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Homework 4
Projection Method and Staggered Grid for Incompressible Flows
due February 18 2016, 12:00

The motivation for this exercise is to demonstrate the advantages of a staggered grid compared
to a co-located one for incompressible flows.

When solving the incompressible Navier—Stokes equations, other techniques are normally used
compared to those for the solution of the compressible Navier—Stokes equations. One common
method which ensures that the velocity field is divergence free is the projection (or pressure
correction) method. A detailed description of this method will be given later in the course.
However, we use a simple version of it for our model equation.

A strongly simplified one-dimensional analogue to the incompressible Navier—Stokes equations,

neglecting the viscous and non-linear convection terms, is given by

Uy = —Pz, (1)
u, = 0. (2)

Let us start with the discretisation of the time derivative using a first-order accurate backward
Fuler scheme
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Taking the xz-derivative of the equation above yields

(e = (W])e = A (o - (4)
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Requiring u, = 0 at t = t"*! results in

(07 ae = 57 (U)o - (5)

Your task consists of the following

1. discretise the equations (5) and (3) using central differences second order in space for

(a) a co-located grid,

(b) a staggered grid (see figure 1);

2. write a program that solves the discretised equations derived above (for both grids).

Solve the equations with initial and boundary conditions
u(t=0,2) =2, p(t,e=1)=5.

The spatial domain is € [~1,1]. At each time step, p"*! is computed first from
equation (5), and then u"*! is obtained from the equation (3).

The implementation of the boundary conditions should be done very carefully. Note that for
the given problem explicit boundary conditions for the velocity are not required. At the outflow
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Figure 1: Schematics of a co-located and a staggered grid. Note the numbering of the nodes in
both cases and the use of the so-called “ghost points” shown with dashed circles.

Dirichlet boundary conditions for the pressure are given while at the inflow Neumann conditions
should be used (first order, i.e. p; = po for the co-located grid and py = p; for the staggered

one).

Think how these two conditions should be applied. The values in the “ghost points” pg

and py4+1 can be approximated by linear extrapolation when necessary.

For the report for both co-located and staggered grid you need to

write the discretised form of the equations (5) and (3)
write explicitly all equations at the boundaries in the discretised form
write the equations (5) and (3) in the matrix form, namely
Ap™™ = Mu"+b,
W= Wt -t d

spelling out all the vectors and matrices. Vectors b and d are needed for correctly including
the boundary conditions.

plot pressure and velocity fields at different time steps. Compare the results for both grids
and explain the different behaviour of the solutions.

The idea is to demonstrate the existence of spurious checker-board solutions. Something
to keep in mind is that if the chosen initial solution is exact it might happen that you will
not observe these spurious solutions. Therefore, perturb your initial condition with some
low-amplitude noise (~ O(0.01)) in the internal points of the domain. The MATLAB
function rand produces random numbers that can be used for that purpose.

use different At/Az. What effects do you observe? Integrate the equations for long enough
such that you can see whether the spurious solutions grow or disappear completely.



