

Lecture 9: Direct-Sequence Spread Spectrum Techniques and CDMA Advanced Digital Communications (EQ2410)¹

 $\begin{array}{c} {\sf Ming\ Xiao} \\ {\sf CommTh/EES/KTH} \end{array}$

Monday, Feb. 22, 2016 15:00-17:00, B23

1/1

Overview

Lecture 7+8

- Wireless channels
- Diversity
- OFDM
- Capacity for parallel channels

Lecture 9: DS-SS techniques and CDMA

Notes			
Notes			

¹Textbook: U. Madhow, Fundamentals of Digital Communications, 2008

Motivation

Spread spectrum

- Bandwidth is significantly larger than the information rate.
- Frequency diversity
- Multiple access, the same bandwidth is shared by several users.
- Interference reduction, robustness against jamming
- Stealth signals (look like noise)

Lecture 9 DSSS and CDMA Ming Xiao

Direct-Sequence Spread Spectrum (DS-SS)

	b[0] =	+1	b[1]	= -1		b[2] = +1	b[3] = +1	
Symbol sequence expressed at chip rate $\tilde{b}[k]$ \uparrow	† †	1 1	1.1	1.1	1 1	1 1 1 1 1	1 1 1 1	
•			, ,	, ,				$\psi(t)$
Spreading sequence $s[k] \uparrow$	1 1	1.1	† †	, 1	1 1	11,11	11.1	
	1	ł		¥		*	4	
								and the same of th
Baseband waveform		П	П					• • •
		LJL	J L				لبا	•

• Linear modulation using N > 1 complex dimensions per information symbol b[m] (instead of only using one dimension); N chips.

$$u(t) = \sum_{l} \tilde{b}[l]s[l]\psi(t - lT_c)$$

- ullet Chip-rate symbols: $ilde{b}[I]=b[m],$ if $mN\leq I\leq (m+1)N-1$
- Information symbols: b[m]
- Spreading vector/sequence: $\mathbf{s} = (s[0], \dots, s[N-1])^T$, $\{s[I]\}$
- ullet Chip waveform: $\psi(t)$ (modulation pulse)
- Processing gain: N

Notes			

Notes				
	·	·	·	

3/1

Direct-Sequence Spread Spectrum (DS-SS)

Alternative formulation

$$u(t) = \sum_{m} b[m]s(m; t - mT),$$

with the spreading waveform

$$s(m;t) = \sum_{l=0}^{N-1} s[mN + l]\psi(t - lT_c)$$

- Short spreading sequences
 - $\{s[I]\}$ is periodic with period N.
 - Identical spreading waveform s(m; t) = s(t) for all symbols
 - u(t) is cyclostationary with period T.
- Long spreading sequences
 - {s[/]} is aperiodic or has a very long period.

Lecture 9 DSSS and CDMA Ming Xiao CommTh/FFS/KTH

Code Division Multiple Access (CDMA)

- All users use the same channel at the same time but with different spreading codes.
- Downlink transmission (from the base station to the mobiles)
 - Base station superposes the DSSS signals for the users.
 - If orthogonal spreading codes are used, there is no interference between the signals to different users.
- Uplink transmissions (from the mobiles to the base station)
 - \bullet All users experience different channels \to orthogonal design is not possible.
 - Design goal: find spreading codes which have for different time shifts a small average inner product (i.e., good auto- and crosscorrelation properties).

Notes				
Notes				

Lecture 9
DSSS and CDMA
Ming Xiao
CommTh/FFS/KTH

Correlation Properties

- Motivation: matched-filter receiver correlates the received signal with the transmitted waveforms
 - Multi-user interference can be reduced with spreading waveforms with good crosscorrelation properties.
 - Intersymbol interference can be reduced with spreading waveforms with good autocorrelation properties.
- Consider the following two spreading waveforms

$$u(t) = \sum_{l=0}^{N-1} u[l]\psi(t - lT_c)$$
 and $v(t) = \sum_{l=0}^{N-1} v[l]\psi(t - lT_c)$

• Continuous-time and discrete-time crosscorrelation functions

$$R_{u,v}(\tau) = \int u(t)v^*(t-\tau)dt$$
 and $R_{u,v}[n] = \sum_{l} u[l]v^*[l-n]$

• Continuous-time and discrete-time autocorrelation functions

$$R_u(au) = \int u(t)u^*(t- au)dt$$
 and $R_u[n] = \sum_l u[l]u^*[l-n]$

Lecture 9
DSSS and CDMA
Ming Xiao
CommTh/EES/KTH

Correlation Properties

• Crosscorrelation function can be rewritten as

$$R_{u,v}(\tau) = \sum_{l} \sum_{k} u[l] v^*[k] r_{\psi}((k-l) T_c + \tau)$$
 with $r_{\psi}(\tau) = (\psi \star \psi_{MF})(\tau)$

and with $D=| au/T_c|$ and $\delta= au/T_c-D$ (i.e., $au=DT_c+\delta T_c$) as

$$R_{u,v}(\tau) = \sum_{l} \sum_{k} u[l] v^*[k] r_{\psi}((k+D-l)T_c + \delta T_c)$$

For rectangular chips we get

$$r_{\psi}((k+D-I)T_c+\delta T_c) = \left\{egin{array}{ll} 1-\delta, & k+D-I=0 \ \delta, & k+D-I=-1 \ 0, & ext{else} \end{array}
ight.$$

and

$$R_{u,v}(\tau) = (1 - \delta)R_{u,v}[D] + \delta R_{u,v}[D+1]$$

- \rightarrow Note that for $\tau = \kappa T_c$ we get $D = \kappa$, $\delta = 0$, and $R_{u,v}(\kappa T_c) = R_{u,v}[\kappa]$.
- → Continuous-time crosscorrelation function can be made small by making the discrete-time crosscorrelation function small.
- → Pseudo-random spreading sequences (aperiodic or period with long period)

Notes			
Notes			

7/1

Performance Conventional Receiver

- Conventional receiver: ignore effect of ISI and multi-user interference
- Received signal for K users

$$y(t) = \sum_{k=1}^K b_k A_k s_k(t) + n(t)$$

with the spreading waveforms $s_k(t) = \sum_{l=0}^{N-1} s_k[l] \psi(t - lT_c)$, the BPSK symbols b_k , and the channel gains A_k for the k-th user.

• Matched-filter statistic for user 1

$$Z_1 = \int y(t)s_1(t)dt = \sum_{k=1}^K A_k b_k \int s_k(t)s_1(t)dt + \int n(t)s_1(t)dt$$

ullet For normalized waveforms with $r_{\psi}(0)=1$ we have

$$Z_1 = \sum_{k=1}^K A_k b_k R_{s_k,s_1}[0] + N_1 = A_1 b_1 N + \sum_{k=2}^K A_k b_k R_{s_k,s_1}[0] + N_1$$

with $N_1 \sim N(0, \sigma^2 N)$.

Lecture 9
DSSS and CDMA
Ming Xiao
CommTh/FES/KTH

Performance Conventional Receiver

- Exact error probability: average $P_e(b_2, \ldots, b_K)$ over all realizations of the interfering symbols b_2, \ldots, b_K .
- Gaussian approximation
 - For large N, $R_{s_k,s_1}[0] = \sum_{l=0}^{N-1} s_k[l] s_1[l]$ can be modeled as zero-mean Gaussian RV with variance N.
 - Interference plus noise term is zero-mean Gaussian with variance $v^2 = \sum_{k=0}^K A_k^2 N + \sigma^2 N.$
 - \bullet Error probability estimate for hard decision on \emph{Z}_1

$$P_{\rm e} pprox Q \left(\sqrt{rac{1}{(2E_b/N_0)^{-1} + rac{1}{N}\sum\limits_{k=2}^{K} A_k^2/A_1^2}}
ight)$$

with $E_b = A_1^2 N$ and $\sigma^2 = N_0/2$.

- → System performance is interference limited!
- Power control required:
 - Near/far problem: interference dominates the decision if $|A_kR_{s_k,s_1}[0]|\gg |A_1N|$
 - Perfect power control: all amplitudes are equal.

Netes			
Notes			

9/1

Rake Receiver

• Channel model: multi-path channel (L paths with gains α_i and delays τ_i)

$$h(t) = \sum_{i=1}^{L} \alpha_i \delta_i (t - \tau_i)$$

• Effective spreading waveform seen by symbol m

$$\tilde{s}(m;t) = s(m;t) \star h(t) = \sum_{i=1}^{L} \alpha_i s(m;t-\tau_i)$$

Received signal

$$y(t) = (u \star h)(t) + n(t) = \sum_{m} b[m]\tilde{s}(m; t - mT) + n(t)$$

 For DS spreading waveforms with good autocorrelation and crosscorrelation properties ISI and interference from other users can be ignored; reduced model:

$$y(t) = b[m]\tilde{s}(m; t - mT) + n(t)$$

11/1

Notes

Lecture 9
DSSS and CDMA
Ming Xiao

Rake Receiver

• Optimal decision statistics (correlating with $\tilde{s}(m; t - mT)$)

$$Z[m] = \int y(t)\tilde{s}^{*}(m; t - mT)dt = \sum_{i=1}^{L} \alpha_{i}^{*} \underbrace{\int y(t)s^{*}(m; t - mT - \tau_{i})dt}_{(y \star s_{MF,m})(mT + \tau_{i}), s_{MF,m}(t) = s^{*}(m; -t)}$$

 \rightarrow Rake receiver sums up ("rakes up") the energy from the multi-path components (given that good spreading codes are used).

• Example for L=2

$$b[m]s(m;t-mT) \\ h(t) = \sum_{i=1}^{L} \alpha_i \delta(t-\tau_i) \\ \\ h(t) = \sum_{i=$$

L=2 copies of the symbol b[m] are received; rake performs maximum ratio combining.

• Timing of the of the sampler is important!

Votes			
VOLCS			

Rake Receiver

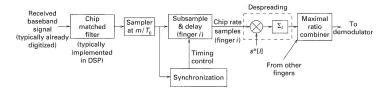
- Chip rate implementation of the rake receiver
 - Short spreading sequence: $s(m;t-mT)=s(t)=\sum\limits_{l=0}^{N-1}s[l]\psi(t-lT_c)$
 - Chip matched filter: $\psi_{MF}(t) = \psi^*(-t)$
 - Decision statistics can be rewritten as

$$Z[m] = \sum_{i=1}^{L} \alpha_{i}^{*} \sum_{l=0}^{N-1} s^{*}[l] \int y(t) \psi(t - mT - \tau_{i} - lT_{c}) dt$$
$$= \sum_{i=1}^{L} \alpha_{i}^{*} \sum_{l=0}^{N-1} s^{*}[l] Y_{\tau_{i}}[l]$$

with

$$Y_{\tau_i}[I] = (y \star \psi_{MF})((I + mN + D_i + \delta_i)T_c)$$
 and $T = NT_c$, $D_i = \lfloor \tau_i/T_c \rfloor$ and $\delta_i = (\tau_i/T_c) - D_i$.

13 / 1


Notes

Lecture 9 DSSS and CDMA Ming Xiao CommTh/EES/KTH

Rake Receiver

Block diagram for the chip rate implementation of the rake receiver

- Problem: sampling offsets $\delta_i T_c$ vary across multi-path components
- Possible solutions
 - → Sampling at chip rate and interpolation
 - → Fractionally sampling and use the set of samples which are closest to the multi-path component in time.
 - ightarrow Track $\delta_i T_c$ and use L chip rate samplers; i.e., one for each multi-path component.

Notes			