

Lecture 8: OFDM and Channel Capacity Advanced Digital Communications (EQ2410)¹

M. Xiao CommTh/EES/KTH

Wednesday, Feb. 17, 2016 10:00-12:00, B23

1/1

M. Xiao CommTh/EES/KTH

Overview

Lecture 7

- Characteristics of wireless channels
- Performance for fading channels
- Diversity

Lecture 8: OFDM and Channel Capacity

Notes			

¹Textbook: U. Madhow, Fundamentals of Digital Communications, 2008

Lecture 8 OFDM and Channel Capacity

M. Xiao CommTh/EES/KTH Motivation

Applications of OFDM (orthogonal frequency division multiplexing)

- Digital subscriber line (DSL)
- Digital video broadcast (DVB-S/T)
- WLAN (IEEE 802.11)
- WIMAX (IEEE 802.16)
- LTE/IMT-Advanced (4G/4.5G)

Conventional signaling with one carrier

- Effective pulse: $x(t) = (g_T \star g_C \star g_R)(t)$
- Received signal: $y(t) = \sum_{k} b[k]x(t kT)$ (plus noise)
- ISI avoidance (Nyquist criterion): The waveforms x(t-kT) must be orthogonal.
- \rightarrow Design of $g_R(t)$ and $g_T(t)$; difficult to achieve!

3/1

Notes

Lecture 8
OFDM and Channel
Capacity

M. Xiao
CommTh/EES/KTI-

Concept OFDM

Interesting observation

Theorem 8.3.1 Consider a linear time-invariant channel with impulse response $g_C(t)$ and transfer function $G_C(f)$. Then the following statements are true:

(a) The complex exponential waveform φ^{2πft} is an eigenfunction of the channel with eigenvalue G_C(f). That is,

$$e^{j2\pi ft} * g_{C}(t) = G_{C}(f)e^{j2\pi ft}.$$

(b) Complex exponentials at different frequencies are orthogonal.

[Madhow, Fundamentals of Digital Communication, 2008]

 \rightarrow Orthogonality is preserved after transmission through the channel!

OFDM system

ullet Discrete set of N carriers over a symbol interval of finite length T

$$u(t) = \sum_{n=0}^{N-1} B[n] e^{j2\pi f_n t} I_{[0,T]}(t) = \sum_{n=0}^{N-1} B[n] p_n(t)$$

• The symbols B[n] are mapped to the carriers.

Notes			
Notes			

M. Xiao CommTh/EES/KTI

Concept OFDM

What about the orthogonality?

• Orthogonality for two sub-carriers $p_n(t)$ and $p_m(t)$:

$$\langle p_n, p_m \rangle = \int\limits_0^T e^{j2\pi f_n t} e^{-j2\pi f_m t} dt = rac{e^{j2\pi (f_n - f_m)T} - 1}{j2\pi (f_n - f_m)}$$

- \rightarrow orthogonal if $(f_n f_m)T = \text{non-zero integer}$; for example $f_n = n/T$.
- Fourier transform of $p_n(t)$:

$$P_n(f) = T \cdot \operatorname{sinc}((f - f_n)T)e^{-j\pi(f - f_n)T}$$

- \rightarrow decays quickly as $|f f_n|$ takes on values of the order of k/T
- If $T\gg T_m\Rightarrow 1/T\ll B_m$; i.e., each sub-carrier sees an approximately constant channel (frequency-flat fading), and we have

$$Q_n(f) = G_C(f)P_n(f) \approx G_C(f_n)P_n(f).$$

→ Orthogonality is preserved after transmission through the channel.

5/1

Notes

M. Xiao CommTh/EES/KTH

Implementation OFDM

• Transmitted OFDM waveform with $f_n = n/T$ (one OFDM symbol)

$$u(t) = \sum_{n=0}^{N-1} B[n] p_n(t) = \sum_{n=0}^{N-1} B[n] e^{j2\pi nt/T} I_{[0,T]}(t)$$

• Sampled OFDM signal with $T_s = 1/W = T/N$

$$u(kT_s) = \sum_{n=0}^{N-1} B[n]e^{j2\pi nk/N}$$

- → Inverse DFT of B[n]; i.e., $u(kT_S) = I\text{-DFT}(B[n]) = b[k]$ → Efficient implementation with FFT/IFFT for $N = 2^i$.
- OFDM demodulation with FFT (without considering the channel)

$$B[n] = \frac{1}{N} \sum_{k=0}^{N-1} b[k] e^{-j2\pi nk/N} = FFT(b(k)) = FFT(u(kT_s))$$

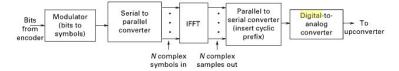
Notes			
Notes			
Notes			
Notes 			
Notes			

Lecture 8 OFDM and Channel Capacity

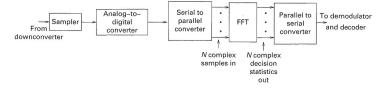
M. Xiao CommTh/EES/KTH

Implementation OFDM

Transmitter



Receiver



[Madhow, Fundamentals of Digital Communication, 2008]

7/1

Notes

Lecture 8 OFDM and Channe Capacity

M. Xiao CommTh/EES/KTH

Cyclic Prefix

• Received signal with effective pulse p(t) (incl. D/A conversion at the transmitter, physical channel, receive filter; noise-free case)

$$v(t) = \sum_{k=0}^{N-1} b[k] p(t - kT_s)$$
 and $v[m] = \sum_{k=0}^{N-1} b[k] h[m - k]$

with $h[I] = p(IT_s)$, the sampled impulse response of length L.

- Problem
 - Linear convolution of b[k] and h[k]
 - To preserve the property V[n] = H[n]B[n], with $H[n] = DFT_N(h[I])$, a cyclic convolution is required.
- Solution: cvclic prefix
 - By appending the last L-1 symbols $b[N-L+1],\ldots,b[N-1]$ as a prefix to the symbols b[n] a linear convolution of the channel with

$$b[N-L+1], \ldots, b[N-1], b[0], \ldots, b[N-1]$$

becomes a cyclic convolution of the channel and $b[0], \ldots, b[N-1]$.

 After sampling the received signal, removing the length-L cyclic prefix, and applying the length-N DFT to received samples we get

$$Y[n] = H[n]B[n] + N[n]$$

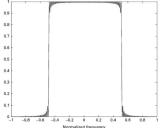
 \rightarrow OFDM transforms a frequency-selective channel into *N* narrowband channels with fading coefficients H[n] (no additional equalization).

-		
Notes		
-		

Lecture 8 OFDM and Channe Capacity

M. Xiao CommTh/EES/KTH

PSD of OFDM Signals



$$S_{u}(f) = \sum_{n=0}^{N-1} E[|B[n]|^{2}] \frac{|P_{n}(f)|^{2}}{T}$$

$$= T \sum_{n=0}^{N-1} \sigma_{B}^{2}[n] |\operatorname{sinc}((f - f_{n})T)|^{2}$$

[Madhow, Fundamentals of Digital Communication, 2008]

9/1

Notes

Lecture 8 OFDM and Chanr Capacity

M. Xiao CommTh/EES/KTH

Peak-to-Average Ratio (PAR)

- b[k] is the sum of a large number of independent terms \rightarrow central limit theorem: $b[k] \sim N(0, \sigma_b^2)$
- Problem in OFDM: high instantaneous power $P[k] = |b[k]|^2$ can occur \rightarrow problem with linearity of amplifiers.
- Peak-to-Average Ratio

$$PAR = \frac{\max_{0 \le k \le N-1} P[k]}{\frac{1}{N} \sum_{k=0}^{N-1} P[k]}$$

- Methods to reduce PAR
 - power reduction by approximately PAR dB
 - insert different phase shifts in each of the sub-carriers
 - modulate dummy symbols which are selected in order to reduce PAR
 - insert redundancy into data on carriers by expanding the constellation
 - → loss of efficiency (power, rate,...)

Notes				
Notes				

M. Xiao CommTh/EES/KTH

Capacity

- OFDM transforms a frequency selective channel into N parallel narrowband fading channels.
- In the following, K parallel Gaussian channels with

$$Y_k = h_k X_k + Z_k$$
, with $k \in \{1, \ldots, K\}$,

the channel gain h_k , $Z_k \sim CN(0, N_k)$, and $E[|X_k|^2] = P_k$.

• Assuming independence of the channels, the sum rate/capacity for a given power allocation $\mathbf{P} = [P_1, \dots, P_K]$ is given as

$$C(\mathbf{P}) = \sum_{k=1}^{K} \log_2 \left(1 + \frac{|h_k|^2 P_k}{N_k} \right)$$

Optimal power allocation: water filling

11/1

M. Xiao CommTh/EES/KTI

Water Filling

- Goal: maximize $C(\mathbf{P})$ subject to the constraint $\sum_{k=1}^{K} P_k \leq P$
- Maximize the Lagrangian

$$J(\mathbf{P}) = C(\mathbf{P}) - \lambda \left(\left[\sum_{k=1}^{K} P_k \right] - P \right) = \sum_{k=1}^{K} \log_2 \left(1 + \frac{|h_k|^2 P_k}{N_k} \right) - \lambda \left(\left[\sum_{k=1}^{K} P_k \right] - P \right)$$

• By setting the first derivative of $J(\mathbf{P})$ to zero we get

$$P_k = a - \frac{N_k}{|h_k|^2}$$

• By choosing a such that the power constraint is fulfilled we get the water-filling solution

$$P_k = \left[a - \frac{N_k}{|h_k|^2} \right]^+ \frac{P_{2^{=0}}}{\frac{P_1}{|h_1|^2}} \frac{W_{\text{ater level } \theta}}{\frac{N_1}{|h_1|^2}}$$
 with $[x]^+ = x$, if $x > 0$, and $[x]^+ = 0$, else.

- ightarrow for channels with $N_k/|h_k|^2 > a$ we get $P_k = 0$. ightarrow If power is limited, the power is allocated to the good channels first.

Notes			

Lecture 8 OFDM and Channe Capacity

M. Xiao CommTh/EES/KTH

Capacity OFDM

• k-th sub-carrier

$$Y_k = H(f_k)X_k + Z_k$$

with $Z_k \sim CN(0, S_n(f_k)\Delta f)$, $E[|X_k|^2] = S_s(f_k)\Delta f$, the PSDs $S_s(f)$ and $S_n(f)$ of the signal and the noise, and the bandwidth of the sub-carriers Δf .

• Sum rate (capacity) for an OFDM system

$$R = \sum_{k} \Delta f \log_2 \left(1 + \frac{|H(f_k)|^2 S_s(f_k)}{S_n(f_k)} \right)$$

• Capacity and power constraint for a frequency-selective channel (follows for $\Delta f o 0$)

$$C = \int\limits_{-W/2}^{W/2} \log_2 \left(1 + rac{|H(f)|^2 S_s(f)}{S_n(f)}
ight) df$$
 and $\int\limits_{-W/2}^{W/2} S_s(f) df = P$

with the water-filling solution $S_s(f) = [a - S_n(f)/|H(f)|^2]^+$

• For $N \to \infty$ and $\Delta f \to 0$ together with the optimal power allocation, OFDM becomes capacity achieving.

13 / 1

Lecture 8
OFDM and Channel
Capacity

M. Xiao
CommTh/EES/KTI-

Resource Allocation

- Find the optimal power allocation maximizing the sum rate under the given power constraint.
- ② Choose the modulation and coding such that the rate can be reliably achieved.

Notes			