IE1206 Embedded Electronics

Lel Le2 PIC-block Documentation, Seriecom Pulse sensors
I, U, R, P, serial and parallell
Le3 [=>| Exl |=>| KCl LAB1 Pulse sensors, Menuprogram
e Start of programing task
Led |=>| Ex2 Kirchoffs laws Node analysis Two ports R2ZR AD
Le5 |=>»| Ex3 P KC2 LAB2 | Two ports, AD, Comparator/Schmitt
Transients PWM
Les |—» Ex5 |->»| Led | Phasor jo PWM CCP KAP/IND-sensor
Ex6 > Le10 |=>»] Le11 P> kc4 LaB4 | LC-osc, DC-motor, CCP PWM
Let2] ex7 | Display LP-filter Trafo
e Display of programing task
Lel3 >| Written exam | Trafo, Ethernetcontact

William Sandgvist william@kth.se

Communication

William Sandgvist william@kth.se

MmO O m I oo~ m | W k- o

0
MLL

SOH
STH
ETH
EOT
ENG
ACK
BEL
B5
HT
LF
T
FF
CR
S0
5|

1

DLE

D10y
oM

D2

DS
ROFF

D4
MAK
sS4
ETE
AN
Enl
=UB
ESC
Fs
=5
RS
=

ol o o xR o O o R o R =R

malw |

Ozzl—xr_—zmﬂmmnmp@a

ASCII-table

Pl — N € xR S S H W D o

5 Every letter is stored in a Byte,
NI char.
; f .‘1Hej!11
— 48656A2100
o | w 01001000 01100101 01101010
i i 0010 Return
j T
N
:‘ i Windows/Dos Mac OS 9 UM
o CR+LF _R LF
"
PICKit 2 UART Tool
uses \r\n

William Sandgvist william@kth.se

http://ascii-table.com/

Serial communication
parallell-serial-parallell conversion

Micmcontroller 2 |l

[D
- itk
0

Mlcrumntroller 1

llllllll e

At [olofofsfolt]—#| "yt

e B e B e B e B |

Transmitter Receiver

Start bit —\L Parity/bit9
Idle mt idle
y

t—= W Stop bit
Data bits

William Sandgvist william@kth.se

UART-unit

Serial 10011010

+ = g

- O o =

[T

The serial/parallel conversion on a bit level is often taken care of with a
special circuit called UART (Universal Asynchronous Receiver/Transmitter),
so that the processor can deliver/receive full characters.

Such unit is built into most PIC processors
(USART/EUSART).

William Sandgvist william@kth.se

Serial communication unit

Independently run serial communication unit

FIGURE 12-1: EUSART TRANSMIT BLOCK DI FIGURE 12-2: EUSART RECEIVE BLOCK DIAGRAM

RRRRRRRRRRRRRR

%T||| o]

[:
. FIFO
&
Data Bus

T

The transmitter can hold two The recelver can receive up
characters in the queue from to three characters before
the processor. the processor needs to act.

During communication, the processor can do other things!

William Sandgvist william@kth.se

PIC16F690 EUSART

PIC 16F690 contains a built-in serial communication unit,
EUSART (Enhenced Universal Synchronous or

Asynchronous Receiver and Transmitter).

As the name implies, this device is useful for both synchronous and
asynchronous serial communication, but we will only use it for
asynchronous serial communications.

EUSART consists of three parts.

e SPBRG (Serial unit Programable BaudRateGenerator) is
a programable Baudgenerator for the transmission speed.

e USART Transmitter is the transmitter part.

e USART Reciever is the reciever part.

William Sandgvist william@kth.se

Bitrate

In serial communication, it is necessary that the transmitter

and receiver are operating with the same in advance agreed

upon rate. The rate at which bits are transferred is called the
Bitrate [bit/sec].

Frequently used Bitrate's are multiples of 75 bit/sek as: 75,
150, 300, 600, 1200, 9600, 19200 och 38400 bit/sek.

Bitrate clock is taken from a baud rate generator.

William Sandgvist william@kth.se

Baud Rate Generator BRG

REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL R Baud Rate Generator Fosc - J
RIW-0 RIW-D RIW-D RIW-0 rwo f rRwo] R RIW-D
cskc | ™ | men® [sync [senoB\] BreH [/ TRMT TXSD “n
bit 7 bit 0 BRG16 '
T+ 1| Multiplier | x4 | x16 |xG64
REGISTER 12-3: BAUDCTL: BAUD RATE CONTRO GISTER
R-0 R-1 U0 rRWo/ RWO \ U0 RW-0 RIW-D SYNC |1|xjojo) o0
ABDOVF RCIDL — | sckA | BrGIE [) — WUE ABDEN SPBRGH | SFPBRG BRGH |xl1l1l0l o
bit 7 D4 bit 0 _

TABLE 12-3: BAUD RATE FORMULAS

BRG16 |[x|1|o0]1| 0
(16bit). . 8bit

Configuration Bits

BRG/EUSART Mode

Baud Rate Formula

One bit BRGH

determines the low-speed

or high-speed mode. One

BRG16 BRGH
0 A-bit'Asynchronous Fosc64 (n+1)]
1 B-hivAsynchronous
Fosc[16 (n+1)]
i o 16-bit'Asynchronous
1 16-hit!Asynchronous Fosc(4 (in+1]]
e Our settings:

/* 9600

BRG16=0; BRGH=1; SPBRG = 26-1;

Baud @ 4 MHz

*/

bit BRG16 introduces
16-bit divisor.

Aregister SPBRG contains a
divisor 8/16-bits.

William Sandgvist william@kth.se

Baud Rate Generator BRG

The extensive setting options are there to be able to find a
combination that gives the most accurate bitrate as possible.

Two processors that communicate asynchronously
with each other must have Bitrate's that conforms
better than £2,5%. Otherwise you risk the
communication to be distorted.

William Sandgvist william@kth.se

Transmitter

TXREG Reqgister =| TxIF |[-] "
{8
T Y B T TXICK pin
'] ! Fin Buffer
(__r* (8) e 0 v | and Contro
! }__ Tranzmit Shift Register (TSR) !

., .__ .. _ Jransmit Shift Register (TSR) _ _ __ _|
-
TXEN
SPEN

X TRMT
BaudRate
Generator

TX8D

To send a character, it is enough to put it in the TXREG register. When the
transmitterregister TSR is "redy" the character is copied to this and is shifted
out serial on the pin TX/CK. If there is If you have a further character to send
you can now put it in the "waiting queue” for TXREG. As fast as TSR is
empty the next character will be loaded from TXREG automaticaly to TSR.

In the blockdiagram the flag TXIF (Transmitter Interupt Flag) will tell if
the transmitter register TXREG is full or not. The flag is zeroed
automatically when a character is loaded to TSR.

William Sandgvist william@kth.se

Transmitter settings

REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

RW-0 RIW-0 RAW-0 RW-0 RAW-0 RW-0 R-1 RAW-0
CSRC X0 THENM SYNC SENDB BRGH TRMT TX0D
bit 7 bit 0

bit 6 = 0 TX9: No nine bit transmission.

bit 5 =1 TXEN: Transmit Enable bit. Must be on.

bit4 =0 SYNK: Usart mode select bit. We chose asynchronous operation.
bit 2 =1 BRGH: High Baudrate select bit. We chose high speed mode.

bit 1 TRMT: Flagis ”1” if TSR is empty.

William Sandgvist william@kth.se

Reclever

Characters received from the pin RX/DT to the reciever register RSR. When
the reception of a character is done it is brought over to RCREG which is a

FIFO-buffer. This buffer contains two characters that are read in the order they
arrived.

SPEN CREM QOERR | RCIDL

The buffer means that a l T f
program can do other TR | mse RSR Regster Lsb)
things during the time it and Cortrol Revery [Sp [@) 7] -e- |10 sRT):

- t N B R ..
takes to receive three — RS
characters. Generator
The flag RCIF tells if there are characters in the — Jere
buffer or not. This flag is zeroed automaticall Al b i
when the buffer is read and empty, after one/two L * Datasus
characters. RO ntermupt

* (0 | |

Flags OERR, FERR warns for erroneously received characters

William Sandgvist william@kth.se

Reciever settings

REGISTER 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER!"

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-X
SPEN | RX9 | SREN | CREN | ADDEN | FERR OERR RX9D
bit 7 bit 0

bit 7 =1 SPEN: Enables the serieal port.
bit 6 = 0 RX9: No recieve of nine bit.

bit 4 = 1 CREN: Continuous Receive Enable bit. Use the buffer.
bit 2 and bit 1 FERR OERR Flags for erroneously received characters.

The bit/bitvariabele RCIF indicates when there are
characters to fetch.

William Sandgvist william@kth.se

Initiation of the serieal port

void initserial(void)
/* 1nitialise serialcom port 16F690 */
{

SPEN = 1;

BRGH = 1; /* Async high speed */
BRG16= 0; /* SPRG n 1s 8-bit */
TXEN = 1; /* transmit enable */
SPBRG = 26-1; /* 9600 Baud @ 4 MHz */
CREN = 1; /* Continuous receive */
RX9 = 0; /* 8 bit reception */
TRISB.7 = 0; /* TX 1s output */
TRISB.5 = 1; /* RX 1s I1nput */

+

e Done once in the beginning of program.

Seriecom-functions

char getchar(void) /* recieves one char */
{

char d_iIn;

while (IRCIF) ; /* wait for char */

d _1n = RCREG; : :
— g | |
return d_in: Note! Blocking function!

} Here you will wait until a character is received!

void putchar(char d out) /* sends one char */

{

/* wait until previous character transmitted */
while (ITXIF) ;
TXREG = d_out;

}

William Sandgvist william@kth.se

Warning! Recievern can lock!

The program must read the receiver unit before it has received
three characters - otherwise it lock itself!

When connecting the serial connector one may "trembles" on
hand such that the "contact bounces" becomes many characters
received. If the receiving device then "freezes" this is obviously
a very difficult/impossible "bug" to find!

The solution Is an unlocking routine to use If necessary. You

should call such a unlocking routine directly before you expects
Input via the serial port.

William Sandgvist william@kth.se

OverrunRecover()

voild OverrunRecover(void)
{

char trash;

trash = RCREG;

trash = RCREG;

CREN = O

CREN = 1

}

L UﬂIOCking prOCEdure. Note: Ifthe receive FIFO is overrun, no additional

characters will be received until the overmun
condition is cleared. See Section 12.1.2.5
“Receive Overrun Error” for more
information on overrun emors.

William Sandgvist william@kth.se

é Serial com - Hardware

1) PICKIT 2 UART Tool by the programing wires

P/ PICkit2 UART Tool
III:Ir | Fed

W
gﬁﬁﬁ % i %%gﬁﬂ% Place jumpers between PIC-
B processorn serial port to the

PICkit 2 Program

g{%}(}:am/ iﬂﬁ%%m%mﬁﬁﬁmHm programing wires (Cr, Red).

| + -

FICKit2 primary connections in grey
secondary connections for the lab in calor

Or and Red jumpers for PICKE2 UART Tool

William Sandgvist william@kth.se

]
Fimie o

&7 Serial com — Console program

1) PICKIT 2 UART Tool, can be used as a console program
through the programing wires.

PICkit 2 UART Tool =] 1
ISEDD = I Cohnect | Discorrect | [DD : Té%ﬁit:éﬁiﬁepi%iu-é g;%ibit' @ Mode: Hex |
=
"EPICkit 2 Programmer [=lH -
File Dewice Family Programmer | Tools | Wiew Help /* n Ot d I St u r b UA RT - TO O I */
— Midrange/Standard Configuration ——| Enable Code Protect Chrl+P
Eiies FIC1EFEZ2 Enable Data Protect Chrl4+D T R I SA O _ 1 - T h reestate O n th e
UserIDs: FFFFFFFF osceaL ’ - - L] ;
Checksum: 35FF U R e ' TR I SA 1 — 1 - p rog ra.m I n g
!Z| Fast Prograrnrning - | - b

FICkit 2 found and connected|

- - - T I
PIC Device Found. e UTRRl |aOCH||I | n | tse r | a I () ; Wi reS-
o -

I Download PICKE 2 Operating Swskem]

=
Target String Macros: V' Append CR+LF [x0D + x04) ¥ rap Text
- 12VDD L:;ADIT:')I'C """" ! Send || Log to File |
g ggD—I_I— GND Send | I Clear Screen |
(& TX
| Py Send || ¥ EchaOn

Send Exit U&ART Tool
Connect PICK 2 VDD & target WDD. —I I

4

William Sandgvist william@kth.se

(Serial com — Hardware)

2) PC with serial port

PICkit 2 Programmer IC5P
VB Grne el pBlue 1 Or) Fed
45*.-'"5"5, 5 Gnd
, A D O3 m
T e a -z

E
I ?éiﬁ%i

--:n—::n—n—-__

e —_ |
'.—.| o -
—‘ | i]
'r| | il
0

'U—D—HE

i-i:l-D—Hn
L s
oo 0o
D
L]
o—re—o
D—Ho—0G
D=0
o—orfo—o—r
C—H O
o—H—oG
oG
M oo
o—=ta o3
D=0
D=0 =0
~ o
oo oo
Ly o K]
D
L o e]
D000
O—"H 0
D
Hotete s
ol

T

H_H_-:.J

=

o

= wllt, | Inverter
EFEZ0 wperimental area — .
nd
Eiinn LSRN NN R R R T R AEELE ICL7667
O v T v I T O - SO e O e = N O I O N N - e - I - N O e O = N Y o . N - e O e (O - 3
E ; g T
0 Fi 1 E %Eiiipc lllllllllllllllllll A 1 E
s Jdu | £ 3"\-": i
T + oo
Gll'ld__'j = g ESESE
4.5 Battery PC Serial port

Invert signals to/from PIC-processor serial port before it is connected to PC

serial port. (Should be £12V, but inverters use to be enough).
(There are special circuits that generate £12V signals for serial communication.)

William Sandgvist william@kth.se

Serial communication USB-serial-TTL

3) FTDI TTL232R connects directly to the processor pins.

Most PC lacks nowadays serial port, a driver can install

Noninverted a virtual USB serial port.
logic levels

The driver is ::::::::::.:::::::::::::::::::::::::::::::::::
now already in EEEEEEEEEfEEEEEEEEEEEE555555555555555555555555
WindOWS —_—— FIC1EFES0 Experimental | area
117 ety 111
ﬁMmm%i%ﬁ?%ﬁ%ﬁ%ﬁﬁﬁEﬁ%%%%ﬁ%ﬁ%i%ﬁﬁ%ﬁﬁi%%i"gin
FTD L oo oo
Chip

4.5 Battery PICKiZ primany connections in grey secondary connections For the lab in colar TTL-232R USE-cable

William Sandgvist william@kth.se

[CPO2 PICKITZ
[programimer

Fritzing Serial Monitor

ﬂ p«:‘nampk'.ﬁ . F;n_'mq
J Fix Edi Cedle \iew Window Help

|| Commected 1o COLM @ BE0D. B, Mone, 1, Rane

FTOITTL 232R5Y LISE
frsedal monitor

Ardund

Pasrfaim

William Sandgvist william@kth.se

Console program to PC

If you uses a USB-virtual serial port — first find out the COM port number
(with Device / Device Manager)...

PuTT¥ Configuration d 2 PUTTY Configuration
Categorny: Categony:

= Sessioh | Basic optionhs for your PUTTY sezsion | =3 S_ession

i) L.Dgglng r~ Specify the destination vou want to connect to o Llogglng

- Teminal L - Terminal
- Keyboard Eerallle Szt Fepboard
- Bell |EOM1 |30 L el
- Features Connection type; . Features

=1 Window " Raw 1 Telnet © Rlogin © SS@ - window
- Appearance) : Appearance
 Behaviour r~Load. save or delete a stared sessmn—‘ Behaviour
... Translation Saved Sessions Temwmel shicun
-~ Colaurs Default Settings L

=]+ Connection
- Data c
- Proxy —
- Telnet D
-~ Rlogin =

- 55H
@ Cloge window an exit;
" Alwaps € MNever (% Onlyoncleane

About | Help

£ puTTY

putkty .exe

"
—_—m A

William Sandgvist william@kth.se

| Options contralling local serial lines |

Serial line to connect to

" Select a zernial line

IEDM'I

Configure the sernial line

Speed [baud]
[Drata bits

Chmm bibn

=101 x|

INone 'l
IXDN;’XDFF YI

Cancel

Open I

http://www.chiark.greenend.org.uk/%7Esgtatham/putty/

Test program: echo()/crypto()

void main(void) [If PIC-processor echoes” the characters]

1 so does the communication work.
char c;

TRISB.6 1; /7* not to disturb UART-Tool */
TRISB.7 1; /7* not to disturb UART-Tool */
initserial();
delayl0(100); /* 1 sek delay */
/* 1 sek to turn on VDD and Connect UART-Tool */
while(1)
{
c_= getchar(); /7* 1nput 1 character */
i "\r*]]Jc == "\n")

else putchar(c); /* echo the character */
/* putchar(c+1l) => Crypto! */

¥ [Safer version: crypto! A—B]

} William Sandgvist william@kth.se

William Sandgvist william@kth.se

Serial communication directly,
with with an optional pin!

William Sandgvist william@kth.se

Bit-banging

It is very common to program serial communication "bit by bit". Any port
pin can be used. This is a very good debugging tool.

A suitable bitrate is then 9600.[T = 1/9600 = 104.17 uS.]f the processor's
clock frequency is 4 MHz a delay Toop that takes 104 instructions is needed.

/* delay one bit[104 usec]at 4 MHz */
/* 5+18*5-1+1+9=104 wirthout optimization */
1 = 18;

do - Loock at the assembly code
while(--i > 0); - and count the instructions.
nop(); Every instruction takes 1 zs.

William Sandgvist william@kth.se

Bits and extra bits

Start bit Parity/bit9
die @3@@@@@3&@ die
t—= % V / Stop bit

Data bits

The asynchronous transfer technique means that for every
byte one adds extra bits that will make it possible to
separate out the byte from the bitstream. Often you in
addition put in a bit for error indication.

Send a character ...

Start bitl 1T Parity/bit9
Idle L Idle
\ y /

t—= Stop bit

Data bits

» The data transfer starts with the data line is held low "0" during a time
Interval that is one bit long (T = 1/bitrate). This is start bit.

 During 8 equally long time interval then follows the data bits, ones or
zeros, with the least significant bit first and the most significant bit last.
» (Thereafter could a parity bit follow, an aid in the detection of
transmission errors.)

» The transfer ends finally to the data line for at least one bit interval is
high. This Is the stop bit.

Recleve a character

Start bit %i T Parityibitd
dle mt dle
t—= A v / Stop bit
Data bits

The reception of data is done by first waiting for the start
bit negative edge, and then register the first data after 1.5T
delay and then the next data bits after 1T (registration at the
data bits "midpoints").

The receiver Is "resynchronized" again at every start bit
edge.

Rotation av numbers

RLF Rotate Left f through Carry
Syntax: [label] RELF fd
Operands: O0=f=127

de [0,1]
Operation: See description below
Status Affected: C

Description:

Words:

Cycles:
Example:

The contents of register 'f are
rotated one bit to the left through
the Carry flag. If 'd" is '0°, the
result is placed in the W register.
If'd"is "1’ the result is stored
back in register f.

F—EH Register f |-4—|
1
1

ELF REG1, 0

Before Instruction

REG1 = 1110 0110
o = 0

After Instruction
EEG31 = 1110 0110
W = 1100 1100
o = 1

William Sandgvist william@kth.se

RRF

Syntax:
Operands:

Operation:
Status Affected:

Description:

Rotate Right f through Carry

[label] RRF fd

0<f<127
de [01]

See description below
C

The contents of register T are
rotated one bit to the nght through
the Carry flag. If 'd"is 0', the
result is placed in the W register.
If ‘d’ is "1’ the result is placed
back in register .

’—-|£|—>| Register f |—-|

P1C-processors has two
Instruktions for "’rotate”
numbers RLF and RRF.

These instructions, we need
INn the future...

Ccbhx has internal functions rl() and rr()

RLF Rotate Left f through Carry

r—| C - Ragister f |<—|

RRF Rotate Right f through Carry

L T { char rr(char); }

[char ri1¢ char);]

C language has two shift operators shift right >> and shift left <<, no
actual "rotate" -operator does not exist.

In order to nevertheless be able to use PIC processors' rotation

Instructions, the compiler Cc5x has added two internal functions
char rI(char); and char rr(char);.

These functions directly generates assembly instryctions RLF and RRF.

The Carryflag is reached as a internal bit variable bit Carry;

William Sandgvist william@kth.se

Debug-comunication
Chip-programing

PICKit2 UART-tool can be used as a simple debuging ~ &nd comunication.

tool. The same wires that are used for the chip i g g

programming are used by the UART-tool for serial ~= 3 6 [Ymm RA1
communication. i } e
] -]]) -li—h-[6 E 15]“
What is needed is therefore a bitbanging-routine for e & 140w
. - - 13[] =
serial communication with these pins. HEQ 1z%ﬁ
== []10 11 :|-I—I-

void initserial(void) /7* 1nit PIC16F690 serialcom */
{

ANSEL.O = 0; /* No AD on RAO */
ANSEL.1 = 0; /* No AD on RAl */
PORTA.O = 1; /* marking line */
TRISA.O0 = O0; /* output to PK2 UART-tool */
TRISA.1 = 1; /* input from PK2 UART-tool */

William Sandgvist william@kth.se

void putchar(char)

Il |

—= Serial out = Carry;

void putchar(char d _out)

{ char count, 1;
Seri1al out = 0; /* set startbit */
for(count = 10; count > 0; count--)

{ /* delay 104 usec */
i = 18; do ; while(--i > 0); nopQ;
Carry = 1;
d out = rr(d _out);
Serial _out = Carry;
+

char getchar(void)

char getchar(void)

{ |:d_in = rri{ d inj; j

char d _1n, count, 1;
while(Serial _1In == 1) /* wait for startbit */;
/* 1.5 bit 156 usec no optimization */
1 = 28; do ; while(--1 > 0); nop(); nop2();
for(count = 8; count > 0; count--)
{
Carry = Serial _i1n;
dimn=rrCdin);
/* 1 bit 104 usec no optimization */
1 = 18; do ; while(--t1 > 0); nop(Q);
}

return d_in;

}

William Sandgvist william@kth.se

Test program: squarewave

You can check if the bitrate is correct with an oscilloscope.

9600 bit/sek. If you transmitts continuously 8 bit with
start bit and stop bit the letter ’U’ (1010101010) you
will get a squarewave with f=4800 Hz. This test Is

useful to know.
[While(l) putchar(?U”); }

William Sandgvist william@kth.se

If you don’t have any oscilloscope?

[While(l) putchar(’U”);]

| [=m ~| [Conneat | [

nnnnn

ect| [¥]vDD

TUOUUUUOUIUUOOUOUUT oo oo
TUOUUUUoUUUUUoUoUUoooTom

sl PICkit 2 Logic Tool

8 data bits - No parity - 1 Stop bit. - b
ASCIl newiine = &0D DA @ Mode: [ASCll] [Hex |

-~

m@n&.}

N T o N O O LT E T T T T T LT LTI L LT T TE T T TE IO LT C T TC C I T TT T TEIT T TLTCICTCIC LT TCTEICICTTTCTEICICICITTCINICICITT

X

Uoauuy

TUoUuUy
(sl eeieeg

Connect PICKkit 2VDD & target VDD.

Mode: | Legic 1O

]
Trigger uisition
LTS S :;q le Rate:
> 1 Ch1&Ch2 rigger when ample Rate: o
2 DD i .
2 ¢hEB dafsona Chie / = °-DoniCare 1 MHz - 1 ms Window
4 CH1 2 S 5 S
g En% p I!-down and 1 - Logic High MNOTE: Signals greater than 500 kHz will alias.
EELE ghe - -l lmcie 0
and /- Rising Edgs rigger Position:
PICKit 2 VDD MUST connectto €13 = 7 \-FalingEdge © Startof Data © Delay 1Window
circuit VDD, (") Center of Data () Delay 2 Windows
Cccties) 1 | hines) End of Data ©) Delay 3 Windows
(7-256) 1 Window = 1000 samples.
Help Exit Logic Tool
e I == VAT

Exit UART Tool

|

William Sandgvist william@kth.se

(PICKit2\

Logic

\Tool)

We can see details such
as that the stop bit are a
little longer than the
other bits.

To measure the
frequency, click the
markers in place with
left and right mouse

" buttons. The frequency is

4785 Hz (~4800).

William Sandgvist william@kth.se

	IE1206 Embedded Electronics
	Communication
	ASCII-table
	Serial communication �parallell-serial-parallell conversion
	UART-unit
	Serial communication unit
	PIC16F690 EUSART
	Bitrate
	Baud Rate Generator BRG
	Baud Rate Generator BRG
	Transmitter
	Transmitter settings
	Reciever
	Reciever settings
	Initiation of the serieal port
	Seriecom-functions
	Warning! Recievern can lock!
	OverrunRecover()
	Serial com - Hardware
	Serial com – Console program
	(Serial com – Hardware)
	Serial communication USB-serial-TTL
	Slide Number 23
	Console program to PC
	Test program: echo()/crypto()
	Slide Number 26
	Serial communication directly, with with an optional pin!
	Bit-banging
	Bits and extra bits
	Send a character …
	Recieve a character
	Rotation av numbers
	Cc5x has internal functions rl() and rr()
	Debug-comunication
	void putchar(char)
	char getchar(void)
	Test program: squarewave
	If you don’t have any oscilloscope?
	Slide Number 39

