pattern should be appropriate

etc

F1

Lena Wosinska KTH/ICT/COS/ONLab

Switched Networks

Switching nodes

- not concerned with contents of data
- purpose: provide switching facility
- in general not fully connected

End nodes

- provides data to transfer
- connected via switching nodes
- Links
 - physical connections between nodes

F1

Lena Wosinska KTH/ICT/COS/ONLab

15

Switching

Circuit switching

- Exempel: traditional telephone network
- Synchronous TDM (or WDM in optical networks)
- Suitable for interactive services due to low and constant end-to-end delay

Packet switching

- Asynchronous (deterministic and statistic) multiplexing
- Connection oriented (virtual circuits)
 - □ Exempel: ATM
- Connection less (datagram)
 - Exempel: Internet

F1

Lena Wosinska KTH/ICT/COS/ONLab

Circuit switching

- □ Traffic is concentrated to obtain efficiency of resource utilization
- Network resources are lower than a sum of all capacity offered to the customers, i.e. less time slots or wavelengths than a sum of all possible connections in the network would require
- Network/system designed to not exceed a certain level of blocking probability
- Dimensioning problem:
 - The momentary need exceeds the available resource, i.e. no time slots or wavelength channels are available at the moment
 - Calls are blocked
 - Dimension the network/system to not exceed the certain level of blocking probability

F1

Lena Wosinska KTH/ICT/COS/ONLab

17

Example 1

- Voice calls in a GSM cell
 - call blocked if all channels busy
- Performance
 - Utilization of the channels
 - Probability of blocking a call
- Depends on:
 - How many calls arrive
 - Length of a conversation
- → Service demand
- Cell capacity (number of channels) → Server capacity

- deli capacity (namber of charmers)

_

18

F

Lena Wosinska KTH/ICT/COS/ONLab

Packet switching

- Network resources are dynamically shared
 - More efficient resource utilization due to statistical multiplexing
 - No idle time
- Services with variable bit rate (VBR) can be supported
- Better suited for data traffic
 - File transfer
- Buffers are needed at the nodes due to statistical multiplexing
- Less suitable for interactive services due to variable delay at the nodes

F1

Lena Wosinska KTH/ICT/COS/ONLab

19

Statistical multiplexing

- Random access to the network resources
- Statistic multiplexing
 - Without Quality of Service QoS support (best effort)
 - With QoS support
 - Example: communication link

F1

Congestion in PS Networks

- End-nodes transmit data independently from each other
- What happens if more packets arrive than it is possible to forward?

F1

Lena Wosinska KTH/ICT/COS/ONLab

21

Congestion Scenario

- Output buffers become full
 - discard packets
 - sources retransmit packets
 - more messages in the network
 - more buffers saturated
 - delay increases
 - source times out
 - more retransmissions
 - capacity drops towards zero

F

Lena Wosinska KTH/ICT/COS/ONLab

Example 2

- □ Packet transmission at the output link of an IP router
 - packets wait for free output link
- Performance
 - Utilization of the output link
 - Waiting time in the buffer
- Depends on:
 - How many packets arrive
 - Packet size
 - Link capacity → Server capacity

F1

Lena Wosinska KTH/ICT/COS/ONLab

23

Service demand

Content of the course

- · Terminology, definitions and basic formulas
- Basics of probability theory and Markov chains.
- Modeling of communication systems in terms of delay, packet loss probability, system utilization etc.
- Open and closed queuing networks.
- Solving practical dimensioning problems for communication systems and networks.

F1

Lena Wosinska KTH/ICT/COS/ONLab

Arrival process

- Interarrival time distribution
 - Time between arrivals is assumed to be independent from customer to customer
 - Stationary, the distribution does not change in time
- Do customers arrive in batches or one at a time?
 - In any case arrivals are independent
- Is the customer impatient?
 - Might choose not to enter the queue if it is too long
 - Could leave the queue if waiting is exceedingly long
 - Might choose to switch to another queue if available

F1

Lena Wosinska KTH/ICT/COS/ONLab

27

Wrights' Axioms of Queuing Theory

- It's always better to wait at the front of the line.
- There is no point in waiting at the end of the line.

But (note Wrights' paradox):

- If you don't wait at the end of the line, you'll never get to the front.
- Whichever line you are in, the others always move faster.

F1

Service process

- Service time distribution
 - Assumed to be independent from customer to customer
 - Assumed to be independent of the arrival process
 - Stationary, the distribution does not change in time
- Are the customers served one at a time or in batches?
- Are the service times dependent of the number of customers in the queue?
 - State-dependent service times
 - Do not mix it with non-stationary (time-dependent) service distribution

F1

Lena Wosinska KTH/ICT/COS/ONLab

29

Queuing discipline (order of service)

- Next in line
 - First come, first served, FCFS (a k a first in, first out, FIFO)
- Last in line (a stack)
 - Last come, first served, LCFS (a k a last in, first out, LIFO)
- Random order, independent of arrival time
 - Random service selection (RSS)
- Priority order
 - Preemptive
 - Service of customer might be interrupted by an arriving customer
 - Its service is resumed from the point of interruption
 - Its service restarts from the beginning (prior service time wasted)
 - Non-preemptive
 - Customer in service always completes before new arrival is served
 - New customer delayed by the other customer's residual (remaining) service time

F1

Lena Wosinska KTH/ICT/COS/ONLab

Queuing system parameters

- Buffer capacity
 - Infinite so that any number of customers can wait
 - Finite
 - Equal to zero, i.e., no buffer (loss system)
- Number of servers
 - Work in parallel
 - Independent of one another
 - The same service rate for all of them
- Number of service stages
 - The service could consist of several subtasks (no pipelining)
- Queuing discipline (order of service)

F1

Lena Wosinska KTH/ICT/COS/ONLab

31

Service demand

Stochastic processes

- Arrival process: How do the customers arrive to the system
- Service process: How much service does a customer demand
 - Customer:
 - IP packet
 - □ Phone call

F1

Lena Wosinska KTH/ICT/COS/ONLab

System performance measures

- Stationary measures
 - How does the system behave on the long run?
 - Average measures (often considered in this course)
- Average number of customers in the system
 - Average number of customers waiting in the queue
 - Average number of customers in the server
- Average system time (response time)
 - Average waiting time
 - Average service time
- Probability of blocking (blocked customers / all arrivals)
- Utilization of the server (time the server is occupied / entire considered time)

F1

Lena Wosinska KTH/ICT/COS/ONLab

33

Performance of queuing systems

· The triangular relationship in queuing

stochastic

- Tradeoffs in queuing system performance
 - Efficient use of the common resource (or resources)
 - Risk of turning customers away or letting them wait

Example 1

- Voice calls in a GSM cell
 - channels for parallel calls, each call occupies a channel
 - if all channels are busy the call is blocked

- · Arrival process: calls attempts in the GSM cell
- Service process: the phone call (service time = length of the phone call)
- · Number of servers: number of parallel chanells
- Number of service stages: 1
- · Buffer capacity: no buffer

F1

Lena Wosinska KTH/ICT/COS/ONLab

35

Example 2

· Packet transmission at the output link of a large IP router

- Arrival process: IP packet multiplexed at the output buffer
- Service process: transmission of one IP packet (service time = packet length / link transmission rate)
- Number of servers: 1
- Number of service stages: 1
- Buffer capacity: max. number of packets IP

F

Lena Wosinska KTH/ICT/COS/ONLab

How to solve dimensioning problems?

- Analytical solution (queuing theory) for tractable systems
 - Develop a mathematical model of the system
 - The model should describe the system as accurate as possible
 - Based on your model you can be able to obtain the performance measures or dimension the system according to the requirements.
- Computer simulations for more complex systems

F

Project work

□ To be defined

F1

Lena Wosinska KTH/ICT/COS/ONLab

39

Summary

Today:

- General information about the couse
- Introduction to queuing systems

■ Next lecture:

Probability theory and transforms

F

Lena Wosinska KTH/ICT/COS/ONLab