Polarized and unpolarised transverse waves,
with applications to optical systems
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Outline

Previous lecture:
 The quarter wave plate
« Set up coordinate system suitable for transverse waves

« Jones calculus; matrix formulation of how wave polarization changes
when passing through polarizing component

— Examples: linear polarizer, quarter wave plate, Faraday rotation

This lecture
« Statistical representation of incoherent/unpolarized waves
— Polarization tensors and Stokes vectors
* The Poincare sphere

* Muller calculus; matrix formulation for the transmission of partially
polarized waves
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Incoherent/unpolarised

Many sources of electromagnetic radiation are not coherent
— they do not radiate perfect harmonic oscillations (not sinusoidal wave)
« over short time scales the oscillations look harmonic

* but over longer periods the wave look incoherent, or even stochastic
— such waves are often referred to as unpolarised

To model such waves we will consider the electric field to be a stochastic
process, i.e. it has

— an average: < E%(t,x) >
— avariance: < E«(t,x) [EF (t,x) |* >
— acovariance: < E*(t,x) [EF (t+s,xty) ]" >

In this chapter we will focus on the variance, here called the intensity tensor
[P=<FE*(t,x)[EF(1,x)]" >

and the polarization tensor (where e),=E / |E| is the polarization vector)
pP=<ey* (tX)[ ey (tx)]" >
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Representations for the polarization tensor

» The polarisation tensor: p®F = (e%"eF)
» It has four complex components
« But p?f is constructed from a normalised vector
« [t's components are not all independent!
« What are the possible forms for p*£?
» Some restrictions/properties:
- The tensor has unit trace: tr(p) = p*® = (e*"e%) = (le|) = (1) = 1

 It’s hermitian: (p“ﬁ)* = (e“eﬁ*) = (eP e®) = pha

*

» The polarisation tensor is described by three real parameter {g,u,v}

1 o
r? =3 d+alo Al+uli ol +0li o))

— Note: the three last ones are the Pauli matrixes.
— These form a basis for an 2x2 hermitian matrix.
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Examples

For example consider:
— linearly polarised waves in the horisontal plane ey, = [1, 0]

ot el =gl =[5 91=3(G J+1ly %)

- {q,u,v} ={1,0,0}
— rotate linear polarization by 45°, e = [1,1]21/2

. 1 1
Paﬂ=eﬁl eMz_[ll [1 1] zﬁ i =§([(1) (1)]+1[(1) (1))
- {q,u,v} ={0,1,0}

— right hand circularly polarised waves, e& = [1, —i] / 21/?

o ==l -a-3 1305 Yeald )

- {q,u,v} ={0,0,1}
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Table of ideal polarisations
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By Dan Moulton - http://en.wikipedia.org/wiki/Image:Side2.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php ?curid=3319458
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The Stokes vector

Using unit- and Pauli-matrixes, we define rj“ﬁ as:

1 O 1 O 0 1 0 -i
o _ oaf _ o _ o _
R I N L A AR
These can also be used to express the intensity tensor:
1 0 1 0 Uo 1 Vo -\ 1[I1+Q0 U-iv
o 1J"% -1)*% o/*"li o)|72

U+iV 1-Q
— The four parameters are called the Stokes parameter {1, O, U, V'}
— The Stokes vector is similarly defined as S, |A={1,2,3,4} =[,0UV]

==

Using index notation the intensity matrix and the Stokes vector are

related by:

1 c 1.t of yo
1 = ErZﬁSA with inverse: S, =3 1%

— The matrixes t;*%, defines a transformation between
hermitian 2x2 matrixes and real 4-vectors
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Poincare sphere

Define the degree of polarisation:  r =+g* + u* +v*

Consider the normalised vector { g/r, u/r, v/r } (polarised fraction)

— since this vector is real and normalised it will represent points on a
sphere, the so called Poincare sphere
T u

Thus, any transverse wave field can

be described by —

— a point on the Poincare sphere / 20 _=~ 14
1%

— a degree of polarization, r
Poincare sphere

A polarizing element induces a motion on the sphere

— e.g. passing though a birefringent crystal traces a circle
 Birefringence rotates in a vertical plane
« Faraday rotation rotates in a horisontal plane

— Here is may be useful to polar coordinates (y,y).
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The polarization tensor for unpolarized waves (1)

What are the Stokes parameters for unpolarised waves?
— Let the ¢,/ and ¢,/ be independent stochastic variable

el * < L7 S <L 1,27 >

paB | M (el o2 ) oe €p€y €pm€y
62 <62€1*> <€262*>
M mCu mCu

— Since ¢,/ and ¢,/ are uncorrelated the offdiagonal term vanish

of

del P> 0
p =

2 2
0 <ley, I"'>

— The vector e, is normalised: |el, | +]e2 [ =1

— By symmetry (no physical difference between ¢,/ and e,/ )
‘e}w‘z = ‘eé‘z =1/2

— the polarization tensor then reads

11 0
p* ==
200 1

— l.e. unpolarised have {q,u,v}={0,0,0}!
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The polarization tensor for unpolarized waves (2) %

« Alternative derivation; polarization vector for unpolarized
waves
— Note first that the polarization vector is normalised

2 P2 P 2 . 2
e, | =lel| +lex| =1~ cos’(®) +sin’(8)

1 94 0
— the polarization is complex and stochastic: Cu ) = (e cos( ))

2 02 o
* where 0, ¢; and ¢, are € e’ sin(B)

uniformly distributed in [0,2x]
* The corresponding polarization tensor

(e}w) N (ei“’l'i“’lcos(ﬂ)cos(e) e"¢1-"¢2cos(e)sin(e))
( ) >=< >

=< o .
P e 1 5in(B)cos(0) €272 sin(0)sin(0)

— here the average is over the three random variables 0, ¢, and ¢,

2% 27 2

a1 p cos’(0) ™1 *2 cos(0)sin(0) 1 1 0
P (2n)’ {d@{ dq)l{d(bz(ei“’z'i“’l sin(0) cos(0) sin’(0) 210 1

— l.e. unpolarised have {q,u,v}={0,0,0}!
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Outline

Previous lecture:
 The quarter wave plate
« Set up coordinate system suitable for transverse waves

« Jones calculus; matrix formulation of how wave polarization changes
when passing through polarizing component

— Examples: linear polarizer, quarter wave plate, Faraday rotation

This lecture
« Statistical representation of incoherent/unpolarized waves
— Polarization tensors and Stokes vectors
* The Poincare sphere

« Muller calculus; matrix formulation for the transmission of partially
polarized waves

— General theory for dispersive media
— Optical components
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Weakly anisotropic media

In weakly anisotropic media the wave equation can be rewritten
on a form suitable for studying the wave polarisation.

Write the weakly anisotropic transverse response as

K% = nozéaf’ + AK*
— where AK? is a small perturbation

The wave equation
(n?8% ~K*®)E* =0 = (n®-n,")E® = AK™E"

— when AK; is a small, the 15! order dispersion relation reads: n*=n,’
— the left hand side can then be expanded to give

small, <<1

(n —n,)

] ~2n,(n —n,)
iy

n® - n§ =(n-ny)(n+n,) =(n-ny)n, [2 +

2n,(n -n,)E* ~ AK*E*
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The wave equation in Jones calculus

* Inverse Fourier transform, when ky=wn/c:
2 9 2
Dky(k — k) E® =~ = AKPE® < 2k (~i— — k,) E® ~ — AK*P E°
C 0x C
» Factor our the eikonal with wave number %, :
E* =E; (x)exp(ikox)

 The wave equation can then be simplified

.0 o . O R .
(—la —-ky))E, (x)exp(lkox) ~ o2 AK BEO (x)exp(lkox)

oC

dE;, . o

~ o 7P P
dx ~l2nocAK Eo m) | EL =UUE 5 TV ~exp)i

AKO‘Bx]

2n,c

The differential transfer equation in the Jones calculus!
(We will use this relation in the next lecture)
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The wave equation as an ODE

« \Wave equation for the intensity tensor:

af
I _d et oo o (AK“F’&B" —AKB"*éO‘p)Ip"
dx dx 2cn,
from prev. page:
EOL
By _; O Agops
dx 2n,c

- Rewrite it in terms of the Stokes vector: S, =t 1%

S,

— we may call this the differential formulation of Muller calculus

) -
Pz = 4l (e Ak Pl -
cn,
» = (pAB )SB ) i
Hap = 4cn,

T AK 7P

(tﬁ“ AK PP 4 o0 AK PP )

— symmetric matrix p,5 describes non-dissipative changes in polarization
— and the antisymmetric matrix u,gz describes dissipation (absorption)
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The wave equation as an ODE

 The ODE for S, has the analytic solution (cmp to the ODE y’=ky)

Sa(x) = [6AB + (pAB —Uyp )x + 1/2(pAC ~Uac )(pCB —Ucp )x2 + "']SB ©)

— cmp with Taylor series for exponential
S,(x)=M,;S,(0) , where M ,, = exp[(pAB — uAB)x]

* Here M, is called the Muller matrix
— Mz represents entire optical components / systems
— This is a component based Muller calculus
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Examples of Muller matrixes

Some common Muller matrixes:

Linear polarizer

(Horizontal Transmission)

LH _
MA_B -

1
2

1

o O -

S O =

I O

0
0
0

0

0
0
0

Quarter wave plate

(fast axis horizontal)

O.H _
M3 =

1

0
0
0

0

1
0
0

0 O
0 O
0 -1
1

O -

Linear polarizer
(45° transmission)

1 0 -1 0
ML’45=1 0 0 0 O
4B 9211 0 1 0
0 0 0 O

Attenuating filter
(30% Transmission)

1 000
y 010
M503)=03

0 0 0 1]

What is the Muller matrix for Faraday rotation?
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Examples of Muller matrixes

* |n optics it is common to connect a series of optical elements

« consider a system with:
— a linear polarizer and
— a quarter wave plate

out _ O.H L A5 ¢in

* Insert unpolarised light, S,/=[1,0,0,0]
— Step 1: Linear polariser transmit linearly polarised light

s =MES[1 0 0 0] =[1 0 -1 0]

— Step 2: Quarter wave plate transmit circularly polarised light

s =M2"[1 0 -1 0] =[1 0 0 -1]
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