

**DD2476 Search Engines and Information Retrieval Systems** 

### Lecture 6: Retrieval of Documents with Hyperlinks

Hedvig Kjellström hedvig@kth.se https://www.kth.se/social/course/DD2476/





### **Recap: Ranked Retrieval**

We want top-ranking documents to be both relevant and authoritative

- Relevance cosine scores
- Authority query-independent property

Examples of authority signals

- Wikipedia pages (qualitative)
- Articles in certain newspapers (qualitative)
- A scientific paper with many citations (quantitative)
- **PageRank** (quantitative)





### Today

PageRank (Manning Chapter 21)

 Measuring the authority of a document in corpus with hyperlinks

Monte Carlo methods (Bishop Chapter 11)

• Short recap of / intro to Monte Carlo methods

Monte Carlo approximations to PageRank (Avrachenkov et al Sections 1-2)

• Approximative and fast way to find PageRank





### PageRank (Manning Chapter 21)





### The web as a directed graph







### Using link structure for ranking

Assumption: A link from X to Y signals that X's author perceives Y to be an authoritative page – X "casts a vote" on Y

Simple suggestion: Rank = number of in-links

Discuss with your neighbor: What is the problem with this approach?



### **PageRank:** Basic idea

WWW's particular structure can be exploited:

- pages have links to one another
- the more in-links, the higher rank
- in-links from pages having high rank are worth more than in-links from pages having low rank

This idea is the cornerstone of PageRank (Brin & Page 1998)

Way of formalizing:

A "random surfer" that randomly follows links will spend more time on pages with high PageRank





# First attempt $PR(D) = \sum_{\substack{D' \in in(D)}} \frac{PR(D')}{L_{D'}}$

D and D' are web pages

(documents in corpus with hyperlinks) in(D) is the set of pages linking to D  $L_D$  is the number of out-links from D

Discuss with your neighbor: Something missing? What happens when the page has no outlinks? What happens when the page has no inlinks?



### **Random Surfer**

Imagine a random surfer that **follows links** 

- The link to follow is selected with uniform probability
- If the surfer reaches a sink (a page without links), they randomly restarts on a new page
- Every once in a while, the surfer jumps to a random page (even if there are links to follow)





### Second attempt

With probability *1-c* the surfer is bored, stops following links, and restarts on a random page

• Guess: Google used *c*=0.85

$$PR(D) = c \left( \sum_{D' \in in(D)} \frac{PR(D')}{L_{D'}} \right) + \frac{1-c}{N}$$

Without this assumption, the surfer will get stuck in a subset of the web.





### Example





### Interpretation

Authority / popularity / relative information value

 $PR_D$  = the probability that the random surfer will be at page D at any given point in time

This is called the stationary probability (the left eigenvector of the transition matrix)

How do we compute it?



### The random surfer as a Markov chain

The random surfer model suggests a Markov chain formulation:

```
N states (= documents)
```

N×N transition probability matrix G

At each step, the surfer is in exactly one of the states

Matrix entry  $G_{ij}$  = probability of *j* being the next state (doc), given we are currently in state (doc) *i* 





### **Ergodic Markov chains**

A Markov chain is ergodic if

- you have a path from any state to any other
- For any start state, after a finite transient time T<sub>0</sub>, the probability of being in any state at a fixed time T>T<sub>0</sub> is nonzero

Our transition matrix G is non-zero everywhere  $\Leftrightarrow$  the graph is strongly connected  $\Leftrightarrow$  the Markov chain is ergodic  $\Leftrightarrow$  **unique stationary probabilities**  $\pi$  **exist** 



#### **Example: Transition matrices**





### **Pagerank = probability vector**

A probability (row) vector  $x = (x_1, ..., x_N)$  tells us where the walk is at any point

One step of the random surfer:

x' = xG

Pagerank (let's call it  $\pi$ ) is the stationary probability vector for G:

$$\pi \mathbf{G} = \pi$$
 *n* is a left eigenvector of

genvector of G

So, let's do SVD on G! Or, what could be the problem?



### **Power iteration**

Method of finding dominant eigenvector Eigenvector with largest eigenvalue

Recall, regardless of where we start, we eventually reach the stationary vector  $\boldsymbol{\pi}$ 

Start with any distribution (say x = (1, 0, ..., 0)).

- After one step, we're at *x*G;
- after two steps at (*x*G)G, then ((*x*G)G)G and so on

"Eventually", for "large" k,  $xG^k = n$ 

k is the number of steps taken by the random surfer



#### **Power iteration algorithm**

Let x=(0,...,0) and x' an initial
 state, say (1,0,...,0)
while ( |x-x'| > ɛ ):
 x = x'
 x' = xG

Converges very slowly!



### Monte Carlo Methods (Bishop Chapter 11)





### **Approximate Solutions**

Huge #docs -> exact inference very expensive

- Matrix factorization takes us part of the way
- But eventually...

Better solution: find approximation

One way: Monte Carlo sampling



### **The Monte Carlo principle**

State space *z* 

Imagine that we can sample  $\boldsymbol{z}^{(l)}$  from the pdf  $p(\boldsymbol{z})$  but that we do not know its functional form

Might want to estimate for example:

$$E[z] = \sum z \, p(z)$$

p(z) can be approximated by a histogram over  $z^{(l)}$ :  $\hat{q}(z) = \frac{1}{L}\sum_{l=1}^L \delta_{z^{(l)}=z}$ 



### **Example: Dice Roll**



The probability of outcomes of dice rolls:  $p(z) = \frac{1}{6}$ 



• Roll a dice a number of times, might get

$$z^{(1)} = 6$$
  $z^{(2)} = 4$   $z^{(3)} = 1$   $z^{(4)} = 6$   $z^{(5)} = 6$ 



The Law of Large Numbers



### What is p and q for PageRank?

Discuss with your neighbor (5 mins)

- Graph of connected documents
  - Look at each document z, compute PageRank

Quest: Find p(z) = prob that the document z is visited = PageRank score of document z

Monte Carlo approach: find approximate PageRank  $\hat{q}(z)$  by sampling from p(z)



## How do we sample from *p* without knowing *p*?

Discuss with your neighbor (5 mins)



Simulate a "random surfer" walking in the graph

- Equal probability c/<#links> of selecting any of the <#links> links in a document D
- Probability (1 c) of not following links, but jumping to an unlinked document in the graph

Record location  $z^{(l)}$  at each step /  $\hat{q}(z) = \frac{1}{L} \sum_{l=1}^{L} \delta_{z^{(l)}=z}$ 



### Monte Carlo Approximations to PageRank (Avrachenkov et al Sections 1-2)





### **Monte Carlo Idea**

D = document id

z above same as D here

Consider a random walk  $\{D_t\}_{t\geq 0}$  that starts from a frandomly chosen page.

At each step t:

- Prob c:  $D_t$  = one of the documents with edges from  $D_{t-1}$
- Prob (1 c): The random walk terminates, and  $D_t = random node$

Endpoint  $D_T$  is distributed as PageRank  $\Pi$ Sample from  $\Pi$  = do many random walks





### **Advantages**

Exact method: precision improves linearly for all docs Monte Carlo method: precision improves faster for high-rank docs

Exact method: computationally expensive Monte Carlo method: parallel implementation possible

Exact method: must be redone when new pages are added Monte Carlo method: continuous update



### 1. MC end-point with random start

Simulate N runs of the random walk  $\{D_t\}_{t\geq 0}$  initiated at a **randomly chosen page** PageRank of page j = 1,...,n:  $\pi_j = ($ #walks which end at j)/NWorst case: N = O(n<sup>2</sup>) Mean case: N = O(n)

```
Example:

1 link 4 link 6 link 5 jump 3

4 link 6 link 5 jump 1 link 4 link 6

\pi = [0, 0, 0.5, 0, 0, 0.5]

2 walks not enough
```





### **2. MC end-point with cyclic start**

Simulate N = mn runs of the random walk  $\{D_t\}_{t\geq 0}$ initiated at **each page exactly m times** PageRank of page j = 1,...,n:  $\pi_i = (\text{#walks which end at j})/N$ 



### **3. MC complete path**

Simulate N = mn runs of the random walk  $\{D_t\}_{t\geq 0}$  of length T, initiated at **each page exactly m times** PageRank of page j = 1,...,n:

 $\pi_j = (\#visits to node j during walks)/(NT_j)$ 





## 4. MC complete path stopping at dangling nodes

Simulate N = mn runs of the random walk  $\{D_t\}_{t\geq 0}$ initiated at **each page exactly m times** and **stopping when it reaches a dangling node** PageRank of page j = 1,...,n:

n<sub>j</sub> = (#visits to node j during walks)/
 (total #visits during walks)







## **5. MC complete path with random start**

Simulate N runs of the random walk  $\{D_t\}_{t\geq 0}$  initiated at a **randomly chosen page** and **stopping when it reaches a dangling node** 

PageRank of page j = 1,...,n:

 $\pi_j = (\#visits to node j during walks)/
 (total #visits during walks)$ 

(total #visits during walks)



### Next

Assignment 1 left?

- You can present it at the session for Assignment 2
- Reserve two slots, one for each assignment!

Lecture 7 (February 24, 10.15-12.00)

- B3
- Readings: Manning Chapter 11, 12

Computer hall session (March 8, 13.00-...)

- Orange (Osquars Backe 2, level 4) *Doodle to come!*
- Examination of computer Assignment 2