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Kursmål
Formulera korttidsplaneringsproblem för vatten- och värme-
kraftsystem.
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Generellt korttidsplaneringsproblem
för elproduktion
maximera vinst = inkomst – kostnader

med hänsyn till fysiska begränsningar,

kontrakt,

juridiska begränsningar.

• Alla uttryck ovan kan modelleras på olika sätt och med olika 
detaljnivå.

• Det finns med andra ord inget standardkorttidsproblem – 
varje problem är unikt!

• I den här kursen kommer vi att presentera några typiska 
modeller som kan kombineras och anpassas till en specifik 
situation.
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Metodik
Då man formulerar optimeringsproblem lönar det sig att arbeta 
systematiskt.

• Börja med att sätta dig in i vilka förutsättningar som gäller 
(d.v.s. läs uppgiftslydelsen noggrant).

• Formulera problemet i klarspråk.

• Inför beteckningar för indexvärden, optimeringsvariabler 
och parametrar.

• Formulera målfunktion, bivillkor och variabelgränser.

Observera att punkterna ovan inte nödvändigtvis motsvarar en 
linjär process – det kan vara nödvändigt att gå tillbaka ett steg 
då och då. (Då man formulerar bivillkoren kan man t.ex. 
upptäcka att man behöver ytterligare beteckningar.)
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Korttidsplanering i den här kursen
I den här kursen kommer vi att fokusera på korttidsplanerings-
modeller med följande grundläggande egenskaper:

• Linjär modell

• Deterministisk modell (perfekt information eller en prognos)

• Tidssteg: 1 timme

• Planeringsperiod: 24 timmar

• Resultat: Driftplan för elproduktion och handel
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Vattenkraft
• Producerar el genom att utnyttja skillnaden i potentiell 
energi mellan en övre och en undre vattenyta för att driva en 
turbin, som i sin tur driver en elgenerator.

• De flesta vattenkraftverk har ett vattenmagasin.

• Vattenkraftverk utan magasin – eller med endast ett väldigt 
litet magasin – kallas strömkraftverk.
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Vattenkraftverk med låg fallhöjd
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Vattenkraftverk med hög fallhöjd
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Drift av vattenkraftsystem
• Varje enskilt kraftverk är väldigt flexibelt. (Stora ändringar 
kan utföras inom ett par minuter!)

• Det finns emellertid en hydrologisk koppling mellan 
kraftverk i samma älvsystem.

LULEÄLVEN
Längd: 461 km
Installerad effekt: 4 345 MW
Medelproduktion: 14 TWh/år
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Vattenkraft

Optimeringsvariabler
• Tappningen, Q, är det vatten som släpps igenom turbinerna 
(och som således används för elproduktion).

• Spillet, S, är det vatten som släpps genom spillvägarna för 
att undvika att dammen flödar över. Spill kan också vara 
nödvändigt p.g.a. domstolsbeslut om laxtrappor och för att 
upprätthålla ett vattenflöde i den naturliga älvfåran.

• Magasinsinnehållet, M, är den mängd vatten som finns 
sparad i ett vattenmagasin.

• Alla dessa storheter mäts i timekvivalenter (TE), vilket 
definieras som ett flöde på 1 m3/s under en timmes tid.

• Även om 1 TE = 3 600 m3, betraktar vi i vissa fall TE även 
som ekvivalent med ett vattenflöde i m3/s.
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Generellt korttidsplaneringsproblem
för vattenkraft
max värdet av såld el + värdet av sparat vatten

då hydrologisk koppling,

begränsningar i magasin, tappning och spill.

Vad behöver vi?

• Modell av elproduktionen för att beräkna 

- elproduktionen under planeringsperioden,

- elproduktionen efter planeringsperiodens slut.

• Hydrologisk koppling.
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Elproduktion i vattenkraft

Grunden
• Elproduktionen är en ickelinjär funktion av tappning och 
fallhöjd:

H = (Q, h)Qgh,

där

H = vattenkraftproduktion [W],

(Q, h) = verkningsgrad,

 = vattnets densitet [kg/m3],

Q = tappning [m3/s],

g = tyngdaccelerationen [m/s2],

h = fallhöjd [m].
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Elproduktion i vattenkraft

Styckvis linjär approximation
• Bortse från fallhöjdsberoendet och betrakta elproduktionen 
enbart som en funktion av tappningen.
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Elproduktion i vattenkraft

Definitioner
• Produktionsekvivalenten är kvoten mellan elproduktion och 
tappning, d.v.s. (Q) = H(Q)/Q [MWh/TE].

• Den marginella produktionsekvivalenten anger hur mycket 
elproduktionen ökar för en liten ökning av tappningen, d.v.s. 
(Q) = dH(Q)/dQ [MWh/TE].

• Den relativa verkningsgraden är kvoten mellan produktions-
ekvivalenten vid en viss tappning jämfört med den bästa 
produktionsekvivalenten, d.v.s. (Q) = (Q)/max, där 
max =  Q 

Q
max .
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Elproduktion i vattenkraft

Exempel
MWh/h H

Q1

H

TE

Q

Q2

(Q1)
(Q2)

(Q1)

(Q2)
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Elproduktion i vattenkraft

Styckvis linjär modell
Inga binära variabler behövs om 1 > 2 > 3 o.s.v.

Q Qj
j
= H Q  jQj

j
=
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Värdet av såld el
• Värdet av såld el är helt enkelt elproduktionen per timme 
multiplicerat med timpriset.

värdet av såld el = 
timpirs· marginell produktionsekvivalent · tappning
(summerat för alla timmar, kraftverk och segment)
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Värdet av sparat vatten
• Värdet av sparat vatten är lika med det framtida elpriset 
multiplicerat med den mängd energi som kan produceras 
med det sparade vattnet.

• Man måste anta ett framtida elpris.

• Mängden av el som kan produceras beror på framtida 
produktionsekvivalenter.

• Observera att vatten som sparas i ett magasin uppströms 
också kan användas i kraftverken nedströms!

värdet av sparat vatten = framtida pris · summan av framtida 
produktionsekvivalenter nedströms magasinet · 
magasininnehåll vid slutet av planeringsperioden (summerat 
för alla magasin)
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Hydrologisk koppling
Den hydrologiska kopplingen mellan kraftverken i ett älvsystem 
ingår i en balansekvation för varje magasin.

nytt magasinsinnehåll = gammalt magasinsinnehåll
+ vatten som rinner in i magasinet
– vatten som rinner ut från magasinet

• Vattnet som rinner till magasinet omfattar tappning och spill 
från kraftverk uppströms samt lokal tillrinning (d.v.s. vatten 
som rinner ner i vattendraget mellan två kraftverk).

• Vatten som rinner ut från magasinet omfattar tappning och 
spill i det tillhörande kraftverket.
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Magasinsbegränsningar
• Vi betraktar endast det aktiva innehållet i magasinen, d.v.s. 
den del av magasinet som faktiskt kan användas för vatten-
kraftproduktion.

Övre dämningsgräns

Lägre dämningsgräns
Aktivt innehåll
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Notation
• Observera skillnaden mellan följande två uttryck:

ai  10, i = 1, 2  a1  10

a2  10

 10  a1 + a2  10

• Om man använder bägge formerna av indexering samtidigt 
så blir uttrycket ogiltigt:

 10, i = 1, 2  SKRIV ALDRIG SÅ HÄR!!!

ai

i 1=

2



ai

i 1=

2


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Exempel på planering av vattenkraft

Problembeskrivning
• Två vattenkraftverk lokaliserade eftervarandra i en älv.

• Planeringsperiod 24 timmar

• All el säljs på en elbörs till prognostiserade priser.

• Given styckvis linjär modell (två segment) av elproduktionen 
som funktion av tappning.

• Givet framtida elpris.

• Sparat vatten antas användas till elproduktion vid bästa 
verkningsgrad.

• Givet startinnehåll i magasinen.

• Rinntiden mellan kraftverken kan försummas.
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Exempel på planering av vattenkraft

Optimeringsproblem
max värdet av såld el + värdet av sparat vatten

då hydrologisk balans,

begränsningar i magasin, tappning och spill.
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Exempel på planering av vattenkraft

Parametrar
t = förväntat elpris på elbörsen under timme t,

f = förväntat elpris efter planeringsperiodens slut,

i, j = marginell produktionsekvivalent för kraftverk i, 
segment j,

Mi, 0 = startinnehåll i magasin i,

= maximalt innehåll i magasin i,

= maximal tappning i kraftverk i, segment j,

Vi, t = lokal tillrinning till magasin i, under timme t.

Mi

Qi j
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Exempel på planering av vattenkraft

Optimeringsvariabler
Qi, j, t = tappning i kraftverk i, segment j,under timme t,
i = 1, 2, j = 1, 2, t = 1, … 24,

Si, t = spill från magasin i under timme t, 
i = 1, 2, t = 1, … 24,

Mi, t = innehåll i magasin i vid slutet av timme t, 
i = 1, 2, t = 1, … 24.
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Exempel på korttidsplanering av vattenkraft

Målfunktion
maximera

+ f((1, 1 + 2, 1)M1, 24 + 2, 1M2, 24).

t i j Qi j t 
j 1=

2


i 1=

2


t 1=

24


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Exempel på planering av vattenkraft

Bivillkor
Hydrologisk balans för det första kraftverket:

M1, t = M1, t – 1 + V1, t – Q1, 1, t – Q1, 2, t – S1, t, t = 1, … 24.

Hydrologisk balans för det andra kraftverket:

M2, t = M2, t – 1 + V2, t + Q1, 1, t + Q1, 1, t + S1, t

– Q2, 1, t – Q2, 2, t – S2, t, t = 1, … 24.
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Exempel på planering av vattenkraft

Variabelgränser
0  Qi, j, t  i = 1, 2, j = 1, 2, t = 1, … 24,

0  Si, t, i = 1, 2, t = 1, … 24,

0  Mi, t  i = 1, 2, t = 1, … 24.

Qi j ,

Mi,
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Termiska kraftverk
• Använder en värmemaskin för att producera el. Värmeen-
ergin kan komma från förbränning av ett bränsle (olja, gas, 
biobränsle, o.s.v.), kärnreaktioner eller förnybara källor 
(geotermisk energi, solvärme).

• Små termiska kraftverk använder en förbränningsmotor 
som driver en generator.

• Större termiska kraftverk använder en ångcykel för att driva 
en generator.

• Termiska kraftverk producerar också värme, som kan 
användas i fjärrvärmesystem (kraftvärme).
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Kondens- och kraftvärmeverk
- En kokvattenreaktor fungerar på samma sätt, men 
ångan produceras i en kärnreaktor i stället för en 
ångpanna.
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Tryckvattenreaktor
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Drift av termiska kraftverk
• Små termiska kraftverk är tämligen flexibla. (Stora 
ändringar kan utföras inom ett par minuter.)

• Stora termiska kraftverk kan behöva längre tid för att nå 
drifttemperatur i ångpannan (starttid).

• Elproduktionen i stora termiska kraftverk kan inte ändras för 
snabbt (eng. ”ramping”).
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Termiska kraftverk

Optimeringsvariabler
• Elproduktionen, G, är den elektriska effekten ut från 
generatorn.

• Driftstatusvariabeln, u, är en binär variabel, som anger om 
kraftverket är i drift eller ej.

• Startvariabeln, s+, och stoppvariabeln, s–, är binära variabler 
som anger om ett kraftverk startas eller stoppas.
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Generellt korttidsplaneringsproblem 
för termiska kraftverk
max värdet av såld el – rörliga kostnader

då driftstatus,

begränsningar i elproduktion.

Vad behöver vi?

• Modeller av rörliga kostnader

- driftkostnader,

- startkostnader.

• Samband mellan driftstatus, start och stopp.

• Minimal och maximal elproduktion.
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Driftskostnad

Grunden
• Driftkostnaden är en ickelinjär funktion av elproduktionen:

där

C(G = driftkostnad [¤/h],

 = bränslepris [¤/ton eller ¤/m3],

(G) = verkningsgrad,

h = bränslets värmeinnehåll [MWh/ton eller MWh/m3].

C G  
 G h
----------------G,=
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Driftkostnad

Linjär approximation
• I ett linjärt korttidsplaneringsproblem kan vi anta konstant 
verkningsgrad 

C(G) = G.

• I en allmän modell av termiska kraftverk är det också vanligt 
att ta med en kvadratisk approximation av driftkostnaden, 
d.v.s. 

C(G) =  + G + G2.

Eftersom  <<  så är en linjär approximation oftast 
tillräcklig.
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Startkostnader

Varm- och kallstart
• En viss mängd bränsle behövs för att värma upp 
ångpannan till drifttemperatur.

• Hur mycket bränsle som behövs beror på ångpannans 
temperatur (d.v.s. hur länge kraftverket varit ur drift).

Cstart(t) = Ckallstart(1 – e–t/) + Cfast,

där

Cstart(t) = startkostnad efter t timmars driftstopp,

Ckallstart = kostnad för kallstart,

 = termisk tidskonstant,

Cfast = fasta startkostnader.
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Startkostnader

Tomgångskörning
• Om ett kraftverk endast ska tas ur drift för en kort tid så kan 
det vara mer lönsamt att upprätthålla drifttemperaturen i 
ångpannan och spilla värmen:

Cstart(t) = Ctomgångt,

där

Cstart(t) = startkostnad efter t timmars driftstopp,

Ctomgång = kostnad per timmes tomgångskörning.
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Startkostnader

Linjär modell
• Alternativ 1: Antag fast startkostnad:

Cstart(t) = 

• Alternativ 2: Inför separata startvariabler och kostnader för 
olika långa driftstopp:

Cstart(t) = 

C+st
+.

C*st* C**st** ++
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Samband mellan driftstatus, start och stopp
• Fast startkostnad och stoppkostnad:

ut – ut – 1 =  – 

• Fast startkostnad, ingen stoppkostnad:

ut – ut – 1 

• Varierande startkostnader, ingen stoppkostnad:

  ut – ut – 1 – ut – 2,

  ut – ut – 1 – 

st
+ st

–.

st
+.

st**

st* st**.
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ut –

0
0
0
0
1
1
1
1

Bivillkor för driftstatus

Kontroll
2 ut – 1 ut ut – ut – 1 ut – ut – 1 – ut – 2 ut – ut – 1 – 

0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0 0
1 0 –1 0 1 –1 0 –1 0
1 1 0 0 0 0 0 0 0
0 0 0 0 0 –1 0 0 0
0 1 1 1 0 0 0 1 1
1 0 –1 0 1 –2 0 –1 0
1 1 0 0 0 –1 0 0 0

st
+ st

– st** st** st*
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Produktionsbegränsningar
Gt ut

Gt ut

Kontroll

• ut = 0 

Gt ,

Gt 0.

• ut = 1 

Gt 

Gt 

G,

G.

G,

G.
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Exempel på planering av termiska kraftverk

Problembeskrivning
• Termiskt kraftverk med tre block (d.v.s. separata enheter).

• Planeringsperiod 24 timmar.

• All el säljs på en elbörs till prognostiserade priser.

• Starttillstånd för blocken är givna.

• Bortse från stoppkostnader.
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Exempel på planering av termiska kraftverk

Optimeringsproblem
max värdet av såld el
– driftkostnader – startkostnader

då driftstatus,

begränsningar i elproduktion.
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Exempel på planering av termiska kraftverk

Parametrar
t = förväntat elpris på elbörsen under timme t,

Gg = rörlig driftkostnad i block g,

= startkostnad i block g,

ug, 0 = driftstatus för block g vid planeringsperiodens 
början,

= installerad effekt i block g,

= minimal produktion då block g är i drift.

Cg
+

Gg

Gg
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Exempel på planering av termiska kraftverk

Optimeringsvariabler
Gg, t = elproduktion i block g under timme t, 
g = 1, 2, 3, t = 1, … 24,

ug, t = driftstatus i block g under timme t, 
g = 1, 2, 3, t = 1, … 24,

= start av block g i början av timme t, 
g = 1, 2, 3, t = 1, … 24.

sg t
+
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Exempel på planering av termiska kraftverk

Målfunktion
maximera tGg t –
g
Gg t Cg

+sg t
+– 

g 1=

3


t 1=

24


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Exempel på planering av termiska kraftverk

Bivillkor
Driftstatus:

ug, t – ug, t – 1  g = 1, 2, 3, t = 1, … 24.

Maximal produktion:

Gg, t ug, t g = 1, 2, 3, t = 1, … 24.

Minimal produktion:

Gg, t ug, t g = 1, 2, 3, t = 1, … 24.

sg t
+ ,

Gg,

Gg.
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Exempel på planering av termiska kraftverk

Variabelgränser
ug, t {0, 1}, g = 1, 2, 3, t = 1, … 24,

 {0, 1}, g = 1, 2, 3, t = 1, … 24.sg t
+
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Avtalad last
• All el förväntas säljas på elbörs till prognostiserade priser

 Ta med värdet av såld el i målfunktionen.

• Avtalad last (lasten per timme är redan fastställd)

 Ta inte med värdet av såld el i målfunktionen, 
men lägg till lastbalans för varje timme:

total produktion = avtalad last.

Dt = avtalad last timme t.
50



Avtalad last och elhandel
• Avtalad last och möjlighet att handla på elbörs till prognos-
tiserade priser

Ta med handel (d.v.s. värdet av såld el minus 
kostnad av köpt el) i målfunktionen och lägg till 
lastbalans för varje timme:

total produktion + köp = avtalad last + försäljning.

pt = köp från elbörsen timme t,

rt = försäljning till elbörsen timme t,

Dt = avtalad last timme t.
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Dualvariabler
• Dualvariablerna anger hur det optimala målfunktionsvärdet 
ändras för en liten ändring i högerledet till ett bivillkor.

• Enheten för en dualvariabel måste därför vara 

• I korttidsplaneringsproblem är enheten för målfunktionen 
pengar [¤].

• Dualvariablerna representerar därför marginalvärden eller 
marginalkostnader.

- Observera att tecknet på dualvariabeln beror på om det är ett 
maximerings- eller minimeringsproblem!

enhet för målfunktionen
enhet för bivillkoret

--------------------------------------------------------------.
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Dualvariabler

Vattenvärde
• Enheten för hydrologiska bivillkor är TE 
 Enheten för dualvariabeln måste vara ¤/TE.

• Högerledet i ett hydrologisk bivillkor (på standardform) 
innehåller endast den lokala tillrinningen  Dualvariabeln 
motsvarar marginalnyttan av att få tillgång till mer vatten i 
magasinet (d.v.s. vattenvärdet).
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Dualvariabler

Marginalkostnad
• Enheten för lastbalansvillkor är MWh 
 Enheten för dualvariabeln måste vara ¤/MWh.

• Högerledet i ett lastbalansvillkor (på standardform) 
innehåller endast den avtalade lasten  Dualvariabeln 
motsvarar marginalkostnaden av att öka lasten, d.v.s. den 
marginella produktionskostnaden.
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GAMS

Introduktion
• GAMS är ett paket med mjukvara för att lösa optimerings-
problem.

• GAMS kräver en licens förutom för små demonstrations-
problem (mindre än 10 variabler).

- Studentrummet på Teknikringen 33

- Kurslicens (kursens webbsida)

- Fri tjänst på internet (www.neos-server.org)

• Optimeringsproblem matas in på ett liknande sätt som då vi 
formulerar optimeringsproblem.

• Då man kör ett GAMS-program så skickas optimeringspro-
blemet till en lämplig lösare (beroende på typ av problem 
och tillgängliga licenser).
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GAMS

Användning
• GAMS-program skrivs som vanliga textfiler, lämpligen i 
GAMSIDE-editorn.

• För att köra ett GAMS-program väljer man Run i menyn File 
eller använder ikonen .

• Resultatet från ett GAMS-program skrivs till en listfil (suffix 
.lst), där du hittar lösningen eller eventuella felmeddelanden.
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GAMS

Grunderna i programspråket
• GAMS har en begränsad med ganska lätthanterlig syntax.

• I kurskompendiet, appendix B, ges en introduktion till 
GAMS-programmering.

• En komplett beskrivning av GAMS-syntaxen finns under 
menyn Help inne i GAMSIDE (GAMS Users Guide).

• På de följande sidorna ges en sammanfattning av 
grunderna i programspråket.

- Svart text används för reserverade ord i GAMS, som inte ska 
ändras (dessa ord kan skrivas med stora eller små bokstäver och 
kan oftast skrivas i plural om det passar bättre).

- Blå text används för namn och kommentarer som användaren 
väljer.
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GAMS

Symboler
• Symboler är namn på variabler, parametrar, bivillkor och 
modeller.

• Symboler ska bara innehålla bokstäver och siffror.

• Symboler måste vara unika.
58



GAMS

Indexvärden och kommentarer
• Indexvärden och kommentarer kan innehålla bokstäver, 
siffror och de flesta andra tecken.

• Citationstecken kan behövas då man använder andra 
tecken än bokstäver och siffror.
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GAMS

Definiera indexvärden
• Variabler och parametrar kan indexeras.

• Syntax för att definiera indexvärden:
set symbol1 kommentar /index1, index2/;

• Med * kan vi skapa en sekvens av numrerade indexvärden.
set symbol2 kommentar /intervall1*intervall10/;

• Flera indexvärden kan definieras på en gång:
Sets

symbol3 kommentar /powerplant1*3/
symbol4 kommentar /segment1, segment2/

;
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GAMS

Definiera parametrar
• Syntax för att definiera skalära parametrar:
parameter symbol1 kommentar /värde1/;

• Syntax för att definiera indexerade parametrar:
parameter symbol2 kommentar 
/index1 värde1, index2 värde2/;

parameter symbol3 kommentar 
/index1.element1 värde11, index2.element1 värde21/;

• Flera parametrar kan definieras på en gång:
Parameters

symbol4 kommentar /value4/
symbol5 kommentar /value5/

;
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GAMS

Definiera optimeringsvariabler och variabelgränser
• Syntax för att definiera optimeringsvariabler:
<Type> variable symbol1 kommentar;

där <Type> ska vara något av positive, negative, 
binary, integer eller free.

• De övre och undre gränserna för en optimeringsvariabel 
kan ändras med en enkel tilldelning:

symbol1.UP = övregräns;

• Flera optimeringsvariabler av samma typ kan definieras på 
en gång:

Positive variables
symbol2(index1,index2) kommentar
symbol3 kommentar

;
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GAMS

Definiera målfunktion och bivillkor
• Målfunktionen betraktas som ett bivillkor, men måste 
innehålla en fri variabel.

• Bivillkor måste deklareras och definieras.

• Syntax för att deklarera bivillkor:
equation symbol1 kommentar;

• Flera bivillkor kan deklareras på en gång.

• Syntax för att definiera bivillkor:
symbol1.. vänsterled <relation> högerled;

där <relation> ska vara något av =e=, =l= eller =g=.
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GAMS

Definiera och lösa modeller
• Syntax för att definiera en modell:
model symbol1 /ekvation1, ekvation2/;

• Listan med symboler för ekvationer kan ersättas med 
/all/ ifall alla bivillkor ska ingå i modellen.

• Syntax för att lösa ett problem:
solve symbol1 using <problem type> 
<direction> variabel1;

där <problem type> ska vara lp, mip eller någon annan 
problemtyp (se GAMS User’s guide), och <direction> 
ska vara maximizing eller minimizing.
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GAMS

Visa resultat
• GAMS räknar automatiskt upp alla resultat i .lst-filen.

• För att snabbt hitta de värden du är intresserad av kan man 
lägga till en instruktion om detta enligt följande syntax:

display parameter1;
display variabel1.<specifier>;
display ekvation1.<specifier>;
display parameter2, variabel2.<specifier>;

där <specifier> ska vara L (optimalt värde), M (marginal-
värde), LO (undre gräns) eller UP (övre gräns).

Exempel: Dualvariabeln till ett bivillkor kallat 
hydbal kan visas med 
display hydbal.M;
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Indexering
• Parametervärden som inte har definierats antas vara lika 
med noll.

• Parametrar och variabler som indexeras utanför de tillåtna 
värdena ersätts av noll.

• Indexvärden kan filtreras med dollarvillkor. Uttrycket
parameter(index)$(villkor)

ersätts med noll om villkor inte är uppfyllt.

• Dollarvillkor kan identifiera särskilda indexvärden med ord-
operatorn. Uttrycket

$(ord(index) = 1)

kommer endast att vara sant för det första värdet i index.
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GAMS

Slingor
• Det finns ytterligare några enkla programkonstruktioner, 
t.ex. för att göra en slinga över en eller flera indexvärden:

loop(index1, sats1);
loop(index2, sats2; sats3);
loop((index3,index4), sats4);
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Exempel på planering av termiska kraftverk
Sets
  g          block /I, II, III/
  t          tidsperiod /timme1*timme24/
;

Parameters
  lambda(t)  förväntat elpris timme t
  betaG(g)   rörlig driftkostnad i block g
  Cstart(g)  startkostnad i block g
  u0(g)      starttillstånd i block g

Gmax(g)    installerad effekt i block g
  Gmin(g)    minimal produktion i block g
;

68



GAMS

Exempel på planering av termiska kraftverk
Free variables
  z  målfunktionsvärde
  Gen(g,t)   elproduktion i block g, timme t
;

Binary variables
  u(g,t)     driftstatus i block g timme t
  s(g,t)     startav block g i början av timme t
;
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Exempel på planering av termiska kraftverk
Equations
  objfnc     målfunktion
  untcmt(g,t)”driftstatus i block g, timme t"
  maxgen(g,t)"maximal produktion i block g, timme t"
  mingen(g,t)"minimal produktion i block g, timme t"
;

objfnc..     z =e= sum((t,g),
              (lambda(t)-betaG(g))*Gen(g,t) -

Cstart(g)*s(g,t));
untcmt(g,t)..u(g,t) - u(g,t-1) - u0(g)$(ord(t) = 1) 

=l= s(g,t);
maxgen(g,t)..Gen(g,t) =l= u(g,t)*Gmax(g);
mingen(g,t)..Gen(g,t) =g= u(g,t)*Gmin(g);
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Exempel på planering av termiska kraftverk
model thermalplanning /all/;
solve thermalplanning using mip maximizing z;
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Rinntid
• Vatten som släpps ut från ett magasin kommer inte 
omedelbart fram till nästa magasin.

• Rinntiden mellan kraftverken är i verkligheten en kompli-
cerad funktion av vattenflödet, årstid, topografi och 
magasinsnivåer.
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Rinntid

Modellering
För enkelhets skull kan vi anta en konstant rinntid mellan kraft-
verken.

Mi, t = Mi, t – 1  + Vi, t

– Qi, t – Si, t

där  

hj = rinntid i hela timmar, 

mj = resterande rinntid i minuter.

Qj t j i– Sj t j i–
j Ki
+

j Ki
+

Qj t j i–
mj

60
------Qj t hj– 1–

60 mj–

60
-----------------Qj t hj– ,+=
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Förbjudna intervall för tappningen
• Vissa nivåer på tappningen kan skada turbinen.

• Verkningsgraden är dålig vid låg tappning.

• Den styckvis linjära modellen antar samma verkningsgrad 
för hela det första segmentet!

 Modellen av elproduktionen som funktion av tappningen kan 
förbättras genom att förbjuda vissa intervall för tappningen.
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Förbjudna intervall för tappningen

Modellering
Ny binär variabel:

zi, t = tillåt/förbjud 
tappning över 
50 TE

Elproduktion:

Hi, t = 50Kizi, t + KiQKi, t.

Bivillkor och variabelgränser:

QKi, t  zi, t., 0 QKi, t,, zi, t  {0, 1}.QKi
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Minimal drift- och stopptid
• I stället för att införa kostnader för start och stopp så kan vi 
begränsa antalet start och stopp genom att införa minimala 
drift- och stopptider.

• Lägsta drifttid  timmar  om ett kraftverk startas inför 
timme t så ska det inte stoppas förrän timme t +  – 1:

• Lägsta stopptid  timmar  

tg
+

tg
+

sg t
+ sg k

– 1.
k t=

t tg
+ 1–+

+

tg
- sg t

– sg k
+ 1.

k t=

t tg
– 1–+

+
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Begränsade produktionsändringar
• Elproduktionen i stora termiska kraftverk kan inte ändras för 
snabbt.

- Det tar tid att öka ångflödet (produktionsökning)

- Ångan behövs för att kyla ångpannan (produktions-
minskning)

• Man kan införa begränsningar för produktionsändringarna i 
korttidsplaneringsproblemet.
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Begränsade produktionsändringar

Modellering
Nya parametrar:

= maximal produktionsökning (vid drift)

= maximal produktionsökning (vid start)

= maximal produktionsminskning (vid drift)

= maximal produktionsminskning (vid stopp)

Bivillkor för produktionsökning:

Gg, t – Gg, t – 1  

Bivillkor för produktionsminskning:

Gg, t – 1 – Gg, t  

Gg


Gg
+

Gg


Gg
-

Gg
 Gg

+ Gg
– sg t

+ .+

Gg
 Gg

- Gg
– sg t

- .+
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Begränsade produktionsändringar

Kontroll
ut – 1 ut
Maximal produktionsökning, Maximal produktionsminskning,

0 0

0 1

1 0

1 1

Gg
 Gg

+ Gg
– sg t

++ Gg
 Gg

- Gg
– sg t

-+

Gg
 Gg



Gg
+ Gg



Gg
 Gg

-

Gg
 Gg


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