
IE1206 Embedded Electronics

Transients PWM

Phasor jω PWM CCP KAP/IND-sensor

Le1

Le3

Le6

Le8

Le2

Ex1

Le9

Ex4 Le7

Written exam

William Sandqvist william@kth.se

PIC-block Documentation, Seriecom Pulse sensors
I, U, R, P, serial and parallell

Ex2

Ex5

Kirchoffs laws Node analysis Two ports R2R AD

Trafo, Ethernetcontact Le13

Pulse sensors, Menuprogram

Le4

KC1 LAB1

KC3 LAB3

KC4 LAB4

Ex3 Le5 KC2 LAB2 Two ports, AD, Comparator/Schmitt

Step-up, RC-oscillator

Le10 Ex6 LC-osc, DC-motor, CCP PWM

LP-filter Trafo Le12 Ex7 Display

Le11

• Start of programing task

• Display of programing task

William Sandqvist william@kth.se

Communication

William Sandqvist william@kth.se

ASCII-table

http://ascii-table.com/

Every letter is stored in a Byte,
char.

”Hej!”
48 65 6A 21 00
01001000 01100101 01101010
00100001 00000000

PICKit 2 UART Tool
uses \r\n

http://ascii-table.com/

William Sandqvist william@kth.se

Serial communication
parallell-serial-parallell conversion

Idle Idle
Stop bit

Data bits

Start bit Parity/bit9

William Sandqvist william@kth.se

UART-unit

The serial/parallel conversion on a bit level is often taken care of with a
special circuit called UART (Universal Asynchronous Receiver/Transmitter),
so that the processor can deliver/receive full characters.

Such unit is built into most PIC processors
(USART/EUSART).

Serial communication unit

William Sandqvist william@kth.se

The receiver can receive up
to three characters before
the processor needs to act.

The transmitter can hold two
characters in the queue from
the processor.

Independently run serial communication unit

During communication, the processor can do other things!

William Sandqvist william@kth.se

PIC16F690 EUSART
PIC 16F690 contains a built-in serial communication unit,
EUSART (Enhenced Universal Synchronous or
Asynchronous Receiver and Transmitter).
As the name implies, this device is useful for both synchronous and
asynchronous serial communication, but we will only use it for
asynchronous serial communications.

EUSART consists of three parts.
• SPBRG (Serial unit Programable BaudRateGenerator) is
a programable Baudgenerator for the transmission speed.
• USART Transmitter is the transmitter part.
• USART Reciever is the reciever part.

William Sandqvist william@kth.se

Bitrate
In serial communication, it is necessary that the transmitter
and receiver are operating with the same in advance agreed
upon rate. The rate at which bits are transferred is called the
Bitrate [bit/sec].

Frequently used Bitrate's are multiples of 75 bit/sek as: 75,
150, 300, 600, 1200, 9600, 19200 och 38400 bit/sek.

Bitrate clock is taken from a baud rate generator.

William Sandqvist william@kth.se

Baud Rate Generator BRG

One bit BRGH
determines the low-speed
or high-speed mode. One
bit BRG16 introduces
16-bit divisor.

/* 9600 Baud @ 4 MHz */
BRG16=0; BRGH=1; SPBRG = 26-1;

A register SPBRG contains a
divisor 8/16-bits.

(16bit) 8bit

• Our settings:

William Sandqvist william@kth.se

Baud Rate Generator BRG

The extensive setting options are there to be able to find a
combination that gives the most accurate bitrate as possible.

Two processors that communicate asynchronously
with each other must have Bitrate's that conforms
better than ±2,5%. Otherwise you risk the
communication to be distorted.

William Sandqvist william@kth.se

Transmitter

To send a character, it is enough to put it in the TXREG register. When the
transmitterregister TSR is "redy" the character is copied to this and is shifted
out serial on the pin TX/CK. If there is If you have a further character to send
you can now put it in the "waiting queue" for TXREG. As fast as TSR is
empty the next character will be loaded from TXREG automaticaly to TSR.

In the blockdiagram the flag TXIF (Transmitter Interupt Flag) will tell if
the transmitter register TXREG is full or not. The flag is zeroed
automatically when a character is loaded to TSR.

William Sandqvist william@kth.se

Transmitter settings

bit 6 = 0 TX9: No nine bit transmission.

bit 5 = 1 TXEN: Transmit Enable bit. Must be on.

bit 4 = 0 SYNK: Usart mode select bit. We chose asynchronous operation.

bit 2 = 1 BRGH: High Baudrate select bit. We chose high speed mode.

bit 1 TRMT: Flag is ”1” if TSR is empty.

William Sandqvist william@kth.se

Reciever
Characters received from the pin RX/DT to the reciever register RSR. When
the reception of a character is done it is brought over to RCREG which is a
FIFO-buffer. This buffer contains two characters that are read in the order they
arrived.
The buffer means that a
program can do other
things during the time it
takes to receive three
characters.
The flag RCIF tells if there are characters in the
buffer or not. This flag is zeroed automatically
when the buffer is read and empty, after one/two
characters.

Flags OERR, FERR warns for erroneously received characters

William Sandqvist william@kth.se

Reciever settings

bit 7 = 1 SPEN: Enables the serieal port.

bit 6 = 0 RX9: No recieve of nine bit.

bit 4 = 1 CREN: Continuous Receive Enable bit. Use the buffer.

bit 2 and bit 1 FERR OERR Flags for erroneously received characters.

The bit/bitvariabele RCIF indicates when there are
characters to fetch.

William Sandqvist william@kth.se

Initiation of the serieal port
void initserial(void)
/* initialise serialcom port 16F690 */
{
 SPEN = 1;
 BRGH = 1; /* Async high speed */
 BRG16= 0; /* SPRG n is 8-bit */
 TXEN = 1; /* transmit enable */
 SPBRG = 26-1; /* 9600 Baud @ 4 MHz */
 CREN = 1; /* Continuous receive */
 RX9 = 0; /* 8 bit reception */
 TRISB.7 = 0; /* TX is output */
 TRISB.5 = 1; /* RX is input */
}

• Done once in the beginning of program.

William Sandqvist william@kth.se

Seriecom-functions
char getchar(void) /* recieves one char */
{
 char d_in;
 while (!RCIF) ; /* wait for char */
 d_in = RCREG;
 return d_in;
}

void putchar(char d_out) /* sends one char */
{
 /* wait until previous character transmitted */
 while (!TXIF) ;
 TXREG = d_out;
}

Note! Blocking function!
Here you will wait until a character is received!

William Sandqvist william@kth.se

Warning! Recievern can lock!

The program must read the receiver unit before it has received
three characters - otherwise it lock itself!
When connecting the serial connector one may "trembles" on
hand such that the "contact bounces" becomes many characters
received. If the receiving device then "freezes" this is obviously
a very difficult/impossible "bug" to find!

The solution is an unlocking routine to use if necessary. You
should call such a unlocking routine directly before you expects
input via the serial port.

William Sandqvist william@kth.se

OverrunRecover()
void OverrunRecover(void)
{
 char trash;
 trash = RCREG;
 trash = RCREG;
 CREN = 0;
 CREN = 1;
}

• Unlocking procedure.

William Sandqvist william@kth.se

Serial com - Hardware

Place jumpers between PIC-
processorn serial port to the
programing wires (Or, Red).

1) PICKIT 2 UART Tool by the programing wires

Threestate
so not
disturb

William Sandqvist william@kth.se

Serial com – Console program
1) PICKIT 2 UART Tool, can be used as a console program
through the programing wires.

/* not disturb UART-Tool */

TRISA.0 = 1;
TRISA.1 = 1;
initserial();

Threestate on the
programing
wires!

William Sandqvist william@kth.se

(Serial com – Hardware)
2) PC with serial port

Invert signals to/from PIC-processor serial port before it is connected to PC
serial port. (Should be ±12V, but inverters use to be enough).
(There are special circuits that generate ±12V signals for serial communication.)

Inverter

ICL7667

PC-serieport

William Sandqvist william@kth.se

Serial communication USB-serial-TTL
3) FTDI TTL232R connects directly to the processor pins.

Most PC lacks nowadays serial port, a driver can install
a virtual USB serial port.

The driver is
now already in
Windows

Noninverted
logic levels

Fritzing Serial Monitor

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Console program to PC

PuTTY

If you uses a USB-virtual serial port – first find out the COM port number
(with Device / Device Manager)…

PuTTY

http://www.chiark.greenend.org.uk/%7Esgtatham/putty/

William Sandqvist william@kth.se

Test program: echo()/crypto()
void main(void)
{
 char c;
 TRISB.6 = 1; /* not to disturb UART-Tool */
 TRISB.7 = 1; /* not to disturb UART-Tool */
 initserial();
 delay10(100); /* 1 sek delay */
 /* 1 sek to turn on VDD and Connect UART-Tool */
 while(1)
 {
 c = getchar(); /* input 1 character */
 if(c == '\r'||c == '\n')
 putchar(c);
 else putchar(c); /* echo the character */
 /* putchar(c+1) => Crypto! */
 }

 }

If PIC-processor ”echoes” the characters
so does the communication work.

Safer version: crypto ! A→B

William Sandqvist william@kth.se

Serial communication directly,
with with an optional pin!

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Bit-banging
It is very common to program serial communication "bit by bit". Any port
pin can be used. This is a very good debugging tool.

A suitable bitrate is then 9600. T = 1/9600 = 104.17 µs. If the processor's
clock frequency is 4 MHz a delay loop that takes 104 instructions is needed.

/* delay one bit 104 usec at 4 MHz */
/* 5+18*5-1+1+9=104 without optimization */
i = 18;
do ;
while(--i > 0);
nop();

Loock at the assembly code
and count the instructions.
Every instruction takes 1 µs.

William Sandqvist william@kth.se

Bits and extra bits

The asynchronous transfer technique means that for every
byte one adds extra bits that will make it possible to
separate out the byte from the bitstream. Often you in
addition put in a bit for error indication.

William Sandqvist william@kth.se

Send a character …

• The data transfer starts with the data line is held low "0" during a time
interval that is one bit long (T = 1/bitrate). This is start bit.
• During 8 equally long time interval then follows the data bits, ones or
zeros, with the least significant bit first and the most significant bit last.
• (Thereafter could a parity bit follow, an aid in the detection of
transmission errors.)
• The transfer ends finally to the data line for at least one bit interval is
high. This is the stop bit.

1T

William Sandqvist william@kth.se

Recieve a character

The reception of data is done by first waiting for the start
bit negative edge, and then register the first data after 1.5T
delay and then the next data bits after 1T (registration at the
data bits "midpoints").

The receiver is ”resynchronized" again at every start bit
edge.

1,5T 1T

William Sandqvist william@kth.se

Rotation av numbers

PIC-processors has two
instruktions for ”rotate”
numbers RLF and RRF.
These instructions, we need
in the future…

William Sandqvist william@kth.se

Cc5x has internal functions rl() and rr()

char rl(char);

char rr(char);

C language has two shift operators shift right >> and shift left << , no
actual "rotate" -operator does not exist.

In order to nevertheless be able to use PIC processors' rotation
instructions, the compiler Cc5x has added two internal functions
char rl(char); and char rr(char);.
These functions directly generates assembly instryctions RLF and RRF.

The Carryflag is reached as a internal bit variable bit Carry;

William Sandqvist william@kth.se

Debug-comunication

void initserial(void) /* init PIC16F690 serialcom */
{
 ANSEL.0 = 0; /* No AD on RA0 */
 ANSEL.1 = 0; /* No AD on RA1 */
 PORTA.0 = 1; /* marking line */
 TRISA.0 = 0; /* output to PK2 UART-tool */
 TRISA.1 = 1; /* input from PK2 UART-tool */
}

PICKit2 UART-tool can be used as a simple debuging
tool. The same wires that are used for the chip
programming are used by the UART-tool for serial
communication.

 What is needed is therefore a bitbanging-routine for
serial communication with these pins.

Chip-programing
and comunication.

void putchar(char d_out)
{ char count, i;
 Serial_out = 0; /* set startbit */
 for(count = 10; count > 0; count--)
 { /* delay 104 usec */
 i = 18; do ; while(--i > 0); nop();
 Carry = 1;
 d_out = rr(d_out);
 Serial_out = Carry;
 }
}

William Sandqvist william@kth.se

void putchar(char)

William Sandqvist william@kth.se

char getchar(void)
char getchar(void)
{
 char d_in, count, i;
 while(Serial_in == 1) /* wait for startbit */;
 /* 1.5 bit 156 usec no optimization */
 i = 28; do ; while(--i > 0); nop(); nop2();
 for(count = 8; count > 0; count--)
 {
 Carry = Serial_in;
 d_in = rr(d_in);
 /* 1 bit 104 usec no optimization */
 i = 18; do ; while(--ti > 0); nop();
 }
 return d_in;
}

William Sandqvist william@kth.se

Test program: squarewave

9600 bit/sek. If you transmitts continuously 8 bit with
start bit and stop bit the letter ’U’ (1010101010) you
will get a squarewave with f = 4800 Hz. This test is
useful to know.

while(1) putchar(’U’);

You can check if the bitrate is correct with an oscilloscope.

If you don’t have any oscilloscope?

William Sandqvist william@kth.se

while(1) putchar(’U’);

PIC Tx

PICKit2
Logic
Tool

We can see details such
as that the stop bit are a
little longer than the
other bits.
To measure the
frequency, click the
markers in place with
left and right mouse
buttons. The frequency is
4785 Hz (≈4800).

William Sandqvist william@kth.se

	IE1206 Embedded Electronics
	Communication
	ASCII-table
	Serial communication �parallell-serial-parallell conversion
	UART-unit
	Serial communication unit
	PIC16F690 EUSART
	Bitrate
	Baud Rate Generator BRG
	Baud Rate Generator BRG
	Transmitter
	Transmitter settings
	Reciever
	Reciever settings
	Initiation of the serieal port
	Seriecom-functions
	Warning! Recievern can lock!
	OverrunRecover()
	Serial com - Hardware
	Serial com – Console program
	(Serial com – Hardware)
	Serial communication USB-serial-TTL
	Slide Number 23
	Console program to PC
	Test program: echo()/crypto()
	Slide Number 26
	Serial communication directly, with with an optional pin!
	Bit-banging
	Bits and extra bits
	Send a character …
	Recieve a character
	Rotation av numbers
	Cc5x has internal functions rl() and rr()
	Debug-comunication
	void putchar(char)
	char getchar(void)
	Test program: squarewave
	If you don’t have any oscilloscope?
	Slide Number 39

