
DD2476 Search Engines and Information Retrieval Systems

Lecture 5: Scoring, Weighting,
Vector Space Model
Hedvig Kjellström
hedvig@kth.se
https://www.kth.se/social/course/DD2476/

Last lecture: IR beyond one shot

Precision-Recall Curve

Relevance Feedback

Really designed to come after this lecture, but has been moved
before this lecture for scheduling reasons
Remember these two concepts and do the suggested reading for
this lecture (5) before the suggested reading for last lecture (4)

Assignment 1

Thus far, Boolean queries:

 BRUTUS AND CAESAR AND NOT CALPURNIA

Good for:
•  Expert users with precise understanding of their

needs and the collection
•  Computer applications

Not good for:
•  The majority of users

3

Ch. 6

Problem with Boolean Search:
Feast or Famine

Experienced maybe in Task 1.5?

Boolean queries often result in either too few (=0) or
too many (1000s) results.
•  Query 1: “standard user dlink 650”: 200,000 hits
•  Query 2: “standard user dlink 650 no card found”:

0 hits

It takes a lot of skill to come up with a query that
produces a manageable number of hits.
•  AND gives too few; OR gives too many

4

Ch. 6

Ranked
Retrieval

5

Feast or Famine: Not a Problem in
Ranked Retrieval

Large result sets no issue
•  Show top K (≈ 10) results
•  Option to see more results

Premise: the ranking algorithm works well enough

6

Ch. 6

Today

Tf-idf and the vector space model (Manning Chapter 6)
•  Term frequency, collection statistics
•  Vector space scoring and ranking

Efficient scoring and ranking (Manning Chapter 7)
•  Speeding up vector space scoring and ranking

7

Tf-idf and the Vector
Space Model
(Manning Chapter 6)

Scoring as the Basis of Ranked
Retrieval

Wish to return in order the documents most likely to
be useful to the searcher

Rank-order documents with respect to a query

Assign a score – say in [0, 1] – to each document
•  Measures how well document and query “match”

9

Ch. 6

Query-Document Matching Scores

One-term query:

 BRUTUS

Term not in document: score 0
More appearances of term in document: higher score

10

Ch. 6

Recall (Lecture 1): Binary
Term-Document Incidence Matrix

Document represented by binary vector ∈ {0,1}|V|

11

Sec. 6.2

Antony

and
Cleopatra

Julius
Caesar

The
Tempest Hamlet Othello Macbeth

ANTONY 1 1 0 0 0 0

BRUTUS 1 1 0 1 0 0

CAESAR 1 1 0 1 1 1

CALPURNIA 0 1 0 0 0 0

CLEOPATRA 1 0 0 0 0 0

MERCY 1 0 1 1 1 1

WORSER 1 0 1 1 1 0

Term-Document Count Matrix

Document represented by count vector ∈ ℕv

12

Sec. 6.2

Antony

and
Cleopatra

Julius
Caesar

The
Tempest Hamlet Othello Macbeth

ANTONY 157 73 0 0 0 0

BRUTUS 4 157 0 1 0 0

CAESAR 232 227 0 2 1 1

CALPURNIA 0 10 0 0 0 0

CLEOPATRA 57 0 0 0 0 0

MERCY 2 0 3 5 5 1

WORSER 2 0 1 1 1 0

Bag of Words Model

Ordering of words in document not considered:
•  “John is quicker than Mary” ≅ “Mary is quicker than

John”

This is called the bag of words model

In a sense, step back: The positional index (Task 1.3)
was able to distinguish these two documents

Assignment 2 Ranked Retrieval: Back to Bag-of-
Words

13

Term Frequency tf

Term frequency tft,d of term t in document d ≅
number of times that t occurs in d

14

frequency = count in IR
 Antony and

Cleopatra

ANTONY 157

Log-Frequency Weighting

Raw term frequency is a bit overestimated:
•  A document with 10 occurrences of the term is

more relevant than a document with 1 occurrence
of the term

•  But arguably not 10 times more relevant

Alternative is log-frequency weight of term t in
document d

15

Sec. 6.2

⎩
⎨
⎧ >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

Simple Query-Document Score

Queries with >1 terms

Score for a document-query pair: sum over terms t in
both q and d:

 score

The score is 0 if none of the query terms is present in
the document

What is the problem with this measure?

16

Sec. 6.2

=
X

t2q\d

tft,d

Document Frequency

Rare terms are more informative than frequent terms

Example: rare word ARACHNOCENTRIC
•  Document containing this term is very likely to be

relevant to query ARACHNOCENTRIC
 → High weight for rare terms like ARACHNOCENTRIC

Example: common word THE
•  Document containing this term can be about anything

 → Very low weight for common terms like THE

We will use document frequency (df) to capture this.

17

Sec. 6.2.1

idf Weight

dft is the document frequency of term t: the number of
documents that contain t
•  dft is an inverse measure of the informativeness of t
•  dft ≤ N

Informativeness idf (inverse document frequency) of t:

•  log (N/dft) instead of N/dft to “dampen” the effect

–  Mathematical reasons in lecture 7!

18

)/df(log idf 10 tt N=

Sec. 6.2.1

Exercise 2 Minutes

Suppose N = 1,000,000

Fill in the idft column

19

term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

)/df(log idf 10 tt N=

Effect of idf on Ranking

Does idf have an effect on ranking for one-term
queries, like IPHONE?

Only effect for >1 term
•  Query CAPRICIOUS PERSON: idf puts more weight

on CAPRICIOUS than PERSON.

20

Collection vs. Document Frequency

Collection frequency of t: total number of occurrences
of t in the collection, counting multiple occurrences

Example:

Which word is a better search term (and should get a
higher weight)?

21

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1

tf-idf Weighting

tf-idf weight of a term: product of tf weight and idf
weight

Best known weighting scheme in information retrieval
•  Note: the “-” in tf-idf is a hyphen, not a minus

sign!
•  Alternative names: tf.idf, tf x idf

Increases with the number of occurrences within a
document
Increases with the rarity of the term in the collection

22

Sec. 6.2.2

wt,d = tft,d ⇥ log10(N/dft)

Binary → Count → Weight Matrix

Document represented by tf-idf weight vector ∈ Rv

23

Sec. 6.3

Antony

and
Cleopatra

Julius
Caesar

The
Tempest Hamlet Othello Macbeth

ANTONY 5.255 3.18 0 0 0 0.35

BRUTUS 1.21 6.1 0 1 0 0

CAESAR 8.59 2.54 0 1.51 0.25 1

CALPURNIA 0 1.54 0 0 0 0

CLEOPATRA 2.85 0 0 0 0 0

MERCY 1.51 0 1.9 0.12 5.25 0.88

WORSER 1.37 0 0.11 4.15 0.25 1.95

Documents as Vectors

So we have a |V|-dimensional vector space
•  Terms are axes/dimensions
•  Documents are points in this space

Very high-dimensional
•  Order of 107 dimensions when for a web search

engine

Very sparse vectors - most entries zero

24

Sec. 6.3

Queries as Vectors

Key idea 1: Represent queries as vectors in same
space

Key idea 2: Rank documents according to proximity
to query in this space
•  proximity = similarity of vectors
•  proximity ≈ inverse of distance

Recall:
•  Get away from Boolean model
•  Rank more relevant documents higher than less

relevant documents

25

Sec. 6.3

Formalizing Vector Space Proximity

First cut:
Euclidean distance?

Euclidean distance
is a bad idea . . .
. . . because
Euclidean distance
is large for vectors
of different lengths
•  What determines

length here?

26

Sec. 6.3

€

q − dn 2

Exercise 5 Minutes

Euclidean distance bad for
•  vectors of different length

(documents with different
#words)

•  high-dimensional vectors
(large dictionaries)

Discuss in pairs:
•  Can you come up with a better difference

measure?

27

Use Angle Instead of Distance

Thought experiment: take a document d and append
it to itself. Call this document d′
“Semantically” d and d′ have the same content
The Euclidean distance between the two documents
can be quite large
The angle between the two documents is 0,
corresponding to maximal similarity

Key idea:
•  Length unimportant
•  Rank documents according to angle from query

28

Sec. 6.3

Problems with Angle

Angles expensive to compute – arctan

Find a computationally cheaper, equivalent measure
•  Give same ranking order ≅ monotonically

increasing/decreasing with angle

Any ideas?

29

Sec. 6.3

Cosine More Efficient Than Angle

30

Sec. 6.3

Monotonically decreasing

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

angle

c
o
s
(a
n
g
le
)

Length Normalization

Computing cosine similarity involves length-
normalizing document and query vectors

L2 norm:

Dividing a vector by its L2 norm makes it a unit
(length) vector (on surface of unit hypersphere)

Recall:
•  Length unimportant
•  Rank documents according to angle from query

31

∑=
i i
xx 2

2

!

Sec. 6.3

Cosine Similarity

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

 is the cosine similarity of q and d
 = the cosine of the angle between q and d.

32

€

cos(q ,

d)

€

cos(q ,

d) =

 q
 q 2

•

d

d

2

=
 q •

d

 q 2

d

2

=
qidii=1

V
∑

qi
2

i=1

V
∑ di

2

i=1

V
∑

dot / scalar / inner product

Cosine Similarity

In reality:
•  Length-normalize when

document added to
index:

•  Length-normalize query:

•  Fast to compute cosine
similarity:

33

€

cos(q ,

d) =
 q •

d = qidii=1

V
∑

€

d ←

d

d

2

€

 q ←
 q
 q 2

Cosine Similarity Example

How similar are the novels
•  SaS: Sense and Sensibility
•  PaP: Pride and Prejudice
•  WH: Wuthering Heights?

Term frequency tft

34

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

No idf weighting!

Cosine Similarity Example

Log frequency weights

35

⎩
⎨
⎧ >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

Cosine Similarity Example

After length normalization ,

cos(SaS,PaP) ≈ 0.789*0.832 + 0.515*0.555 + 0.335*0 + 0*0 ≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why is cos(SaS,PaP) > cos(*,WH)?

 36

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

€

d ←

d

d

2

€

d = w1,d ,…,w4,d[]

Computing Cosine Scores

37

Sec. 6.3

Summary – vector space ranking

Represent the query as a tf-idf vector

Represent each document as a tf-idf vector

Compute the cosine similarity score for the query
vector and each document vector

Rank documents with respect to the query by score

Return the top K (e.g., K = 10) to the user

38

Efficient Scoring and
Ranking
(Manning Chapter 7)

Efficient Cosine Ranking

Find the K docs in the collection “nearest” to the
query ⇒ K largest query-document cosine scores

Up to now: Linear scan through collection
•  Did not make use of sparsity in term space
•  Computed all cosine scores

Efficient cosine ranking:
•  Computing each cosine score efficiently
•  Choosing the K largest scores efficiently

40

Computing Cosine Scores Efficiently

Approximation:
•  Assume that terms only occur once in query

Works for short querys (|q| << N)
Works since ranking only relative

41

€

wt,q ←
1, if w t,q > 0
0, otherwise

$
%

Computing Cosine Scores Efficiently

42

Sec. 7.1

Speedup
here

Computing Cosine Scores Efficiently

Downside of approximation: sometimes get it wrong
•  A document not in the top K may creep into the list

of K output documents

How bad is this?

Cosine similarity is only a proxy (Task 1.5)
•  User has a task and a query formulation
•  Cosine matches documents to query
•  Thus cosine is anyway a proxy for user happiness
•  If we get a list of K documents “close” to the top K

by cosine measure, should be ok

43

Sec. 7.1.1

Choosing K Largest Scores Efficiently

Retrieve top K documents wrt query
•  Not totally order all documents in collection

Do selection:
•  avoid visiting all documents

Already do selection:
•  Sparse term-document incidence matrix, |d| << N
•  Many cosine scores = 0
•  Only visits documents with nonzero cosine scores

(≥1 term in common with query)

44

Sec. 7.1

Choosing K Largest Scores Efficiently
Generic Approach

Find a set A of contenders, with K < |A| << N
•  A does not necessarily contain the top K, but has

many docs from among the top K
•  Return the top K documents in A

Think of A as pruning non-contenders

Same approach used for any scoring function!

Will look at several schemes following this approach

45

Sec. 7.1.1

Choosing K Largest Scores Efficiently
Index Elimination

Basic algorithm FastCosineScore only considers
documents containing at least one query term
•  All documents have ≥1 term in common with

query

Take this further:
•  Only consider high-idf query terms
•  Only consider documents containing many query

terms

46

Sec. 7.1.2

Choosing K Largest Scores Efficiently
Index Elimination, only high-idf

Example:
 CATCHER IN THE RYE

Only accumulate scores from CATCHER and RYE
Intuition:
•  IN and THE contribute little to the scores – do not

alter rank-ordering much
•  Compare to stop words
Benefit:
•  Posting lists of low-idf terms have many

documents → eliminated from set A of contenders

47

Sec. 7.1.2

Choosing K Largest Scores Efficiently
Index Elimination, several query terms

Example:
 CAESAR ANTONY CALPURNIA BRUTUS

Only compute scores for documents containing ≥3
query terms

48

Sec. 7.1.2

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

Choosing K Largest Scores Efficiently
Champion Lists

Precompute for each dictionary term t, the r documents
of highest tf-idftd weight
•  Call this the champion list (fancy list, top docs) for t

Benefit:
•  At query time, only compute scores for documents in

the champion lists – fast

Issue:
•  r chosen at index build time
•  Too large: slow
•  Too small: r < K

49

Sec. 7.1.3

Exercise 5 Minutes

Index Elimination: consider only high-idf query terms
and only documents with many query terms
Champion Lists: for each term t, consider only the r
documents with highest tf-idftd values

Think quietly and write down:
•  How do Champion Lists relate to Index

Elimination? Can they be used together?
•  How can Champion Lists be implemented in an

inverted index?

50

Sec. 7.1.3

Choosing K Largest Scores Efficiently
Static Quality Scores

Develop idea of champion lists

We want top-ranking documents to be both relevant and
authoritative
•  Relevance – cosine scores
•  Authority – query-independent property

Examples of authority signals
•  Wikipedia pages (qualitative)
•  Articles in certain newspapers (qualitative)
•  A scientific paper with many citations (quantitative)
•  PageRank (quantitative)

51

Sec. 7.1.4

More in
Lecture 6

Choosing K Largest Scores Efficiently
Static Quality Scores

Assign query-independent quality score g(d) in [0,1]
to each document d

net-score(q,d) = g(d) + cos(q,d)
•  Two “signals” of user happiness
•  Other combination than equal weighting

Seek top K documents by net score

52

Sec. 7.1.4

Choosing K Largest Scores Efficiently
Champion Lists + Static Quality Scores

Can combine champion lists with g(d)-ordering

Maintain for each term t a champion list of the r
documents with highest g(d) + tf-idftd

Seek top K results from only the documents in these
champion lists

53

Sec. 7.1.4

Next

Assignment 1 left?
•  You can present it at the session for Assignment 2
•  Reserve two slots, one for each assignment!

Lecture 6 (February 23, 13.15-15.00)
•  B3
•  Readings: Manning Chapter 21

Avrachenkov Sections 1-2

Lecture 7 (February 24, 10.15-12.00)
•  B3
•  Readings: Manning Chapters 11, 12

54

