Task 1 Go through the proof of Theorem 8.3.1.

Theorem 8.3.1 Consider a linear time-invariant channel with impulse response $g_C(t)$ and transfer function $G_C(f)$. Then the following statements are true:

 (a) The complex exponential waveform e^{j2πft} is an eigenfunction of the channel with eigenvalue G_C(f). That is,

$$e^{j2\pi ft} * g_C(t) = G_C(f)e^{j2\pi ft}$$
.

(b) Complex exponentials at different frequencies are orthogonal.

Proof The eigenfunction property (a) is verified as follows:

$$\begin{split} \mathrm{e}^{\mathrm{j}2\pi ft} * g_{\mathbb{C}}(t) &= \int_{-\infty}^{\infty} g_{\mathbb{C}}(u) \mathrm{e}^{\mathrm{j}2\pi f(t-u)} \, \mathrm{d}u \\ &= \mathrm{e}^{\mathrm{j}2\pi ft} \int_{-\infty}^{\infty} g_{\mathbb{C}}(u) \mathrm{e}^{-\mathrm{j}2\pi fu} \, \mathrm{d}u = G_{\mathbb{C}}(f) \mathrm{e}^{\mathrm{j}2\pi ft}. \end{split}$$

We now verify statement (b) on orthogonality for different frequencies:

$$\langle e^{j2\pi f_1 t}, e^{j2\pi f_2 t} \rangle = \int_{-\infty}^{\infty} e^{j2\pi f_1 t} e^{-j2\pi f_2 t} = \delta(f_2 - f_1) = 0, \quad f_1 \neq f_2,$$

using the fact that the Fourier transform of a constant is the delta function.

Task 2 Look at the slides 4 and 5: what happens to the orthogonality of $p_m(t), p_n(t)$ if we have an additional phase shift ϕ_n , for example if $p_n(t) = \exp(j(2\pi f_n t + \phi_n))$?

Task 3 The linear convolution of the length-N sequence b[k] and the length-L sequence h[k] is given as

$$y[k] = \sum_{m=0}^{L-1} h[m]b[k-m],$$

and the cyclic convolution of the length-N sequences b[k] and h'[k] (obtained by appending N-L zeros to h[k]) is given as

$$z[k] = \sum_{m=0}^{N-1} h[m]b[(k-m) \mod N] = \sum_{m=0}^{L-1} h[m]b[(k-m) \mod N].$$

Discuss based on the illustration on the next page how the cyclic prefix helps to transform the linear convolution on the channel into a cyclic convolution.

symbols of interest													
Linear convolution ($L=3$)				ı] !			
0	0	0 $h[2]$	0 h[1]	b[0] $h[0]$	b[1]	b[2]	b[3]		$b[N\!-\!1]$	0	0	0	0
Cyclic convolution				1 1 1						' 			
$b[N\!-\!4]$	b[N-3]	$B] \ b[N-2]$	$b[N\!-\!1]$	b[0]	b[1]	b[2]	b[3]		b[N-1]	b[0]	b[1]	b[2]	b[3]
		h[2]	h[1]	h[0]						 			
Linear convolution with cyclic prefix			 						 				
0	0	b[N-2]	$b[N\!-\!1]$	b[0]	b[1]	b[2]	b[3]	• • •	$b[N\!-\!1]$	0	0	0	0
		h[2]	h[1]	h[0]						 			

Task 4 Consider two parallel AWGN channels

$$y_1 = h_1 x_1 + n_1$$
 and $y_2 = h_2 x_2 + n_2$,

with the channel gains $h_1 = 2$ and $h_2 = 1$, the noise variances $N_1 = N_2 = 1$, and the symbol powers $P_1 = E[|x_1|^2]$ and $P_2 = E[|x_2|^2]$. Give the optimal power allocation (water filling) for the following two cases:

- (1) Power constraint: $P_1 + P_2 = 1$,
- (2) Power constraint: $P_1 + P_2 = 1/2$,