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Energy continuity in a media

Energy continuity concerns the conservation of energy.

» In dispersive media the energy of the wave includes both electric,
magnetic as well as particle (kinetic/mechanical) energy.

« Similarly the energy flux includes both an electro-magnetic
pointing flux ExXB and a kinetic enerqy flux, Fxinetic-

Dissipative media
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Energy continuity in a media

Pure electro-magnetic energy (see Lecture 1):
0
E(WE +W")+V-(ExB) = —E-]J

- where WE and WM are the electric and magnetic energy densities,
ExB is the Poynting flux, and J - E is the work by E in the current.

In a media, particles are pushed by the E-field, giving them a kinetic
wave energy, including two parts:

 thermal energy (unordered motion), Wth
- wave energy (ordered motion), W?

P -FF = (E - -
aW +V-F" = (E-Dreactive Kinetic wave energy

9,
T W + V- F" = (E - Daissipative  Thermal enerqy (heat)

Where F? is the flux of kinetic wave energy.
(E - Ddissipative — Eio-g * E] (E - Dreactive — Eio-il;l' * E]
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Energy continuity in a media

The total wave energy; the sum of electromagnetic and particle energy:
0
E(WE + WM+ KVP) +V-(EXB+ IT:P) — _(If E)dissipative

or Terms specific to dispersive media

a wave wave wave (1)

Here y is the dissipative damping rate.

Below we'll study:

« How to calculate WE

e The ratio WM /WE and W% /W are relate to the dielectric tensor
* How the energy flux, F¥4¢ is related to the group velocity

* How to describe temporal and spatial damping using (1).
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Outline

* Representations of a wave mode with given w,(K) and e, (K)
« Evaluation of averaged energy density and dissipative work

- Infinite integral has to be handled like an integral of a
generalised function

- New concept: Phase-space energy density
> Expressions for: W&, WM W¥ and (J - E) gissipative

« Expand the dispersion equation det(A) = 0
- Temporal and spatial damping
- Continuity equation for wave energy
- Energy flux is related to the group velocity!
> Expressions for F¥ and ExB
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Representations of a wave mode

A good representation will be needed to simplify the upcoming algebra
A wave mode is defined by

« dispersion relation: w = wy(K), no other frequencies possible!
« eigenvector: ey (K)
« Simplified representation of the vector potential:
A(w, k) = ay(K)ey(K)2né (w — wpy(K))
« Scalar representation of waves: a,, (k)
« Temporal gauge:
E(w,K) = —iwA(w,K)
B(w,k) = ikxA(w, K)
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Representations of a wave mode

« The vector potential also has to satisfy the reality condition
« l.e.since A(t,x) is real then A(w,k) = A*(—w, —K).
= ayKeyK)2ns(w — wy(K)) = aj; (-K) e, (K218 (—w — wy (—K))

Note: This condition should be valid for any amplitude a,, (k)
« Thus for every mode {w,, (K), ey (K)} there is a mode {—wy(—k), },(—K)}
 Tosee why considera scalar plane wave:

1
Acos(kx — wt) = E(A exp(—iwt + ikx) + A*exp(iwt — ikx))

 Plane wavesincludes two terms: {w, k} and {—w, —Kk}
 The dielectric response of the terms are related:

wy(K) = —wy(—K) & ey, (k) =e;, (—K)

New representation that always satisfy the reality condition:
A(w, k) = ayK) ey K)218(w — wy (K)) + ay(—K) e} (—k)2m8 (w + wy (—K))
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Phase-space energy density

 Wave energy is a quadratic quantity, e.g. the electric energy
density: WE(t,x) = go|E(t,x)|?/2

« The Fourier transform of this expression gives a convolution!
« Which makes further mathematical analysis difficult

* Instead we'll here consider called a phase-space density.
* a density in both x-space and k-space.

« Here is an “almost rigorous” derivation...

« Calculate the mean electric energy density in a volume V and

over a time interval [-T /2,T/2]:
T /2

<W>_—Wd3 jdt 0 E(t,X) 2

~T/2
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Phase-space energy density

« Take the limit when T — oo and when IV cover all of space.

T /2
. 5 ,
T_)})(l)ﬂr/l%o <W>= T—><1>}')rll}l—>ooTV U d°x J dt EolE(t X)]
—T/2

* These infinite integrals can only be evaluated as generalised function,
solve them using a truncated E-field (see lecture 2)

__|E(t,x),t€e[-T/2,T/2]andx €V
Ery(t,x) = { 0, othervise

. — 3
Tﬁgl}’}—)oo <W>= T—>(1>})rlr/1—>ooTV _ff dx J dt €0|ETV(t X)|

« Use the power theorem:

. ﬂj d3k del B k|
=i )l @ ) 2wz folBrv(@ k)
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Phase-space energy density

« Use the simplified wave-mode representation:
Ay(w,K) = ayK)ey, K)218(w — wy (K)) + aj(—K) e} (—K)2n8(w + wy (—K))

« But here we need a truncated version!

I ey (k) = ey (k)
ay (k) = ayy(K)
5(60 — Wy (k)) — 5T(w — wyy (k)) = r Sm[((‘) — Wy (k))T/Z]

2 (0 — wy (K))T /2

.« Note: A,,* has four terms; the cross-terms vanishes and the other two are the same

];l_r)rolo <W > V—>ooV_[jf (2 )3€0|aMV( )| j [27'[5'1"((0 G)M(k))]

= wy (K)?

1 2
lim <W > = V_)oo ﬂf 203 Wai v (K), where Wy; (k) = V£0|a)M(k)aM’V(k)|

V-0
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Wave-mode representation of energy

1 2
Wiy (w,k) = 77 €0 |wp(K)any (K)|
Is the electric phase-space enerqgy density; a density in both...

« Kk-space; the actual energy is related to an integral over k
« x-space; from the definition of “mean energy density” (and 1/V)

Wi v(w,K) is constructed from a Fourier transform of a truncated function.
* W v(w,K) is a generalised function!
- E.g. for plane waves, ay(x)~ exp(ikg ,2)

 when V is a cube with sides of length L

 the Fourier transform of the truncated function reads:

L si k_k Z L/2
aM,V(k)~5L(k o kO'Z) = 21 Sm([k( — kg 0)2/2/ ]
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Magnetic phase space density

Similarly we may derive a magnetic phase space enerqy density:
2.2

1
W () = — [kxey (K ay K)|? = 11— I - ey (1] WE ()

poV wy (K)?
where k = k/|K|. BN /

No magnetic energy for longitudinal waves

The kinetic phase-space enerqgy density, Wy, (K), is kinetic energy of particles
of the wave; when pushed around by the EM-field.

There is no simple formula describing Wy, (K).

The total phase-space energy density of a wave-mode is then
Wy (K) = Wy (K) + Wiy (k) + Wy (K)

To characterise the kinetic (particle) energy it is useful to define
Wai (k)
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Work by an electric field on a current

Use a similar procedure for the work performed by an electric field on a current:

| | d*k
];1_r)r010 <E-J>= 1}1_{1;0 f JB j WQM,V(R) Anti-hermitian part
R

polarisation tensor:
Ji = aijA;
2
|aM,V (k)l

% e,’\},i(k)a{‘}-(k)eM,j(k)

Qm,y (K) = i2wy (k)

Thus, Q,, is the work per phase-space {x,k} volume.
Alternatively, the dissipative power transfer from wave to the media.

Qu v is proportional to the electric energy density, WE (K); identify damping rate, y :

Qmv (k) = —yWy (k) = —yRy (k) Wﬁ (k)
Y = —i2wy (K)Ry, (k) {e;,“- (k) Kl.‘;! (k)eM,j (k)} Note: same asin Lec. 6
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Damping in time and space

Energy continuity equation

ow
W +V.-P= (E . ])disspation

 Here W is the total energy density, inc. electric magnetic and kinetic
energy, of the wave

« P is the energy flux, inc. Pointing flux and kinetic energy flux
« We will show that: P = Wv,, where v, is the group velocity

« Initial wave problem with damping; temporal damping, E?~e~2%1t

ow

E = —2a),W = (E ’ ])disspation

« Boundary value problem with damping: spatial damping, E?~e~2k%
V-P=—-2kP = _Zklvg,xW = (E - ])disspation

« Both spatial and temporal damping:

ow
= +V-P= —(2(1)1 + 2k1vg,x)W = (E- ])disspation
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Temporal and spatial damping

The theory for spatial and temporal damping can be derived from the
dispersion equation, using w - w + iw; and k - k + ik;:
det[AY; (w + iwp, kK +iKk)) + K (w + iwp, k + k)| = 0

Taylor expand for small w;, k;, and Ki‘}‘, like in Lec. 6:

0 0
l

where: A(w,K) = det|AY; (w,K)].
1. Neglect small terms; approximate dispersion equation: A(w, k) = 0
2. First order correction provides a relation between w;, k;, and Ki‘}‘:

d d
((l)l —+ kI,i %) A((l), k) = l/llj ((l), k)KLI;l ((l), k)
l

dw
= {from Lec 6: Aij = /lsse;,’ieM,j} =
0 d _ R
= ((1)1% + kI,i a—kl)A((l),k) = l/lss(a),k)l(ﬁ(w, k) Here Kﬁ = eM’iKiI;'leM,j
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Temporal and spatial damping

Repeat:
0A(w, K) oA(w,kK)
Wy T + kI . a—k = l/lss(a), k)K,(j}(a), k)
Divide by dA(w, k) /dw:
A0, k)
C()I - Vg * kI — laA(a)’ k)/awKM(a), k)

Here v, is the group velocity!

Note that:
B 0wy (K) B oA(w, k) /0k

T Tk T AW, /00|,

=wp(K)
Thus, the “damping per meter’ and the “damping per second” are related by the group
velocity — as if the wave energy was transported by the group velocity!

In homogeneous media, wave energy is transported with the group velocity
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Ratio between electric and total energy density

For pure temporal damping, k; = 0, we get the damping rate y = —2w;y:

. Ass (w, k) A

Yy = —2w; = —i2 aA(a),k)/aa)KM(w'k)

Cmp. previous expression: y = —i2wy(K)Ry (K)Kif (w,K)
Ass(w, K)
RM(k) —
wIA(w,K) /0w 0= op (K)

L wh®

Remember, Ry (K): = W G

Since W, = go|wyany|”/Vand W (k) = nZ,|1 — K - ey ()| WiE (), the
equation above allows us to calculate:

 Total energy: Wy, = Wi /Ry

« Particle (kinetic) energy: Wy, = W, — WE — W}

2
W = Wi | = 1= |1 = [k e, GO

Ry (K)
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To simplify Ry, (k) start from:

Simplified version of Ry,

oA dA; G
v {from Lec.6} = A;; —— Py = Ags 30 € iAije =
d . [c?k®
= /155%81: ej F(Kﬂcj — 6U) + Kl] =
. c%k? d
= Ass€i € —27(’%’9‘ =) + 70 K| =
= {use wave eq.: A;je; = 0 = Czkz(Kin — 5ij)/a)zej = —Kijej} =
0 14 10
= Assei e][ Kij & 5 Ku _ = Ass 575 @ i K16 = Ass a5 0 Ku
/155((1),1() w
R (k) = wIA(w,K) /0w " 02Ky (w K) /0w
’ w=wy (K) MA™ w=wy (K)

Note: No assumptions, we’re only used the wave equation!
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Simplified version of Ry,

Example: Consider transverse wave in an electron gas: Ky (w)* = 1 — w; /w”.

%wZKM(a)) =20 Ry =3

The magnetic energy: Wy = n3,WE = (1 — w?/w?)WE

Particle energy energy: Wy, = Wy, — Wy — Wy = wj /w* Wy

There is also a further simplification when for non-spatially
dispersive media (K;;(w) is independent of k).

Study the e;,; component of the wave equation:
en i (KA (w,K)ey (k) =0
n(lx - eyl? — 1) + ey, (KK (w,Key,; (k) =0
Ku(w,K) = n?(1 - [x- eyl*)
1
(1 - |x-eyl?)2ny(w)dwny(w)/dw

RM(k) —
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Energy continuity

An energy conservation equation can be derived from the 1st order term in
the expanded dispersion equation:

. Ass(w,K)
Wy — kl . Vg:

l OA(w,K) /0w Kii (@, K)

Multiply with —i2WWy,:
—lZa)IWM + leI . Vg WM = Z(UMRMKI\I;}WM

lZ(,UIWM — leI . FM: —)/WM
J

Thus, this is a continuity equation for wave energy!
The energy density fluxis: Fy = v,Wy,, thus energy is transported by v, !!
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Particle contribution to the flux

The energy density flux, Fy = v, W)y, includes both electromagnetic and
kinetic parts: Fy; = FEM + F,
We know that the electromagnetic part is:
REM (ExB) _ 2c?
Ho wpm(K)
Next we’ll derive an expression for the kinetic flux, Fi,. Start from...

Re{k — ey (e}, - K)IWE

oA (w, K) /0K WE

Bu = VgWn = - 9A(w, K) /3w Ry -
80(1) |Cle|
.= Alw, Kk
V Agg ok (@, 1) w=wy (K)

Following Melrose & McPhedran, Egs. 15.26-15.28:

T — P K;; Note: Only for spatially
arning! : . A
Error in Eq. (15.31) Fi; = —wy(K)ey ey j—i— 7k Wi dispersive media is there

a kinetic energy flux!
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Summary (1)

Continuity equation for wave energy:
d
E(WE + WM + WP) + V- (EXB/.“O + FP) = _(] ) E)dissipative

/

Terms specific to dispersive media

In dispersive media we need to work in Fourier space...but all terms are non-linear!!

To handle this we studied the volume and time average of each term.

» Infinite integrals that required careful evaluation using function truncated over a
volume, V' (notation: K, = ey ;K;jey ;)

o Start from :
A(w, k) = ay(Key (K)218 (w — wy (K) + aj (—K) e (—K)2m8 (0 + 0y (—K))

- 1 2 . 0K (0, k)
Wity () = 77 20|y (K)ay,y ()| Firy (10 = =W, () ej; ey joy — o1

WI\I/\I/{V (k) = nM(k)zll — |k - ey (K) ||2W1\]/:;(k) Y(K) = —i2wy, (k)RM(k)Kﬁ(wM(k)'k)

Wiiv(K) w
Wy v (K) - 0w? Ky (w,K) /0w

|

Ry (K) =

—

w=wyy (kK
m (K 99



Summary (2)

We have shown that for homogeneous media, the wave energy
travels with the group velocity

_dwy(k) A (w,KkK)/0K

Y9770k T T 9A(0,K)/dw

w=wp(K)

In Fourier space there is an analogue to the continuity equation

oWy (k) — i2K; - Fy (K) = —y(K)Wy (k)

\ ) | )
| |

~—Wy, ~V - Fy=
o =7 - (Wuvy)
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