

Lecture 6: Channel Coding 3 Advanced Digital Communications $(EQ2410)^1$

Ming Xiao CommTh/EES/KTH

Monday, Feb. 8, 2016 15:00-17:00, B23

1/1

Overview

Lecture 5

- Turbo codes
- Iterative decoding and BCJR algorithm
- Union bound

Lecture 6: Channel Coding 3

Notes			

¹Textbook: U. Madhow, Fundamentals of Digital Communications, 2008

Lecture 6 Channel Coding 3 Ming Xiao Motivation

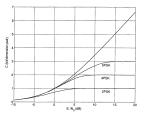


Figure 3.4: Capacity of some two-dimensional constellations over the AWGN channel. The unconstrained capacity $\log(1 + \mathcal{E}/N_0)$ is also shown

[E. Biglieri, Coding for Wireless Channels, 2005]

- So far: binary codes with BPSK or QPSK

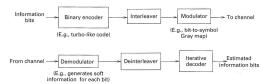
 → appropriate for low SNR but inefficient at high SNR
- To increase the bandwidth efficiency, we have to understand coding for higher signal constellations (e.g., 8-PSK, 16-QAM).
- Two possible techniques:
 - Bit-interleaved coded modulation
 - Trellis-coded modulation
- We can gain in two different ways:
 - For a fixed data rate we can get a coding gain.
 - For fixed SNR we can increase the data rate.

3/1

Notes

Ming Xiao

Bit-Interleaved Coded Modulation



[U. Madhow, Fundamentals of Dig. Comm., 2008]

- Concatenation of a binary code (e.g., convolutional, Turbo, or LDPC code), an interleaver, and a non-binary modulator.
 - Vector of code bits which are mapped to one symbol:
 - $\mathbf{x} = [x_1, \dots, x_M].$
 - Transmitted symbol: s = s(x)
 - Received symbol for the AWGN channel: y = s(x) + n
- Conventional Decoding
 - Soft-output demapper generates LLRs for the code bits

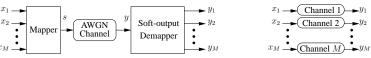
$$L(x_i) = \log \left(\frac{\Pr(x_i = 0|y)}{\Pr(x_i = 1|y)} \right) = \log \left(\frac{\sum\limits_{s \in \mathcal{S}_{x_i = 0}} p(y|s)}{\sum\limits_{s \in \mathcal{S}_{x_i = 1}} p(y|s)} \right)$$

- Soft-input decoding of the outer code based on the LLRs $L(x_i)$.
- Interleaver: split bursts of errors into single error events.

-			
-			
-	-		
NI-+			
Notes			

Notes			

Bit-Interleaved Coded Modulation - Capacity



- The relation between the transmitted bits x_i and the soft outputs y_i from the demapper can be modeled by M equivalent parallel channels with capacities C_i = I(X_i; Y_i).
 (→ not always a correct model!)
- Capacity of the BICM scheme (or better: the sum rate)

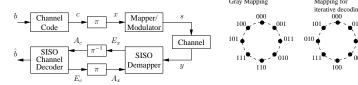
$$C_{\mathsf{BICM}} = \sum_{i=1}^{M} C_i \leq I(S; Y)$$

- \rightarrow equality can only be obtained if the channel outputs y_i are independent from the inputs x_i , with $j \neq i$.
- Observation: Gray mapping often maximizes C_{BICM} (e.g., 16QAM; exception: 32 QAM).
- Gray Mapping: bit vectors \mathbf{x}_i and \mathbf{x}_j which are mapped to neighboring symbols s_i and s_j have a Hamming distance $d_H(\mathbf{x}_i, \mathbf{x}_j) = 1$.

5/1

Lecture 6
Channel Coding 3
Ming Xiao

Bit-Interleaved Coded Modulation – Iterative Decoding



Soft-input/soft-output demapper

$$E_{xi} = \log \left(\frac{\Pr(x_i = 0 | y, \mathbf{A}_{\setminus i})}{\Pr(x_i = 1 | y, \mathbf{A}_{\setminus i})} \right) = \log \left(\frac{\sum\limits_{s \in \mathcal{S}_{x_i = 0}} p(y | s) \Pr(s | \mathbf{A}_{\setminus i})}{\sum\limits_{s \in \mathcal{S}_{x_i = 1}} p(y | s) \Pr(s | \mathbf{A}_{\setminus i})} \right)$$

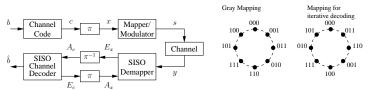
with
$$\mathbf{A}_{\setminus i} = [A_1, \dots, A_{i-1}, A_{i+1}, \dots, A_M]$$

- Mapping is important
 - Gray mapping: no gain by iterative decoding since the outputs y_i of the sub-channels are independent of the bits x_j , with $j \neq i$; i.e., having a priori information on x_j , with $j \neq i$, does not improve the quality of y_i .
 - → Mapping has to be optimized for iterative decoding (see example above) and adapted to the channel code.

lotes		

Notes			

Bit-Interleaved Coded Modulation - Iterative Decoding



2 practical design strategies

- (1) Capacity-approaching channel code (e.g., LDPC or Turbo code), Gray mapping, no iterative decoding between channel decoder and demapper.
 - ightarrow Good performance (low error floor) but higher complexity.
- (2) Convolutional code, optimized mapping, and iterative decoding.
 - \rightarrow Low complexity but higher error-floor.

Lecture 6 Channel Coding 3 *Ming Xiao* CommTh/EES/KTH

7 / 1

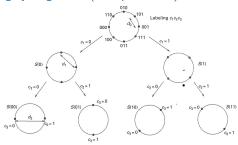
Notes

Trellis-Coded Modulation

- Ungerböck (early 1980s): combining coding and modulation
- Goal: increase reliability for a fixed spectral efficiency
- Solution (TCM)
 - For spectral efficiency of k bits per channel use choose a (k + n)-bit constellation and insert redundancy.
 - Use a hierarchical partitioning of the constellation.
 - Use a trellis code and maximize the Euclidean distance between paths in the trellis.

-		
Notes		

Trellis-Coded Modulation – Set partitioning by Ungerböck (example 8-PSK)



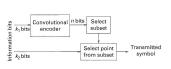
[U. Madhow, Fundamentals of Dig. Comm., 2008]

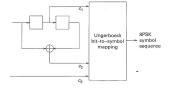
- The mapping from the bits $[c_1,c_2,c_3]$ to the symbols of the constellation is hierarchical such that
 - c₁ splits the constellation into 2 QPSK constellations,
 - (c_1, c_2) split the constellation into 4 BPSK constellations.
- Observation
 - Performance of 8-PSK is limited by the minimum distance d_0 .
 - Knowing c_1 increases the minimum distance from d_0 to d_1 .
 - Knowing (c_1, c_2) increases the minimum distance from d_0 to d_2 .

9/1

Lecture 6 Channel Coding 3 *Ming Xiao* CommTh/EES/KTH

Trellis-Coded Modulation - Encoder Structure





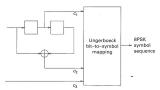
[U. Madhow, Fundamentals of Dig. Comm., 2008]

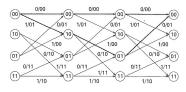
- TCM encoder for spectral efficiency $(k_1 + k_2)$ bits using a $(k_2 + n)$ -bit constellation.
- Convolutional code with rate $R_c = k_1/n$ selects the subsets/sub-constellations (i.e., the first n bits $[c_1, \ldots, c_n]$).
- The remaining k_2 bits are mapped directly to the sub-constellation (the last k_2 bits $[c_{n+1}, \ldots, c_{n+k_2}]$).
- Example (right): $k_1 = k_2 = 1$, n = 2, $R_c = 1/2$, $k_2 + n = 3$, spectral efficiency 2 bpcu.

Notes			

lotes			

Trellis-Coded Modulation - Trellis





[U. Madhow, Fundamentals of Dig. Comm., 2008]

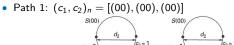
- The TCM trellis is defined by the trellis states of the employed convolutional code.
 - States are given by the content of memory cells of the encoder.
 - State transitions are driven by the k₁ input bits to the convolutional code.
 - Each state transition is associated with one realization of the vector $[c_1,\ldots,c_n]$ and selects hence the sub-constellation for the remaining k_2 uncoded bits.
 - Note that the impact of the k_2 uncoded bits $[c_{n+1}, \ldots, c_{n+k_2}]$ is not shown in the trellis above.
 - In fact there are 2^{k_2} parallel branches for each state transition which are labeled by all possible realizations of the bits $[c_{n+1}, \ldots, c_{n+k_2}]$.
- Decoding: Viterbi or BCJR algorithm on the TCM trellis.

11/1

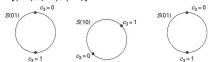
Lecture 6 Channel Coding 3 *Ming Xiao* CommTh/EES/KTH

Trellis-Coded Modulation - Performance

- Error probability at high SNR is characterized by the minimum Euclidean distance between any two TCM sequences.
- Example in the book:



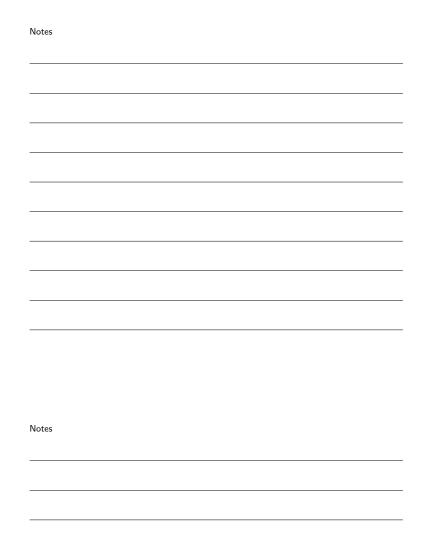
• Path 2: $(c_1, c_2)_n = [(01), (10), (01)]$



• Minimum squared Euclidean distance between any of the 2^3 bit symbol sequences (due to the uncoded bit c_3) transmitted via Path 1 or Path 2

$$d_{\text{subset}}^2 = d_{\min}^2(S(00), S(01)) + d_{\min}^2(S(00), S(10)) + d_{\min}^2(S(00), S(01))$$
$$= d_1^2 + d_0^2 + d_1^2 = 4.586$$

• Minimum squared Euclidean distance between parallel state transitions: $d_{branch}^2=d_2^2=4$



Trellis-Coded Modulation – Performance

Comments

- Generally, the decoding problem can be split into 2 parts:
 - 1 Find the correct sub-constellation by exploiting the trellis.
 - 2 For a given sub-constellation, make the correct decision.
- The error probability for (1) is limited by the impact of d_{subset}; the error probability for (2) is limited by the minimum distance in the sub-constellation d_{branch}.
- In this example, since $d_{subset} > d_{branch}$, it is more likely to make a wrong decision in the sub-constellations compared to selecting a wrong constellation.
- Therefore the performance is limited by $d_{branch} = d_2 = 2$.
- Compared to uncoded QPSK, we gain 3 dB since

$$d_{OPSK}^2 = d_1^2 = 1/2 \cdot d_2^2 = 1/2 \cdot d_{TCM}^2$$

13/1

Notes			
Votes			
	-		