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Last lecture: IR beyond one shot   

Precision-Recall Curve 
 
Relevance Feedback 
 
 
 
 
 
Really designed to come after this lecture, but has been moved 
before this lecture for scheduling reasons  
Remember these two concepts and do the suggested reading for 
this lecture (5) before the suggested reading for last lecture (4) 
 
 



Assignment 1 

Thus far, Boolean queries: 

  BRUTUS AND CAESAR AND NOT CALPURNIA  
 
Good for:  
•  Expert users with precise understanding of their 

needs and the collection   
•  Computer applications 

Not good for:  
•  The majority of users 
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Problem with Boolean Search: 
Feast or Famine 

Experienced maybe in Task 1.5? 

Boolean queries often result in either too few (=0) or 
too many (1000s) results. 
•  Query 1: “standard user dlink 650”: 200,000 hits 
•  Query 2: “standard user dlink 650 no card found”: 

0 hits 

It takes a lot of skill to come up with a query that 
produces a manageable number of hits. 
•  AND gives too few; OR gives too many 
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Ranked 
Retrieval 
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Feast or Famine: Not a Problem in 
Ranked Retrieval 

Large result sets no issue 
•  Show top K ( ≈ 10) results 
•  Option to see more results 

Premise: the ranking algorithm works well enough 

6 

Ch. 6



Today 

Tf-idf and the vector space model (Manning Chapter 6) 
•  Term frequency, collection statistics 
•  Vector space scoring and ranking 

Efficient scoring and ranking (Manning Chapter 7) 
•  Speeding up vector space scoring and ranking 
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Tf-idf and the Vector 
Space Model 
(Manning Chapter 6) 



Scoring as the Basis of Ranked 
Retrieval 

Wish to return in order the documents most likely to 
be useful to the searcher 

Rank-order documents with respect to a query 

Assign a score – say in [0, 1] – to each document 
•  Measures how well document and query “match” 
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Query-Document Matching Scores 

One-term query: 
  

  BRUTUS 

Term not in document: score 0 
More appearances of term in document: higher score 
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Recall (Lecture 1): Binary           
Term-Document Incidence Matrix 

 
 
 
 
 
 
 
 
 
Document represented by binary vector ∈ {0,1}|V| 
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Antony 

and 
Cleopatra 

Julius 
Caesar 

The 
Tempest Hamlet Othello Macbeth 

ANTONY 1 1 0 0 0 0 

BRUTUS 1 1 0 1 0 0 

CAESAR 1 1 0 1 1 1 

CALPURNIA 0 1 0 0 0 0 

CLEOPATRA 1 0 0 0 0 0 

MERCY 1 0 1 1 1 1 

WORSER 1 0 1 1 1 0 



Term-Document Count Matrix 

 
 
 
 
 
 
 
 
 
Document represented by count vector ∈ ℕv 
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Antony 

and 
Cleopatra 

Julius 
Caesar 

The 
Tempest Hamlet Othello Macbeth 

ANTONY 157 73 0 0 0 0 

BRUTUS 4 157 0 1 0 0 

CAESAR 232 227 0 2 1 1 

CALPURNIA 0 10 0 0 0 0 

CLEOPATRA 57 0 0 0 0 0 

MERCY 2 0 3 5 5 1 

WORSER 2 0 1 1 1 0 



Bag of Words Model 

Ordering of words in document not considered: 
•  “John is quicker than Mary” ≅ “Mary is quicker than 

John”  

This is called the bag of words model 
 
In a sense, step back: The positional index (Task 1.3) 
was able to distinguish these two documents 
 
Assignment 2 Ranked Retrieval: Back to Bag-of-
Words  
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Term Frequency tf 

 
 
 
Term frequency tft,d of term t in document d ≅    
number of times that t occurs in d 
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frequency = count in IR 
  Antony and 

Cleopatra 

ANTONY 157 



Log-Frequency Weighting 

Raw term frequency is a bit overestimated: 
•  A document with 10 occurrences of the term is 

more relevant than a document with 1 occurrence 
of the term 

•  But arguably not 10 times more relevant 
 
Alternative is log-frequency weight of term t in 
document d  
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Simple Query-Document Score 

Queries with >1 terms  

Score for a document-query pair: sum over terms t in 
both q and d: 

 score 
 
The score is 0 if none of the query terms is present in 
the document 
 
What is the problem with this measure? 
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Document Frequency 

Rare terms are more informative than frequent terms 
 
Example: rare word ARACHNOCENTRIC 
•  Document containing this term is very likely to be 

relevant to query ARACHNOCENTRIC 
 → High weight for rare terms like ARACHNOCENTRIC 
  

Example: common word THE 
•  Document containing this term can be about anything 

 → Very low weight for common terms like THE 
  

We will use document frequency (df) to capture this. 
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idf Weight 

dft is the document frequency of term t: the number of 
documents that contain t 
•  dft is an inverse measure of the informativeness of t 
•  dft  ≤ N 

Informativeness idf (inverse document frequency) of t: 
 
 
•  log (N/dft) instead of N/dft to “dampen” the effect  

–  Mathematical reasons in lecture 7! 
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Exercise 2 Minutes 

Suppose N = 1,000,000 
 
 
 
 
 
 
 
 
 
 
Fill in the idft column  
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term dft idft 

calpurnia 1 

animal 100 

sunday 1,000 

fly 10,000 

under 100,000 

the 1,000,000 

)/df( log  idf 10 tt N=



Effect of idf on Ranking 

Does idf have an effect on ranking for one-term 
queries, like IPHONE? 

Only effect for >1 term 
•  Query CAPRICIOUS PERSON: idf puts more weight 

on CAPRICIOUS than PERSON. 
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Collection vs. Document Frequency 

Collection frequency of t: total number of occurrences 
of t in the collection, counting multiple occurrences 

Example: 
 
 

  
Which word is a better search term (and should get a 
higher weight)? 
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Word Collection frequency Document frequency 

insurance 10440 3997 

try 10422 8760 
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tf-idf Weighting 

tf-idf weight of a term: product of tf weight and idf 
weight 
 
 
Best known weighting scheme in information retrieval 
•  Note: the “-” in tf-idf is a hyphen, not a minus 

sign! 
•  Alternative names: tf.idf, tf x idf 

Increases with the number of occurrences within a 
document 
Increases with the rarity of the term in the collection 
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Binary → Count → Weight Matrix 

 
 
 
 
 
 
 
 
 
Document represented by tf-idf weight vector ∈ Rv 
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Antony 

and 
Cleopatra 

Julius 
Caesar 

The 
Tempest Hamlet Othello Macbeth 

ANTONY 5.255 3.18 0 0 0 0.35 

BRUTUS 1.21 6.1 0 1 0 0 

CAESAR 8.59 2.54 0 1.51 0.25 1 

CALPURNIA 0 1.54 0 0 0 0 

CLEOPATRA 2.85 0 0 0 0 0 

MERCY 1.51 0 1.9 0.12 5.25 0.88 

WORSER 1.37 0 0.11 4.15 0.25 1.95 



Documents as Vectors 

So we have a |V|-dimensional vector space 
•  Terms are axes/dimensions 
•  Documents are points in this space 

Very high-dimensional  
•  Order of 107 dimensions when for a web search 

engine 

Very sparse vectors - most entries zero 
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Queries as Vectors 

Key idea 1: Represent queries as vectors in same 
space 

Key idea 2: Rank documents according to proximity 
to query in this space 
•  proximity = similarity of vectors 
•  proximity ≈ inverse of distance 

Recall:  
•  Get away from Boolean model 
•  Rank more relevant documents higher than less 

relevant documents 

25 

Sec. 6.3



Formalizing Vector Space Proximity 

First cut:   
Euclidean distance? 
 
 
Euclidean distance 
is a bad idea . . . 
. . . because 
Euclidean distance 
is large for vectors 
of different lengths 
•  What determines 

length here? 
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Exercise 5 Minutes 

Euclidean distance bad for 
•  vectors of different length                                

(documents with different                                   
#words) 

•  high-dimensional vectors                                       
(large dictionaries) 

 
 
Discuss in pairs:  
•  Can you come up with a better difference 

measure? 
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Use Angle Instead of Distance 

Thought experiment: take a document d and append 
it to itself. Call this document d′ 
“Semantically” d and d′ have the same content 
The Euclidean distance between the two documents 
can be quite large 
The angle between the two documents is 0, 
corresponding to maximal similarity 
 
Key idea: 
•  Length unimportant  
•  Rank documents according to angle from query 
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Problems with Angle 

Angles expensive to compute – arctan 

Find a computationally cheaper, equivalent measure 
•  Give same ranking order ≅ monotonically 

increasing/decreasing with angle 

Any ideas? 

29 

Sec. 6.3



Cosine More Efficient Than Angle 
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Length Normalization 

Computing cosine similarity involves length-
normalizing document and query vectors 
 
L2 norm: 
 

Dividing a vector by its L2 norm makes it a unit 
(length) vector (on surface of unit hypersphere) 
 
Recall: 
•  Length unimportant  
•  Rank documents according to angle from query 
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Cosine Similarity 

 
 
 
 
 
qi is the tf-idf weight of term i in the query 
di is the tf-idf weight of term i in the document 

             is the cosine similarity of q and d 
               = the cosine of the angle between q and d. 
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Cosine Similarity 

In reality: 
•  Length-normalize when 

document added to 
index: 

 
•  Length-normalize query:  

•  Fast to compute cosine 
similarity: 
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Cosine Similarity Example 

How similar are the novels 
•  SaS: Sense and Sensibility 
•  PaP: Pride and Prejudice 
•  WH: Wuthering Heights? 

Term frequency tft 
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term SaS PaP WH 

affection 115 58  20 

jealous 10 7 11 

gossip 2 0 6 

wuthering 0 0 38 

No idf weighting! 



Cosine Similarity Example 

Log frequency weights 
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term SaS PaP WH 
affection 3.06 2.76 2.30 
jealous 2.00 1.85 2.04 
gossip 1.30 0 1.78 
wuthering 0 0 2.58 



Cosine Similarity Example 

After length normalization                           , 
 
 
 
 
 
 
 
 
cos(SaS,PaP) ≈ 0.789*0.832 + 0.515*0.555 + 0.335*0 + 0*0 ≈ 0.94 
cos(SaS,WH) ≈ 0.79 
cos(PaP,WH) ≈ 0.69 
 
Why is cos(SaS,PaP) > cos(*,WH)? 
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term SaS PaP WH 
affection 0.789 0.832 0.524 
jealous 0.515 0.555 0.465 
gossip 0.335 0 0.405 
wuthering 0 0 0.588 
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Computing Cosine Scores 

37 

Sec. 6.3



Summary – vector space ranking 

Represent the query as a tf-idf vector 

Represent each document as a tf-idf vector 

Compute the cosine similarity score for the query 
vector and each document vector 

Rank documents with respect to the query by score 

Return the top K (e.g., K = 10) to the user 
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Efficient Scoring and 
Ranking 
(Manning Chapter 7) 



Efficient Cosine Ranking 

Find the K docs in the collection “nearest” to the 
query ⇒ K largest query-document cosine scores 

Up to now: Linear scan through collection 
•  Did not make use of sparsity in term space 
•  Computed all cosine scores  

Efficient cosine ranking: 
•  Computing each cosine score efficiently 
•  Choosing the K largest scores efficiently 
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Computing Cosine Scores Efficiently 

Approximation:  
•  Assume that terms only occur once in query  

Works for short querys (|q| << N) 
Works since ranking only relative 
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Computing Cosine Scores Efficiently 
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Computing Cosine Scores Efficiently 

Downside of approximation: sometimes get it wrong 
•  A document not in the top K may creep into the list 

of K output documents 

How bad is this? 

Cosine similarity is only a proxy (Task 1.5) 
•  User has a task and a query formulation 
•  Cosine matches documents to query 
•  Thus cosine is anyway a proxy for user happiness 
•  If we get a list of K documents “close” to the top K 

by cosine measure, should be ok 
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Choosing K Largest Scores Efficiently 

Retrieve top K documents wrt query  
•  Not totally order all documents in collection 

Do selection:  
•  avoid visiting all documents 

Already do selection: 
•  Sparse term-document incidence matrix, |d| << N 
•  Many cosine scores = 0 
•  Only visits documents with nonzero cosine scores 

(≥1 term in common with query) 
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Choosing K Largest Scores Efficiently 
Generic Approach 

Find a set A of contenders, with K < |A| << N 
•  A does not necessarily contain the top K, but has 

many docs from among the top K 
•  Return the top K documents in A 

Think of A as pruning non-contenders 

Same approach used for any scoring function! 

Will look at several schemes following this approach 
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Choosing K Largest Scores Efficiently 
Index Elimination 

Basic algorithm FastCosineScore only considers 
documents containing at least one query term 
•  All documents have ≥1 term in common with 

query 

Take this further: 
•  Only consider high-idf query terms 
•  Only consider documents containing many query 

terms 
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Choosing K Largest Scores Efficiently 
Index Elimination, only high-idf  

Example:  
                      CATCHER IN THE RYE 

Only accumulate scores from CATCHER and RYE 
Intuition:  
•  IN and THE contribute little to the scores – do not 

alter rank-ordering much 
•  Compare to stop words 
Benefit: 
•  Posting lists of low-idf terms have many 

documents → eliminated from set A of contenders 
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Choosing K Largest Scores Efficiently 
Index Elimination, several query terms 

Example:  
                CAESAR ANTONY CALPURNIA BRUTUS 

Only compute scores for documents containing ≥3 
query terms 
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Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128
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Choosing K Largest Scores Efficiently 
Champion Lists 

Precompute for each dictionary term t, the r documents 
of highest tf-idftd weight 
•  Call this the champion list (fancy list, top docs) for t 

Benefit: 
•  At query time, only compute scores for documents in 

the champion lists – fast 
 
Issue:  
•  r chosen at index build time 
•  Too large: slow 
•  Too small: r < K 
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Exercise 5 Minutes 

Index Elimination: consider only high-idf query terms 
and only documents with many query terms 
Champion Lists: for each term t, consider only the r 
documents with highest tf-idftd values     
 
 
Think quietly and write down:  
•  How do Champion Lists relate to Index 

Elimination? Can they be used together? 
•  How can Champion Lists be implemented in an 

inverted index? 
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Choosing K Largest Scores Efficiently 
Static Quality Scores 

Develop idea of champion lists 

We want top-ranking documents to be both relevant and 
authoritative 
•  Relevance – cosine scores 
•  Authority – query-independent property 

Examples of authority signals 
•  Wikipedia pages (qualitative) 
•  Articles in certain newspapers (qualitative) 
•  A scientific paper with many citations (quantitative) 
•  PageRank (quantitative) 
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Choosing K Largest Scores Efficiently 
Static Quality Scores 

Assign query-independent quality score g(d) in [0,1] 
to each document d 

net-score(q,d) = g(d) + cos(q,d) 
•  Two “signals” of user happiness  
•  Other combination than equal weighting 

Seek top K documents by net score 
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Choosing K Largest Scores Efficiently 
Champion Lists + Static Quality Scores 

Can combine champion lists with g(d)-ordering 

Maintain for each term t a champion list of the r 
documents with highest g(d) + tf-idftd 

 
Seek top K results from only the documents in these 
champion lists 
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Next 

Assignment 1 left?  
•  You can present it at the session for Assignment 2 
•  Reserve two slots, one for each assignment! 

Lecture 6 (February 23, 13.15-15.00)  
•  B3 
•  Readings: Manning Chapter 21 

Avrachenkov Sections 1-2 

Lecture 7 (February 24, 10.15-12.00)  
•  B3 
•  Readings: Manning Chapters 11, 12 
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