Why use a small 8-bit processor
when there are cheap powerful
32-bit?

MIFRSS M4K 32-bit Core ~ =
l :
*72 MHz, 1.5 DMIPS/MHz P,
+5 Stage Pipeline, 32-bit ALU
32 Core
] e
LA Deb:.lg e
Instruction Data

Bus Matrix

Prefetch

Biirei Cathe Flash SRAM GPIO (85)

Peripheral Bus

16-bit 2 Input Qutput
Parallel Capture Compare
Port (5) PWM (5)
2) (2) (2)
12C™ UARTs SPI

William Sandgvist william@kth.se

8-bit processor close to the sensor?

e A simple sensor often has a weak output signal. It
may need to be connected with an expensive cable.

e An expensive sensors with "integrated electronics"
can get by with a simple cable.

The cost of both options can very well end up to be
the same!

Thus smart to embedd an 8 bit processor inside the
sensor!

William Sandgvist william@kth.se

8 blt processor as smart cable?

soL I_II_II_II_II_II_II_II_II_II_

: - 73| © Cheap cable
" "‘*‘“‘*x’:@u e Cheap
Digital signal transfer | processor

w (11 | * Expensive

. K5 |

- _ =T
Analog signal transfer

cable
e NO processor

How many 8 bit processors can you get for the cost
of a meter cable? The processor as cable
replacement!

William Sandgvist william@kth.se

PIC 8-bit processor

Prog Count

PIC (Peripheral Interface

File
Reg

Computer) are inexpensive
computer circuits with "all in

one .

William Sandgvist william@kth.se

e Different — 63 different typ?

|
e |
amount of * | 1] of Midrange PIC
program memory ?) %wr : \F)rocessors!
o different === = | |
; EEEmke| | S Re? :

amount of data , — e Different
v Ry % ‘W/

memory B b]| [N = | | number of
PIC Midrange | ezl | = ||!F5 pins
processor M) =] (=2)

e e e e

T b HE LT ity DL THL 1T

RRRRRAAR ARACEANE gRARA AR

:_\
il
|
|
|
L
)
|
R
Sl
il
|
|
|
|
EI
i/
IIL

| I
— g B i
Combl- : i -:,m-n'!;!rm Eﬁsrj:i:p:rtm ”5'{"!;1 : -L}
. ; 1
nations Of | i I
|O-units | == LEE LT D et e
:]I U i :33%
| i e ! P
V. P _YVTREEE

The business idea - buy only as
much as you need

Develop your application on a processor with "little of
everything".

To the finished product then use just exactly how much

you need. ‘

William Sandgvist william@kth.se

|
S CNEeapes -Processor
Eafisa?)]
S 73-874-4% -
\ g) g ticrocontroller & Bit SOT- ‘ . i PICTOFZZ0T-
A B> 295 10— | 4.00 Microchip oT
(2.7 2)). 1 m s0- T

PIC10F220T-1/OT
Can be compiled with
Cc5x — includefile exist

4 kr |each if you buy 10 ...

Programmemory: 384 words

RAM-memory: 16 Byte When computing power is so
8 bit AD-converter 2 channels Cheap there opens up Completely
Internal oscillator 4 MHz

TIMERO new possibilities...

T oo on: This is one reason why it might
Typical current consumption:

175pA be good idea to learn PIC
processors!

William Sandgvist william@kth.se

The built in 10 devices Increases
8-bit processors' performance

Tero Timer mimer e i 1O ports and 10 bits,
i[E jj jj ; timers,
o . e =~ || Capture/Compare/PWM,
. Analog comparators, ADC,
v - oo || Serial ports, voltage
[} T 7| references, data EEPROM,
| — mhﬂ;;ﬁ . : etc.
25 |

William Sandgvist william@kth.se

The same 10 devices can then be
found also In larger processors

MAIFPPSS (4K 32-bit Core EE“
72 MHz, 1.5 DMIPSMHz ﬁﬁ@
=5 Stage Pipaline, 32-hit ALL

: 32 Corg
a2
Ragisters
MHI:;iu Ehadow Bat DMA | 2-Wire
u

4 Ch, Debug

Bus Matrix

Prefeich Interrupt =
Buffer Cache Cantralier GPIO (85)

Peripheral Bus

16-bit It Output 1E6-bit
Farallel Capture Compare Timers
Port] FWM (5) (5}
(2] (2}

LUARTs

William Sandgvist william@kth.se

The course Is all about connecting
electronics to the 10 devices

W

e LC-oscillator

How to indicate that a coin Is nearby
(the coil)?

7

P o !

'_
&.BmH

A70pF T~

—d
—

e CCP-unit

11} Flag bit cCP1IF

CCPR1

| CCPR1H || CCPRIL i.\

— —

£3
N
Iz
9/nyded

| TMR1H || TMRIL |

TMR1

Circuit Theory and PIC processor!

William Sandgvist william@kth.se

You will, for example, get to know how an inductive
sensor works...

PIC16F690

William Sandgvist william@kth.se

PIC 8-bit processor

PIC (Peripheral Interface
Computer) are inexpensive
computer circuits with "all in

one .

Frog
Mam

Inst Reg |: ;2‘:

Prog Count

Prog Mem. Program memory.

File Reg. Data memory and special
registers. The special register are
connected to 10, for example the
chip pins.

William Sandgvist william@kth.se

Program memory

PC<12:0> |
CALL, RETUBRN RE
RETFIE, EETLW \}I
Stack
Stack Level 1

SEIEEE _ only for return

Sk Levr adresses (8), not for
Reset ector 000Oh param eters.

I
. e —
Interrupt Vector 0004h
0005h

Dﬂ“;';w page 0 e - Program memory.
SR PIC16F690 has 7 kByte

e FLASH.
4096 word a’ 14 bit.

William Sandgvist william@kth.se

16F690 Program memory

PIC-processor GOTO and CALL -

Instructions can directly reach addresses
within 2 k (opcode has 11 addressbits).

PC=12:0=

RETFIE, EETLW

CALL, RETURN i} 13
L.l'
W

16F690 has 4 k program memory, so one

has to choose new ”page” in the program- Sk vl

L3
memaory. -
PCH PCL
Reszeat Vector
12 & 7 o Instruction with .
PC | | PCLas
A A Destination

L]
Interrupt “Yector

0000h

0004h

slrammaso L8« The division in

HEEEEEEE On-Chip Page 0

POLATH pages, Is an i:‘é‘-::iﬂ;l —

outdated
122 1N 10 8 7 0) Access D-FFFh
] R — | soocan — @rchitecture.
I PCLATH<4:3> T n
‘ Opcode <10:0>
HEEEEEEE
PGLATH

William Sandgvist william@kth.se

0005h

07FFh
0800h

OFFFh
1000h

1FFFh

Code pages

PIC processors have the program memory divided into
”code pages"? (0, 1, 2, 3), about 2048 instructions. The
compiler Cchx begins to put code on page 0 and gives error
when this page Is not enough. Should this occur you write
there Instructions? #pragma codepage 1, then further
Instructions end up on the next page (and so on code page 2
If necessary).

To get compact code a thorough page planning ” is needed,
something that one hardly cares about during prototype
development.

William Sandgvist william@kth.se

Data memory
register File

PIC processor data memory is
the Register File. It consists
of SFR, special function
registers, and the GPR
General-purpose registers
which are the actual data
memory.

SFR registers are connected

to the processor 10.
Mapped RAM, same register is
found in all banks - you do not
have to change rambank!

Fie Fie
Address Address
Indirect addr ™ [00h Indirect addr. ™ [80K
TMRL O1h OPTIOM_REG |B1h
PCL 02h PCL EZh
STATUS 03h STATUS B3h
F5R D4h FSR B4h
PORTA 05h TRISA BSh
PORTH Dih TRISB BEh
PORTC O7h TRISC BETh
| 08h |88h
| 0oh 180k
PCLATH DAh PCLATH BAh
INTCOM 0Bh MTCOMN EBEh
PIR1 OCh PIE1 ECh
PIR2 ODh PIEZ BDh
TMRIL DEh PCON EEh
TMR1H OFh QSCCOM BFh
T1CON 10h OSCTUNME | BOh
TMR2 11h Bih
T2CON 12h PR2 B2h
SSPBUF 13h SSPADDR [@3h
SSPCON 14h SSPSTAT B4h
CCPRIL 15h WPUA B5h
CCPR1H 18h IOCA Bah
CCP1CON 17h WDTCON B7h
RCSTA 13h TASTA BBh
TXREG 19h SPBRG Bah
RCREG 14h SPBRGH BAR
1Bh BALUDCTL BBh
PWMICON | 1Ch BCh
ECCPAS 10h BDh
ADRESH 1Eh ADRESL BER
ADCOMD 1Fh ADCOMN1 BFh
20h ADh
Zeneral
General Purpose
Purpose Register
Repgister
B0 Bytes
28 Bvies EFh
ACCELEES Filh
7Fh T0h-7Fh FFh
Bank 0 Bank

William Sandgvist william@kth.se

File
Address
Indir=ct addr 1" [100R Indirzct addr.
TMRO 101h OFTION_REG
PCL 102h PCL
STATUS 103h STATUS
FSR 104h FSR
PORTA 105h TRISA
PORTH 106h TRISE
PORTC 107Th TRISC
| 108k
| 108k
PCLATH 104h PCLATH
NTCON 10Bh NTCON
EEDAT 10Ch EECON1
EEADR 10Dk EECONZM
EEDATH 10Eh
EEADRH 10Fk
110h
111k
112h
113h
114h
WPLUB 115h
I0CB 116h
117h
VRCON 118h
CM1COND 118h
CM2COMD 114h
CM2COM1 11Bh
11Ch
11Dh PSTRCON
ANSEL 11Eh SRCON
ANSELH 11Fh
120h
General
Purpose
Register
BO Bytes
i fiFh
ACCESSES 170h FCCEESES
70h-7TFh 1TFh TOh-TFh
Bank2 Bank2

File
Address
180h
181h
182h
183h
1684h
185h
186h
187h
18Eh
180h
18Ah
1EBh
18Ch
180h
18Eh
18Fh
120h
i21h
182h
183h
124h
125h
186h
187h
12Bh
12Bh
128&h
12Bh
12Ch
120h
18Eh
18Fh
1ADh

1FOh
IFFh

RP1 and RPO

One chooses bank with the bits RP1 and RPO in STATUS
register

Direct Addressing

RF1 RPO 6 from opcode 0
LR y I
bank select k}cancnﬁcmm|
' = (0 iy 10 11
(0h 180h
S RP1 RPO
Bank0 o 0
Bank1 4] 1
Bank2 0
R
File Bank3 1 1
Registers
7Fh 1FFh

Bank 0 Bank1 Bank 2 Bank 3

The division of data memory in RAM banks Is an outdated

architecture.
William Sandgvist william@kth.se

The compiler can choose for us!

The PIC processor's register area (RAM) is divided into "ram
banks" (0, 1, 2, 3). Cc5x begins to fill rambank 0. You can
change rambank with instruction #pragma Rambank 1
and then all variables that are declared are placed in the next
rambank (rambank 1). Some memory cells are found in the
same place in all ram banks, known as mapped RAM. You can

choose to place variables as "mapped ram" (as long as there is
space) with the instruction #pragma rambank -.

Best use of RAM banks requires a lot of planning, something one hardly
cares about during prototype development.

William Sandgvist william@kth.se

PC, IR, ALU, W-register

Prog Counter, PC. Programcounter
register points to where in program memory
the current instruction is. It is incremented
automatically after each executed
Instruction.

Frog
Meam

Inst Reg t ;2:

Prog Count

Inst Register, IR. Instruction register holds
the code for the current instruction.

ALU. Arithmetisc Logic Unit handles the
calculations. f

The vast majority of operations are performed
through the working register, W-reg. This Is the

PIC processor "wasp waist".
William Sandgvist william@kth.se

Harvard vs Von Neumann

Von Neumann

Von Neumann

cpU

Harvard is (twice) faster ...

Data Memory

Harvard

gram
~ Memory (14 bits)

 \VVon Neumann architecture
have a common bus for
Instructions and data.

e Harvard architecture has
different busses for instruc-
tions and data.

William Sandgvist william@kth.se

CISC vs RISC

* CISC (Complex Instruction Set Computer)
Eg. Intel PC, has 700 instructions.

* RISC (Reduced Instruction Set Computer)
Eg. Microchip PIC, has 33 instructions.

These concepts are now obsolete. Intel processors are
still classified as CISC - but they have advanced
architecture that utilizes all the best of RISC...

William Sandgvist william@kth.se

KIA’s factory in Slovenia

A car every minute is leaving the band — does It take
one minute to build a car?

No at KIA's factory outside Zilina it
will take 18 manhours to build a car
(this is worldrecord! Toyota will need
30 manhours).

The solution is a Pipeline. 18 hours is
1080 minuts, sa build is done in parallell at
1080 one minute stations. The factory has
3000 employees working in three shifts, ie
1000 workers per shift. Many of the
station are thus completely robotized.

William Sandgvist william@kth.se

FIGURE 3-3:

Fetch and Execute

CLOCK/INSTRUCTION CYCLE

O5C2/CLKOUT

Q1 | Q2 | Q3
0SC

| Q4 1+ 01 | Q2 | Q3 | Q4 a1 | Q2 | Q3 | Q4

QA

J \ ¥ \ |

(- T S

GEI i | i I__|

(BT Y

! P ! ! } Intermal

I ' I

PC FL:

| Pl

(RAC made) !

k—f—h—f—\—l—l

Faleh INST (PC)

1 Execute INST (PG-1] Feich INST [FC+1]
I

Executs INST (PC) Feich INST (PC+2)
| Execube TNST TPC+T]

PIC has Harvard architecture and can therby Fetch an
Instruktion at the same time it is Executing the previous

Instruc

Lion. 1t will tak

2 8 clock cykles to finnish an

Instruction. We have a two step pipeline, so there will be one
Instruction finnished after each fourth oscillator-clockcykel.
With a 4 MHz clock this is 1.000.000 instructions/sec.

Each instruction will take 1 ps.
William Sandgvist william@kth.se

Instruction format

I I FIGURE 15-1: GENERAL FORMAT FOR
PICisa clas_S|sc RISC- GENERAL FOR
Processf)r Wlth Only 33 E'-,:eg-nnented ﬁleremstegrﬁcpe?ratm;ns .
Instructions ... OPCODE d f(FILE#)

d = o for destination W
d = 1 for destination f
f = 7-hit file register address

Instructions are 14 bit

Bit-oriented file register operations
13 1049 76 0

° OP_Code What {o be done OPCODE b (BIT #) f (FILE #)
- iS 6 bit (Or 3 bit). EZEE:;:;E::g{:tisraddress

Literal and contral operations

e The rest of the bits are e . :

used tO te“ B With What it k :E.—E:i?n[;ae value e

ShOUId be done, ca;..gr_.and 30T ins1t1ru|ignns only .
OPCODE k (literal)

k =11-bit immediate value

William Sandgvist william@kth.se

Byte operations

Ex. Addition of numbers in FILE, data memory, and

working-register W. The result is stored lagras in

workingregister or data memory — and the initial

number will be overwritten. R

ADDWF F,d e [e

ADDWF F,0; W=F+W oo

oller 2 7.5 o regitor aress

ADDWF F,1; f=F+W Assembler instructions
are written as easy to

In the same way: SUBWF T,d remember abbreviation

mnemonics.

William Sandgvist william@kth.se

More Byte operations

Some special cases of addition and subtraction, increase
by one respective decrease by one, have their own
Instructions. Like the reset of register.

INCF f,d DECF f¥,d CLRW resp CLRF T

If you want to copy content between the memory and the

working register one does it with
MOVF ¥,0; W=F

or between working register and memory with
MOVWF f; =W

Move mean really Copy!

William Sandgvist william@kth.se

Program constants

Programconstants as e et certons

number 17 or the letter O \
A’ are stored inside =B mmedae vaiue '
Instructions. 17@ A

k is a ”’Literal”, a Byte constant, stored inside the
Instruction MOVLW k; W=k. At the execution of the

Instruction the constant will be transfered to the
working register.

More Literal-instructions: ADDLW k; W=W+k
SUBLW k; W=W-k

William Sandgvist william@kth.se

Bit operations

Bit-oriented file register operations

PIC processor has direct bit = 09 18 :

OPCCDE b (BIT# f{FILE#)

Operati OnS- by = 3-bit bit address

f = 7-hit file register address

BCF f,b ClearbitbinFilenrf (bits are numbered O...

BSF f,b Setbhitbinf

William Sandgvist william@kth.se

/)

Program jumps
GOTO k Program jump S —

11 10 0

CALL k SUbrOUtine Ca” I?Fj?-iiimmediate'falu};["teral]
RETURN Return jump

Instruction GOTO changes PC to the value of Literal k

which for this instruction is 11 bit (and two extra bits
from register PCLATH). PC now continnues to exequte

the program from the new place.

When CALL instruction, first the PC value is stored in a
stack register, then its the same as with GOTO. At
Instruction RETURN the previous value of PC is retrieved
from the stack register and the program continnues with
the instruction that follows after the CALL instruction.

William Sandgvist william@kth.se

Conditional tests, skip

PIC processor has some instructions to test whether conditions
are met and, if so, skip, the next instruction. The next
Instruction is then usually a GOTO instruction.

DECFSZ f,d; f-1 butskip ”next” if O-result

INCFSZ f,d; f+1 skipif O (registers can "turn around”!)
BTFSC f,b; skipifbitbinfis0 (Clear)

BTFSS f,b; skipifbinfis1 (Set)

This counterintuitive thinking "don’t jump if ..." is a bit special for
PIC and no longer common to other processor types.

William Sandgvist william@kth.se

Why skip?

The outcome of a test often means that one needs to do an
additional instruction that one would not otherwise do.

skip Instruction skips this extra instruction, and because
jumps always takes twice as long as other instructions, so
take the instruction sequence always the same time to
execute regardless of the result!

This can be seen as a feature of the PIC processor's
Instruction set.

William Sandgvist william@kth.se

NOP No Operation

NOP No Operation

Syntax: [label] NOP

Operands: None

Operation: No operation

Status Affected: None

Encoding: 00 0000 | 0xx0 0000
Description: No operation.

Words: 1

Cycles: 1

Example NOP

Processors generally have an instruction that does
"nothing". It can be added to equalize the time
differences between different paths in the program.

William Sandgvist william@kth.se

How long time does instructions take?

The processor internal clock uses % of the oscillator
frequency. Usual is 4 MHz crystal and then there will be
1 MHz clock speed. Most operations are performed in
one clock cycle, ie, takes 1us. The instructions that affect
the PC takes two clock cycles, ie, 2 ps.

GOTO, CALL, RETURN Allways takechcIes,/- b

DECFSZ, INCFZ, BTFSC, BTFSS takes 2 cykles
when they create ”skip”, otherwise 1 cykle.

One can calculate the PIC processor execution time with o
finger counting!

William Sandgvist william@kth.se

Ports

+ -
Voo —=[11 20]-— Yas
RAST1CKIOSCA/CLKIN ~—=[12 19[]== RAONANDIC1IN+/ICSPDAT/ULPWU
RA4/ANITIG/OSCZICLKOUT =—=[]3 18[J=» RA1/AN1/C12INO-VREF/ICSPCLK
RAIMCLRNVPP—=[]4 o {7[]=» RAZAN2TOCKIINTIC1OUT
RCS/ICCP1P1A <[> []5| @ [16[]=l= RCOAN4/C2IN+
RC4/C20UT/P1B =f=[]6 | £ |15[J=l= RC1/ANS/C12IN1-
RCIANTICI2INIHPIC == []7 | £ |14[<le RCHANGICI2IN2-P1D
RCE/ANSISS == [18 13[] «|-» RB4/AN10/SDI/SDA
RCT/ANS/SDO == [18 12 [] == RBS/AN11/RX/DT
F'.EITJ"I'J'-'JEHq—*E!ﬂ 11 == RBE/SCK/SCL

Of the PIC circuit pins 6 are bundled to a
and 8to a PORTC, 4 to a PORTB. The pins can also
be used alone, and apparently they can have many

optional features.

William Sandgvist william@kth.se

Tris-register

If a pin is to be used as
Input or output depends on
settings in a TRIS-register.

TRISAand TRISB and
TRISC

If the "corresponding™ bit in
trisregistret is 1 the pin is
used as an input, If it’s O as
an output!

Wirite PORTE

TRISE Read PORTE

Ty) %%[Qj llnllnnl

JSSE——y

|

[| i ik
¥ ¥ T
i Q el

REY ... RBO

William Sandgvist william@kth.se

TRIS = Threestate

TABLE 15-2:

PIC16F627A/G2BA/G48A INSTRUCTION SET

Mnemonic, Lo 14-Bit Opcode Status
Operandﬁ. Description Cycles Affactad Motes
MSb LSb
BYTE-ORIENTED FILE REGISTER OPERATICNS
ATTHE f.d |Add Wandf 1 00 olll dfff ££ff (CDCZ 1,2
ANDWE f.d | AND W with f 1 00 vlel dfff ££ff (2 1,2
CLRF f Clear f 1 00 vool L1Efff £Eff (2 2
CLRW — Clear W 1 aa 000l oo oy |2
COME f.d Complement § 1 aa 1o01 dfff £E£ff |2 1,2
DECF f.d | Decrement 1 00 poll Afff f££ff (Z 1,2
DECFSE f.d |Decrementf SkipifD 112 a0 1011 Afff EEff 1,2, 3
INCF f.d Increment f 1 aa 1010 dfff EEEff |2 1,2
INCFSE f.d |Incrament f, Skip if O 112l o 1111 dfff EEff 1,2,3
LORWE f.d Inclusive OR W with f 1 aa oo dEff £E£ff |2 1,2
MOVE f.d |Mowvef 1 00 1oo0 Afff ££ff (2 1,2
MOVHE f Move Wio § 1 00 vooo LEEE EEff
HOP — Mo Operation 1 aa o000 OO0 Q000
RLF f.d Rotate Left f through Carry 1 aa 1101 4dfff £££ff |C 1,2
RRF f.d | Rotate Right f through Carry 1 00 1100 dfff £E£ff (O 1,2
SUBWF f.d | Subtract W from f 1 00 volLe dfff E£ff (CDCEZ 1,2
SWAEF f.d Swap nibbles in 1 aa 1110 dfff ££££ 1,2
HORWE f.d | Exclusive OR W with f 1 00 pllio Afff f££ff (2 1,2
BIT-DRIENTED FILE REGISTER OPERATICONS
LoF f.b |BitClearf 1 01 oobb DbEEfE EEff 1,2
BSF f.o | BitSetf 1 01 0lbb bEff f£fff 1,2
BTFSC fb | Bit Tests Skip if Clear 112l 01 1obb bEff EEEE 3
BTFSS f.b | Bit Testf Skipif Set 112 01 1lbb bfff £EEf 3
LITERAL AMD CONTROL OFERATIONS

ADDLMW k Add Fteral and W 1 11 111x kkkk kkkk |CDCZ
ANDLW k AMD literal with W 1 11 100l kkkk kkkk (2
CALL k Call subroutine 2 140 okkk kkkk kkkk
CLRWDT — Clear Watchdeg Timer 1 aa pooo 0llo o0loo |TO.FD
FOTO k Go to address 2 1a 1kkk kkkk kkkk
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk |Z
MOVLW k Move literal to W 1 11 ooxx kkkk kkkk
RETFIE — Returmn from interrupt 2 aa ooo0 o000 1001
RETLW k Return with literal in W 2 11 0lxx kkkk kkkk
RETURN — Return from Subroutine 2 aa oooo o000 1000
SLEEE Go into Standby mode 1 00 0000 0110 0011 |TO.FD
SUBLW Subtract W from litera 1 11 110x kkkk kkkk |CDCE
HORLW Exclusive OR literal with W 1 11 1010 kkkk kkkk |2

William Sandgvist william@kth.se

An Assembly program

IiNnit
CLRF PORTB;

MOVLW 10111111b;

MOVWF TRISB;
loop

BTFSS PORTB,7;

GOTO lampoff;
lampon

BSF PORTB,6;

GOTO loop;
lampoff

BCF PORTB,6;

GOTO loop;

end;

ll..'"s?c'

\/
+5V———|vdd 16F690 V55 | -—--GND
- |rAS rAD/AND/ (PGD) | -
- |Rad Ral/(PGC) |-
. -|RA3/'MCLR/ (Vpp) RAZ2/INT|-
= - |rRC5/CCP RCO| -
éﬁ' _|rca RC1 |-
et -|rC3 RCZ |-
RC6E RB4 |- a-
RCT RES,/RX |-
SW->- |RB7/Tx REG | -=-LED

~/
The program lights on and off the

LED on the command from the
switch.

(This of course could be done
without PIC - but then it's no sport!)

William Sandgvist william@kth.se

Commented
assembly program | . &, @ =E

ll.."sfc'

|

|

|
[y
=
=)

kv
+5V-—-|vdd 16F690 Vss
RAS rAD/AND/ (PGD)

- |rRA4 RAL/ (PGC)
—-|RAZ/IMCLR/ (Vpp) RAZ/INT
-|rcs/ccp RCO
-|rc4 RC1

RC3 RC2

*/

Assembly language program is called "spaghetti programming”. It becomes easier to
follow the program jumps when you draw out the arrows.

init

‘——> lampon

CLRF PORTB;

MOVLW 10111111b;

MOVWF TRISB;

—> loop

BTFSS PORTB, 7;
GOTO lampoff;

BSF PORTB,6;
GOTO loop;

lampoff

BCF PORTB,6;
GOTO loop;
end;

reset register portB
get a constant to the working register W
copy the constant to trisB register

skip next instruction i1f portbh.7 =1
jump to lampoff”

Set portB.6 -> light up LED
go on from ’loop”

reset portB.6 -> turn off LED
go on from ’loop”

William Sandgvist william@kth.se

/> onoff_.c

/* B Knudsen Ccb5x */
/* C-compiler */
/* not ANSI-C */

#include "16F690.h ™
#pragma config |= 0x00D4

void main(void)

C-program

,-'h:r

W
vdd 16F690 Vss
RAS rAD/AND,/ (PGD)

+5v—-— —-—GND

- |rad ral/(PGC) |-
-|rRA3/MCLR/ (vpp) RAZ/INT|-
- |rcs/ccp RCO| -
-|rc4 RC1 |-
-|RrC3 RC2 |-

RCE RE4 | -

RCT RB5/RX |-

SW-=—|RB7,/Tx RES | -=-LED

*/

Pragma — extensions of theC-
language

Bitvariables variabel .bit
The compiler recognizes names
of most registers, the rest of the
names are stated in the processor
Include file.

{
TRISB.6 = O;
PORTB.7 = 1;
while(l)
{
iIT (PORTB.7==1) PORTB.6=1;
else PORTB.6=0;
¥
}

William Sandgvist william@kth.se

Download format

The program code is downloaded
to the chip with a circuit program-
metr.

The format used Is a text file with the op-codes as a
string of Hex digits. This Is the download code for the
previous example program.

2100000000128831603130710831207/1483120313A6
210001000871C0C2807140628831203130/7100628D0

:02400E00D400DC
-00000001FF > End of file.

William Sandgvist william@kth.se

Compllatlon "report”

SFR/GPR

RAM: O0Oh © ———— e e
RAM: 20h —— |[FrIIxhk AAAAAA AL FhAAAAddxh Ahdxdhiik
RAM - 40h = FKIxIIIAAkAAk KkxkkkkIkxIk IIxIxIxFIxIIAA KXhxkXikiAkkikkk*k
RAM - 60h = FKExIxIIAAAk KkxkkkkkIk IIxFIxIxIxIIAA KXAhxkAkkikkikkk*k
RAM: 80h © ———— e e
RAM - AOh = FKExIIIAAAA Kkhkkkkkk FIIxFIxIxIIAA XAhkAkkAkkikkk*k
RAM - COh = FKExIIAIAAAA Kkhkkkkkk FIIxFIxIxIxIAAA XAk AXAkkXkkk*k
RAM - EOh = FKExIIAIAAAA K*kkkkkkk XxIxFIxFIxIIxAA XAk AkkAkkikkhkk*k
Codepage O nas 68 word(s) - 3 %

Codepage 1 has 0 word(s)

0 % Program

Symbols

- free

location

- - predefined or pragma variable

local variable(s)
- global variable

William Sandgvist william@kth.se

(Cc5x Internal variables)

Built-in the compiler provides the following names of
registers and flags (bits in register):

char W;

char INDF, TMRO, PCL, STATUS, FSR, PORTA, PORTB;

char OPTION, TRISA, TRISB;

/* STATUS : */ bit Carry, DC, Zero_ , PD, TO, PAO, PAl, PAZ2;
/* FSR - */ bit FSR_5, FSR 6; char PORTC, TRISC; char PCLATH, INTCON;
/* OPTION : */ bit PSO, PS1, PS2, PSA, TOSE, TOCS, INTEDG, RBPU_;
/* STATUS : */ bit Carry, DC, Zero_ , PD, TO, RPO, RP1, IRP;

/* INTCON : */ bit RBIF, INTF, TOIF, RBIE, INTE, TOIE, GIE;

These should not be declared in the programs. Include files then
hold additional register names and names of bits, the same
names that are used in the official manual.

William Sandgvist william@kth.se

(Cc5x Internal functions)

The internal functions provide "direct access" to some of the PIC
processor instructions:

btsc(Carry); //
btss(bit2); //
clrwdt(); //
1 = decsz(1); //

W = incsz(1); //
nop(Q); //
nop2(); //
retint(); //

w=ri(i); //

1 = rr(1); //
sleep(); //
skip(i); //

k = swap(k); 7/

clearRAMQ; 7/

void
void
void
char
char
void
void
void
char
char
void
void
char

void

btsc(char); -
btss(char); -
clrwdt(void);
decsz(char); -
incsz(char); -
nop(void); —
nop2(void); —
retint(void); -
ri(char); —
rr(char); —
sleep(void);
skip(char);
swap(char);

clearRAM(void);

called to reset all data memory in the processor.

BTFSC f,b
BTFSS f,b
CLRWDT

DECFSz f,d
INCFSZ f,d
NOP

GOTO next address
RETFIE

RLF 1,d

RRF 1,d

SLEEP
computed goto
SWAPF k,d

An internal function that can be

William Sandgvist william@kth.se

(Simple C-statements — Assembler)

Simple C statements are in general translated directly to the
single assembler instructions. Programs written in assembly
language can be translated instructions by instruction to a
Ccox C program.

nop [} ; HOP W= f; MOVE £,
f = W; MOVWE £ W= f ~ Z55;|COMF £,W
W= 0; CLEW f = f ~ Z55;|COMF £

f = 0; CLEF W=f + 1; INCF £,W
W= f - W [3UBWF £,W [|[f = £ + 1; INCF f

f = f - W; [SUEBWF f h = 0; ECF f,h
W=f - 1; |[DECF £,W |b = 1; ESF f,b
f=+f - 1; [DECF £ return 5; RETLW 5
W= =% | W; [IORWF £,W ||=21(); CATLL =1
f =1 | W |IORWF £ gqoto X FOTO X
W=f & W; |ANDWF £,W W = 45; MOVILIW 45
f = f & W; |[ANDWF f W= | 23; |IORLW 23
W=f * W; [ZORWF £,W W= W & 53; |ANDLW 53
f=£f * w; |ZORWF £ W=mwm "~ 1Z; ZORLW 12
W= f + W; |ADDWF f,W |W = 33 + W; |ADDLW 33
f=£f + wW; [ADDWF £ W= 33 - W; SUBELW 33

William Sandgvist william@kth.se

Typical program structures

William Sandgvist william@kth.se

A typical program

il x|

Typical program
?

Initiation
Do once at Run
startup

|ﬂ1ﬁ

Loop
Initiate Initiate farewer

PORTs REGISTERS I

the program

A typical program.

Fil

int maini)
{
A% Initiate - PORT=s */
A% Initiate - BEGISTEEREs */

while [T1)
A* the program */
'

[—

[«

First initiate PORTs and units so they are set to fit the
application. This Is done once for all in the beginning of the

program.

Then gthe program loops for ever — and reacts on input
signals and delivers output signals for every turn in the loop.

The program finnishes when the power is turned off.

Single run program? [;|
e C-program:
void main(void) nopi

1
}

nop(); /* to do something once */

e Translated to assembly:
—> main
nop(); /7* to do something once */

NOP _
-3 | Single run program would not
SLEEP] work, the compiler inserts SLEEP
GOTO mailn
command, so the processor enters
END current save mode.

This also goes for the 10-units.
William Sandgvist william@kth.se

Single run program?

e C-program:
void main(void)

1

napo

nop(); /* something once */

while(l);
+

e Translated to assembly:
main

NOP
[~ moo1 GOTO m001

END

nop(); /* something once */

while(1l) ;

end of
program

(113

forever

This Is a program that does not
force the compiler to use SLEEP,

the power saving mode.

William Sandgvist william@kth.se

Wait for a key press?

 PORTB bit0
' gets 1 when
you press

Many times the CPU has not
SO much to do, then you can
use blocking code.

e walt for a key press, blocking code:

while (PORTB & 0x01 == 0) /* do nothing */ ; 9
1/* OK, now you have pressed the button ...

e Or simpler — PIC-processors have bitvariables:

/

Blocking

wait

Mo oL biave
pressed button

the program
continues ...

{111

wait far
keypress

Co nothing

*/

while (!PORTB.O) /* do nothing */ ;0

1 /* OK, now you have pressed the button ...

*/

William Sandgvist william@kth.se

Contact bounces!

When you press, or release, a mechanical contact it bounces
a while before the contact surface is coming to rest. PIC

processor are so fast that they can perceive each bounce as
distinct contact press!

4 [ms] o 1 2 3 4 [ms]

If a contact will bounce much or little is not visible on the
outside!

William Sandgvist william@kth.se

» Toggle a LED ON/OFF ¢

Nothing else than a random number generator, anything can happen/not
happen when you press the button!

void main(void) .
{ ;
TRISB = Obigllllll; /* RB7 In, RB6 out */ .
while(l) A
{ ——
while(TPORTB.7) ; /* wait key pressed */
PORTB.6 = IPORTB.6; /* toggle led */
while(PORTB.7) ; /* wait for key released */
+
+
e Not as thought, every other time - but a random number
generator!

William Sandgvist william@kth.se

» Toggle a LED ON/OFF ¢

Wait out the contact bounces. A contact can bounce both when pressing
It and when you release it!

void main(void)

1

TRISB = Obl0111111; /* RB7 in, RB6 out */
while(1)
{

while(TPORTB.7) ; /* wait key pressed
PORTB.6 = IPORTB.6; /* toggle led
delay(b); 9

Wait out the contact bounces (>5ms)

while(PORTB.7) ; /* wait for key released */

delay(b); 9

Wait out the contact bounces (>5ms)

e Now It works!

William Sandgvist william@kth.se

delay () function

William Sandgvist william@kth.se

C-functions

void delay(char); e Function declaration (prototype) before main()
void main(void)

{

TRISB = 0b10111111; /* RB7 1in, RB6 out */

while(l)

{
while('PORTB.7) ; /* wait key pressed */
PORTB.6 = IPORTB.6; /* toggle led */
delay(5);| e Function call
whille(PORTB.7) ; /* wait for key released */
:delay(5) e Function call

}
}

e Place the funktion definition after main() in the same file.

William Sandgvist william@kth.se

millisec
Nr of turns

delay() function

e Place function definitions after main() in the same file.

/* Delays a multiple of 1 milliseconds at 4 MHz
/* (16F690 internal clock) using the TMRO timer

void delay(char millisec)

{

do

1
TMRO = 0;

OPTION = 2; /* prescaler divide by 8 */

*/
*/

1000 us

while (TMRO < 125) /* 125 * 8 = 1000 */ ; {)

} while (-- millisec > 0);

It is the after-tested loop that is the
iteration procedure that best fits the PIC
processor.

do
{

1 while(---):

William Sandgvist william@kth.se

I I M E I a O Ps2 P51 PSSO (Prescaler

Qoo
TIMERO is an internal 8-bit modulo 256-counter which [g;;

can be read/written from program. When the timer 010
“turns around” the bit TOIF Is set. o1
If bit TOCS in OPTION register is "0" then the e
processor clock is counted. If bit TOCS is "1" then 10
edges on pin TOCKI1 is counted. 111

1.2
14
1
1:16
1.52
1:64
1:128
1:256

The bit PSA=0 inserts a prescaler, a frequency divider. With it active only
a fraction of the incoming pulses are counted. Bits PS2 PS1 PSO sets the

prescaler division ratio.

TMRO=0; /* reset timerQ */

time=TMRO; /* store timerO value In char variable time */

TMRO=17; /* preset timerO to 17 */

William Sandgvist william@kth.se

TIMERO

Foscid 1 MHz { TMRO
Data Bus
8
DJ—7 TMRO
ToCKI ’ﬁ)_,,/ j
pin
Set Flag bit TOIF
TOSE Tocs on Overflow
\ \ l
TOIF
WDTE —lo PSA
SWDTEN — -

WDT
Time-out

16-hit
Prescaler

31 kHz Watchdog
INTOSC Timer

REGISTER 5-1: OPTION_REG: OPNON REGISTER

RAW-1 R/W-1 RIW-1 RW-1 \R/W-1 RIW-1 1 RAW-1

RABPU INTEDG | TO0CS | TOSE | FsA PS1 | PsO

e
o
[t

bit 7 Bt}

William Sandgvist william@kth.se

C-functions summary

e Function deklarations before marn().
e Call from inside marn()or from inside

other functions.
e Function definitions afterr main(), In

the same file.

Often its so little code that everything can be in one file.
The functions are often tailored directly to the application
and the processor, therefore it may be unnecessary to store
them as a “general” function library.

William Sandgvist william@kth.se

Wait for key presses?

- PORTB bit0
. gets 1 when one

PORTB bhit 1
gets 1 when one

any buttan
pressed

| i1 (51)

presses the key presses the key Eun_gmng
TWO keys, bIOCki ng COde. Waitﬂ:nramfafe
keypress
Do nulhing

Fed

Black *

Fed
action

hlack
action

OR

while(!PORTB.O || 'PORTB.1) /* do nothing */ ;9

/* now one or both buttons are pressed */
1IT(PORTB.0) /* action for red button */
1IT(PORTB.1) /* action for black button */

William Sandgvist william@kth.se

!

React on keypresses?

- PORTB bit0
. gets 1 when one
presses the key

Two keys, nonblocking code

PORTB bit 1
gets 1 when one
presses the key

init rumn

{13
forewer

b | t fl agb | t ; read and act read hlack . acton
While(1) /* main programloop */ el M fagot
(21} E=hei] (93]
{ Red | |- | [setireset”] [~ 7 Black 7| |-
action flaghit action

/* examine button status */
1IT(PORTB.0) /* direct action for red button */ ;
1IT(PORTB.1) flagbit = 1; else flagbit = O;

/* . . . */

/* later e Tlagbit */

if(flagbit) /* action for black button */ ;
ks e Contact bounces?

One can react directly on the key status or share the information with a bitvariabel, a
flag bit.

William Sandgvist william@kth.se

React on keypresses?

PORTB bit 0
gets 1 when one
presses the key

Two keys, nonblocking code

PORTB bit 1
gets 1 when one
presses the key

init rumn

{13
forewer

b | t fl agb | t ; read and act read hlack . acton
While(1) /* main programloop */ el M fagot
(21} E=hei] (93]
{ Red | |- | [setireset”] [~ 7 Black 7| |-
action flaghit action

/* examine button status */
1IT(PORTB.0) /* direct action for red button */ ;
1IT(PORTB.1) flagbit = 1; else flagbit = O;

/> . . . */

/* later, act on the flagbit */

if(flagbit) /* action for black button */ ;
- Wait out (>5ms) contact bounces

delay(5); before the nect turn in the main-loop

William Sandgvist william@kth.se

Checkbox or Radiobutton?

Checkbox (meny alternatives):
| if(a)b; if(c)d; if(e)F; . . . |

What did vou like about the Site? What did yvou hate about the site?

@Cool Layout f)

" Easy to MNavigate @Diﬂimﬂt to Mawigate

Great Contents ™ Lousy Contents
Radio Button (only one):

[1f(a)b; else 1f(c)d; ... else f;]

Your Location:

' Morth Eas@Voﬂ West © South East © South West © Midlands

William Sandgvist william@kth.se

checkbox

512

52
[s]

av

c?

b

o

Radiobutton ...

To select only one option among several ...

Your Location:

 Worth Eas@\loﬂh West O SouthEast © South West © Midlands

if(a) b;
else if(c) d; [
else T; —LL

Or with the C-language switch-case expression ...

William Sandgvist william@kth.se

C-language switch — case expression

Hint! Note that B Knudsen compiler generates more

effective code for
o switch() - case

than for
e IT() -else 1T() —-else
so always use a switch statement when possible!

William Sandgvist william@kth.se

switch(d) {

case 0x00 : k="1"; break;
case 0x01 : k="2"; break;
case 0x02 : k="3"; break;
case 0x04 : k="4"; break;
case 0x05 : k="5"; break;
case 0x06 : k="6"; break;
case 0x08 : k="7"; break;
case 0x09 : k="8"; break;
case Ox0A : k="9"; break;
case 0x0OC : k="*"; break;
case 0x0D : k—'O" break;
case OxOE : k="# break;

C switch - case

fRecoding. Keyboard

different code d than is

delivers mostly a completely

~

/* 0x03, OXO7 0OxO0B, OXOF * [/ \engraved on the keyk I J
default - k=" %;

William Sandgvist william@kth.se

switch(choice) [Handy menu-handling

1

case
case
case
case

printf("

“y
"y
e
"J

break;

case
case

.N.

n

printf(

break;
default :

printf(""Wrong answer, Y/y/J/j/N/n"");

- /* Yes */
- /*
- /*

- [
- [

Group

yes */ alternatives
Ja */

- /* ja */

As you wish™) Default, for all
unspecified

No Nej */ alternatives
no nej */

"Ok. You don"t need Ao0");

William Sandgvist william@kth.se

Programing with state chart

A very common technique for
programming embedded
processors Is to use "state" and
"state chart".

The 1dea IS borrowed from
Digital Designs “state
machines".

William Sandgvist william@kth.se

LStart]

H(Simulator running)

)

—

Pause [Unpause]

{/ Simulator paused\\

\\ do/wait

/

| Log retrivial |

[Contnue

] \ do/output log

&.

[Data requested]

[Stop]

UML-state chart

Multitask?

Blinkl:
oONz
OFF: | | | | | | | | | | |

Blinkz=:
oMz
OFF:

Blink1 Blinkz

i

D)

/* Blinkl: 1s ON - 1s OFF */
/* Blink2: 0,2s ON - 0,2s OFF - 1s ON - 1s OFF */

William Sandgvist william@kth.se

Blinkil:

ng'e(l) e T e T e B e B

/* Blinkl: 1s ON - 1s OFF */
switch(Statel)

{

case O:
PORTB_copy.6=1; /* Blinkl = ON */
Timel++;
1T Timel == 10) { Statel = 1; Timel = O0; }
break;

case 1:
PORTB_copy.6=0; /* Blinkl = OFF */
Timel++;
1If(Timel == 10) { Statel = 0; Timel

1
o
-

}
PORTB = PORTB_copy;

delayl0(10); /* 0,1 sec delay each lap */’{)
+

William Sandgvist william@kth.se

Then another lightdiode ...

Blink2:
e e L L L
{
/* Blink2: 0,2s ON - 0,2s OFF - 1s ON - 1s OFF */
switch(State2){
case O:
PORTB_copy.5 1; Time2++; /* Blink2 ON */
iIf(Time2 == 2) { State2 = 1; Time2 = 0; }
break;
case 1:
PORTB_copy.5 = 0; Time2++; /* Blink2 OFF */
1IT(Time2 == 2) { State2 = 2; Time2 = 0; }
break;
case 2:
PORTB_copy.5 = 1; Time2++; /* Blink2 ON */
iIf(Time2 == 10) { State2 = 3; Time2 = 0; }
break;
case 3:
PORTB_copy.5 = 0; Time2++; /* Blink2 OFF */
1If(Time2 == 10) { State2 = 0; Time2 = 0; }

I,<2 T,<2 I,<10 T,<10

s
PORTB=PORTB_copy:

delayl0(10); /* 0,1 sek delay */ {)

¥ William Sandgvist william@kth.se

... \Why not both?

OFF:

Blinkz=:
oM

while(l) OFF:

{

/* Blinkl: 1s ON - 1s OFF */ I=0<=T=10

switch(Statel) ’

{
case 0: ... ; break; @ @ faSt 10
case 1: ... ; ' HS

T <10 T <10

}

/* Blink2: 0,2s ON - 0,2s OFF - 1s ON - 1s OFF */

switch(State2)

{
case O: - break; fast 10
case 1: : break;
case 2: : break; MS
case 3: I,<2 T,<2 T,<10 T,<10

}

PORTB = PORTB_copy;

delayl0(10); /* 0,1 sek delay */ 9 slow 0.1 s

William Sandgvist william@kth.se

State machine

By programming "'state machines"
(compare with Digital Design) you can
make it look as iIf the processor is able to
accomplish many things simultaneously.
One can try out each thing separately, and
usually works then the whole combination
as Intended.

| (113
#

forever

T ST

Blink1

Blink1

statel “

0.1

state? “
01,23

FORT
action

delay)

01s

i1
#

WARNING! There is a "sneaky" so-called RMW problem.

HINT, SOLUTION: Changing bits in a variable
PORT__copy instead of directly on the PORT. Then copy this
entire variable to port, port = PORT_copy;

More about this later in course ...

William Sandgvist william@kth.se

William Sandgvist william@kth.se

	Why use a small 8-bit processor when there are cheap powerful 32-bit?
	8-bit processor close to the sensor?
	8-bit processor as smart cable?
	PIC 8-bit processor
	Slide Number 5
	The business idea - buy only as much as you need
	ELFA’s cheapest PIC-processor
	The built in IO devices increases 8-bit processors' performance
	The same IO devices can then be found also in larger processors
	The course is all about connecting electronics to the IO devices
	Slide Number 11
	PIC16F690
	PIC 8-bit processor
	Program memory
	16F690 Program memory
	Code pages
	Data memory register File
	RP1 and RP0
	The compiler can choose for us!
	PC, IR, ALU, W-register
	Harvard vs Von Neumann
	CISC vs RISC
	KIA’s factory in Slovenia
	Fetch and Execute
	Instruction format
	Byte operations
	More Byte operations
	Program constants
	Bit operations
	Program jumps
	Conditional tests, skip
	Why skip?
	NOP No Operation
	How long time does instructions take?
	Ports
	Tris-register
	Slide Number 37
	An Assembly program
	Commented �assembly program
	C-program
	Download format
	Compilation ”report”
	(Cc5x internal variables)
	(Cc5x internal functions)
	(Simple C-statements  Assembler)
	Typical program structures
	A typical program
	Single run program?
	Single run program?
	Wait for a key press?
	Contact bounces!
	Toggle a LED ON/OFF
	Toggle a LED ON/OFF
	delay() function
	C-functions
	delay() function
	TIMER0
	TIMER0
	C-functions summary
	Wait for key presses?
	React on keypresses?
	Slide Number 62
	Checkbox or Radiobutton?
	Radiobutton …
	C-language switch – case expression
	C switch – case
	Slide Number 67
	Programing with state chart
	Multitask?
	First one lightdiode …
	Then another lightdiode …
	Why not both?
	State machine
	Slide Number 74

