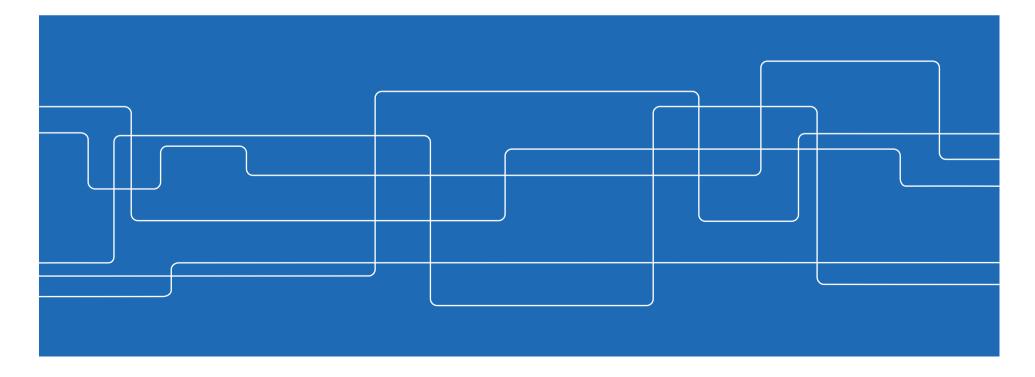


DD2476 Search Engines and Information Retrieval Systems

Lecture 7: Probabilistic Information Retrieval, Language Models

Hedvig Kjellström hedvig@kth.se https://www.kth.se/social/course/DD2476/



Summary Vector Space Model

Represent the query as a weighted tf-idf vector Or, simplified, as a vector of ones

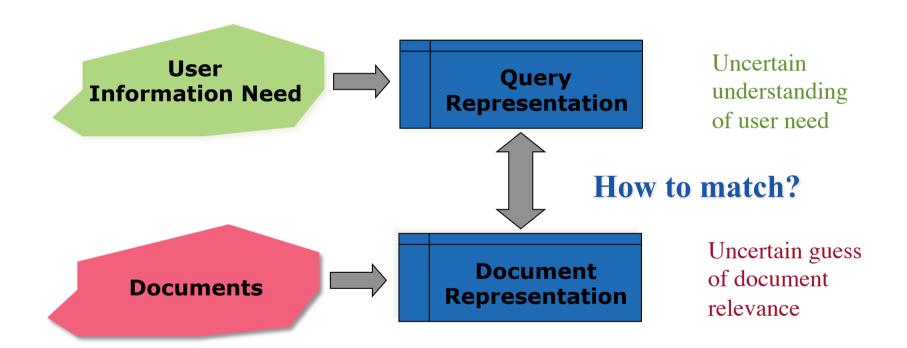
Represent each document as a weighted tf-idf vector

Compute the cosine similarity score for the query vector and each document vector

Rank documents with respect to the query by score

Return the top K (e.g., K = 10) to the user

Only Simplified Model of Reality



Probabilistic Methods

Traditionally in Artificial Intelligence, Information Retrieval, Machine Learning, Computer Vision, etc:

- Probabilistic methods "the right way to do it"
- Mathematically sound

Probabilistic approaches a current hot topic

- Old approach that has revival
- Computationally expensive not a big problem anymore

Today

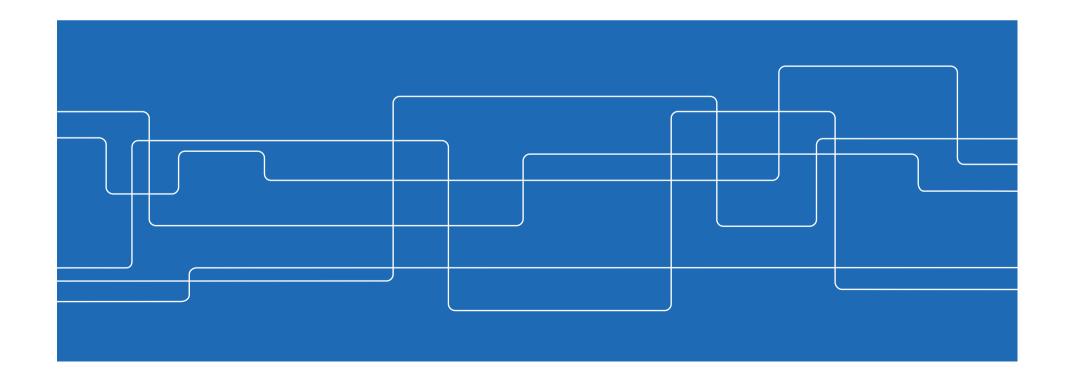
Probabilistic information retrieval (Manning Chapter 11)

- Probability ranking principle
- Binary independence model

Language models (Manning Chapter 12)

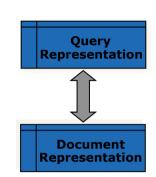
- Query likelihood model
- Language model vs binary independence model

Probabilistic Information Retrieval (Manning Chapter 11)



The Document Ranking Problem

Have collection of documents
User issues query
Return list of documents
Ranking method core of IR system:



Want "best" document first, second best second, etc....

Lecture 5

Idea 1: Rank according to query-document similarity

CosineSim(tf-idf(document),tf-idf(query))

Today!

Idea 2: Rank according to probability of document being relevant w.r.t. information need

p(relevant|document,query)

Bayes' Rule

$$p(A \mid D) = \frac{p(D \mid A)p(A)}{p(D)}$$

A is a Boolean-valued random variable (e.g. the document is relevant)

- p(A) = prior probability of hypothesis A PRIOR
- p(D) = prior probability of data D EVIDENCE
- p(D|A) = probability of D given A LIKELIHOOD
- P(A|D) = probability of A given D POSTERIOR

Boolean hypotheses: Odds

$$O(A \mid D) = \frac{p(A \mid D)}{p(\neg A \mid D)} = \frac{p(A \mid D)}{1 - p(A \mid D)}$$

Long version, van Rijsbergen (1979:113-114):

• "If a reference retrieval system's response to each request is a ranking of the documents in the collection in order of decreasing probability of relevance to the user who submitted the request, where the probabilities are estimated as accurately as possible on the basis of whatever data have been made available to the system for this purpose, the overall effectiveness of the system to its user will be the best that is obtainable on the basis of those data."

Short version:

- Have representative training document collection and training queries, learn p(relevant|document,query)
- Ranking of new documents w.r. t. new queries (similar to, or in, the training collection) with this function is bound to better than anything else

Task 1.4, 2.3

Let d be a document in the collection

- R represents relevance of doc w.r.t. given (fixed) query
- NR represents non-relevance of doc w.r.t. given (fixed) query

Relevance is binary variable with values {NR,R}

Need to find p(R|d,q) - probability that a document d is relevant given query q

This distribution lives in a HUGE space

How can this be done?

 Reformulate using Bayes' rule to distributions easier to learn

$$p(R \mid d,q) = \frac{p(d \mid R,q)p(R \mid q)}{p(d \mid q)}$$

$$p(NR \mid d,q) = \frac{p(d \mid NR,q)p(NR \mid q)}{p(d \mid q)}$$

$$p(R \mid d,q) + p(NR \mid d,q) = 1$$

$$O(R \mid d,q) = \frac{p(R \mid d,q)}{p(NR \mid d,q)}$$

p(R|q), p(NR|q) - prior probability of retrieving a (non-)relevant document given query q (constant w. r. t. d)

PRP in action: Rank all documents by p(R|d,q) or O(R|d,q)

How compute p(d|R,q), p(d|NR,q), p(R|q), p(NR|q)?

- Do not know exact probabilities, have to use estimates
- I.e., use simplified model of reality
- Binary Independence Model (BIM) simplest model

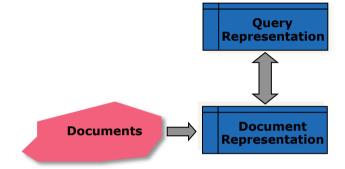
Questionable assumptions

More later

Query Representation

Documents

Traditionally used with PRP



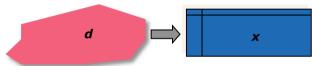
"Binary" = Boolean: Documents d are boolean vectors $\vec{x} = (x_1, \dots, x_n)$ where $x_i = 1$ iff term i is present in document x

Lecture 1

"Independence": terms occur in documents independently

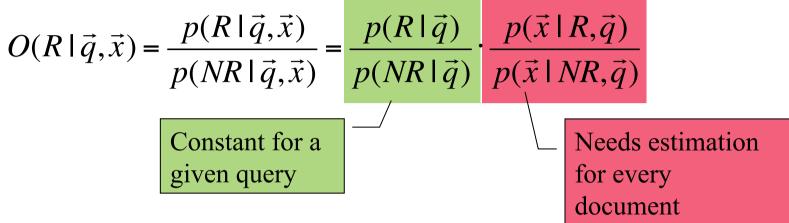
 Different documents can be modeled as same vector Bernoulli Naive Bayes model

Documents d: binary vectors $\vec{x} = (x_1, ..., x_n)$ (Queries q: also binary vectors $\vec{q} = (q_1, ..., q_n)$)



Given query q,

- for each document d, compute p(R|q,d)
- Equivalent to computing p(R|q,x) where x represents d
- Interested only in ranking Will use odds and Bayes' Rule: $O(R \mid \vec{q}, \vec{x}) = \frac{p(R \mid \vec{q}, \vec{x})}{p(NR \mid \vec{q}, \vec{x})} = \frac{p(R \mid \vec{q})p(\vec{x} \mid R, \vec{q})}{p(NR \mid \vec{q})p(\vec{x} \mid NR, \vec{q})}$



Using independence assumption:

$$\frac{p(\vec{x} \mid R, \vec{q})}{p(\vec{x} \mid NR, \vec{q})} = \prod_{i=1}^{n} \frac{p(x_i \mid R, q_i)}{p(x_i \mid NR, q_i)}$$

So:
$$O(R \mid q, d) = O(R \mid q) \cdot \prod_{i=1}^{n} \frac{p(x_i \mid R, q_i)}{p(x_i \mid NR, q_i)}$$

$$O(R | q, d) = O(R | q) \cdot \prod_{i=1}^{n} \frac{p(x_i | R, q_i)}{p(x_i | NR, q_i)}$$

Since x_i are either 0 or 1:

$$O(R \mid q, d) = O(R \mid q) \cdot \prod_{x_i = 1} \frac{p(x_i = 1 \mid R, q_i)}{p(x_i = 1 \mid NR, q_i)} \cdot \prod_{x_i = 0} \frac{p(x_i = 0 \mid R, q_i)}{p(x_i = 0 \mid NR, q_i)}$$

Let
$$p_i = p(x_i = 1 \mid R, q_i)$$
; $r_i = p(x_i = 1 \mid NR, q_i)$;
True positive False positive

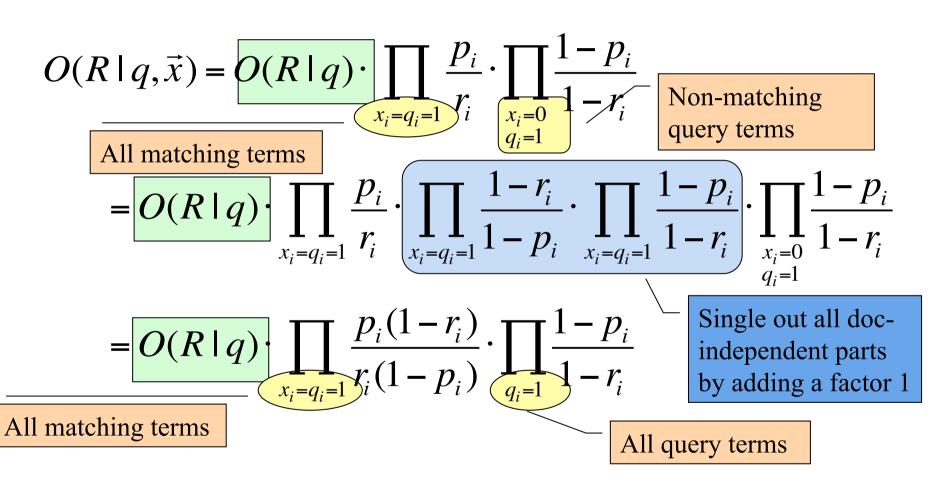
Assume, for all terms not occurring in the query $(q_i=0)$: $p_i=r_i$

Then...

This can be changed (e.g., in relevance feedback)

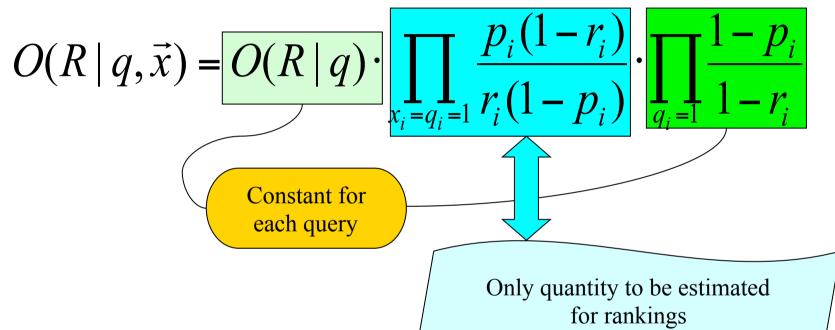
$$p_i = p(x_i = 1 | R, q_i);$$

 $r_i = p(x_i = 1 | NR, q_i);$



$$p_i = p(x_i = 1 | R, q_i);$$

 $r_i = p(x_i = 1 | NR, q_i);$



Retrieval Status Value:

$$RSV = \log \prod_{x_i = q_i = 1} \frac{p_i (1 - r_i)}{r_i (1 - p_i)} = \sum_{x_i = q_i = 1} \log \frac{p_i (1 - r_i)}{r_i (1 - p_i)}$$

$$p_i = p(x_i = 1 | R, q_i);$$

 $r_i = p(x_i = 1 | NR, q_i);$

All boils down to computing RSV

$$RSV = \log \prod_{x_i = q_i = 1} \frac{p_i (1 - r_i)}{r_i (1 - p_i)} = \sum_{x_i = q_i = 1} \log \frac{p_i (1 - r_i)}{r_i (1 - p_i)}$$

$$RSV = \sum_{x_i = q_i = 1} c_i; \quad c_i = \log \frac{p_i (1 - r_i)}{r_i (1 - p_i)}$$

So, how do we compute c_i 's from our data?

$$p_i = p(x_i = 1 | R, q_i);$$

 $r_i = p(x_i = 1 | NR, q_i);$

Estimating RSV coefficients from document training set For each term *i* look at this table of document counts:

Documents	Relevant	Non-Relevant	Total	
$x_i=1$	S	n-s	n	
$x_i=0$	S-s	N- n - S + s	N-n	
Total	S	N-S	N	

• Estimates: $p_i \approx \frac{s}{S}$ $r_i \approx \frac{(n-s)}{(N-S)}$ $c_i \approx K(N, n, S, s) = \log \frac{s/(S-s)}{(n-s)/(N-n-S+s)}$

For now, assume no zero terms. See book page 208.

$$p_i = p(x_i = 1 | R, q_i);$$

 $r_i = p(x_i = 1 | NR, q_i);$

$$S << (N - S), s << (n - s)$$

- $r_i \approx n/N$
- $\log (1 r_i)/r_i \approx \log (N n)/n$

Lecture 5

$$n \ll (N - n)$$

• $\log (N - n)/n \approx \log N/n = idf$

Theoretical justification for the idf score!

Bayes-optimal

Exercise 5 Minutes

Possible to get reasonable approximations of probabilities...

...BUT it requires restrictive assumptions.

Discuss in pairs/groups:

What are the assumptions made by PRP and BIM?

Exercise 5 Minutes

Possible to get reasonable approximations of probabilities...

...BUT it requires restrictive assumptions:

- term independence (term order, term co-occurrence)
- terms not in query don't affect the outcome
- boolean representation of documents/queries/ relevance
- document relevance values are independent
 - Really, it's bad to keep on returning duplicates

Some of these assumptions can be removed

Trade-offs

Summary Comparison

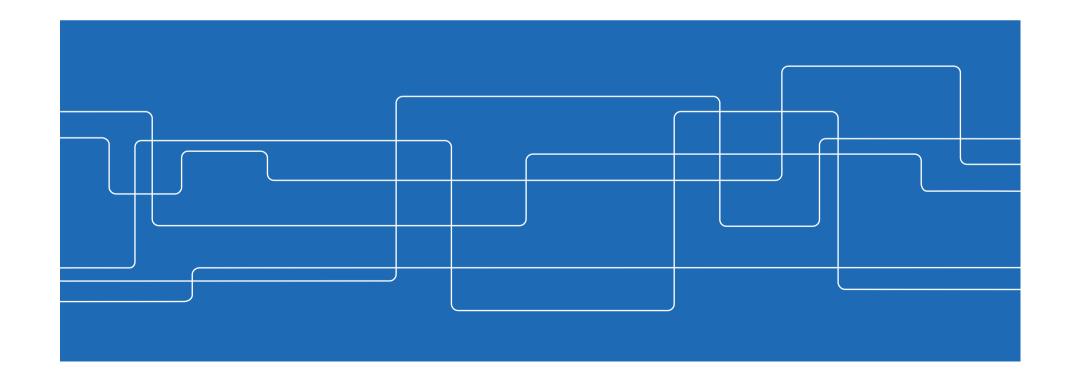
Standard Vector Space Model

- + Empirical for the most part; success measured by results
- Few properties provable

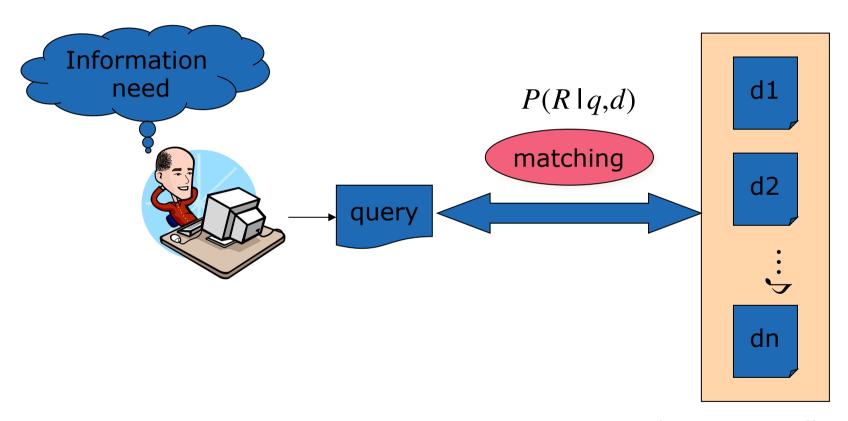
Probabilistic Model

- + Based on a firm theoretical foundation
- + Theoretically justified optimal ranking scheme
- Binary word-in-doc weights (not using term frequencies)
- Independence of terms (can be alleviated)
- Amount of computation
- Has never worked convincingly better in practice

Language Models (Manning Chapter 12)



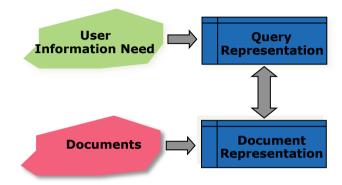
Standard Probabilistic IR



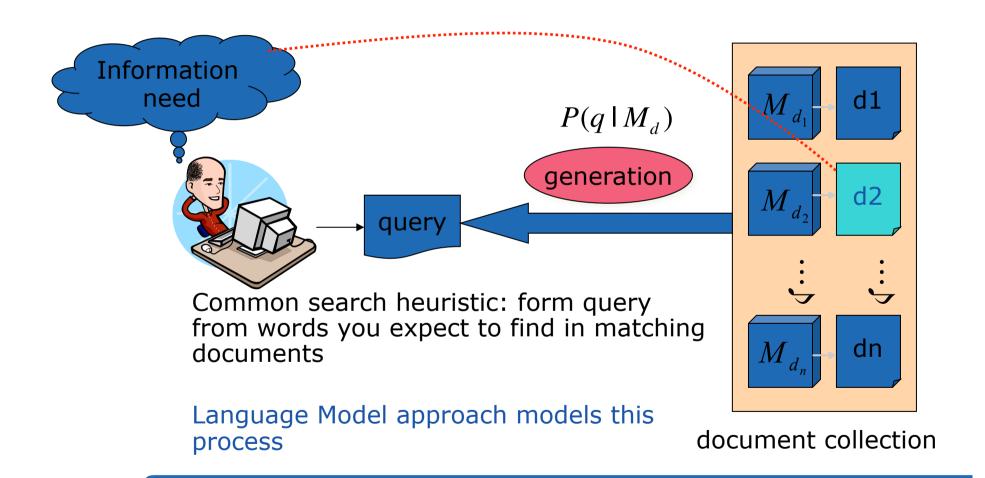
document collection

Dealing with the Query Part...

But how does user generate query based on information need?



IR Based on Language Model (LM)



IR Based on Language Model (LM)

Model user's generation of queries as a stochastic process

 Assumption: User choosing queries in methodical way but with some noise, based on what documents they are looking for

Approach:

- Infer a LM M_d for each document d
- Estimate $p(q|M_d)$ for each document d
- Rank the documents according to $p(q|M_d)$
 - High $p(q|M_d)$ probable that M_d generated q

Stochastic Language Models

Model probability of generating string s in the language M:

Model M

0.2 the

0.1 a

0.01 man

0.01 woman

0.03 said

0.02 likes

the man likes the woman

0.2 * 0.01 * 0.02 * 0.2 * 0.01

p(s|M) = 0.00000008

Stochastic Language Models

Compare languages/models

Model M1		Model M2							
0.2	the	0.2	the						
0.01	class	0.0001	class	the		class	pleaseth	yon	maiden
0.0001	sayst	0.03	sayst		_				
0.0001	pleaseth	0.02	pleaseth	0.2 *			* 0.0001 * 0.0005		
0.0001	yon	0.1	yon	0.2	*	0.0001	* 0.02 *	0.1	* 0.01
0.0005	maiden	0.01	maiden						
0.01	woman	0.0001	woman			p(s M)	2) > p((s M1)

Exercise 2 Minutes

Stochastic language model:

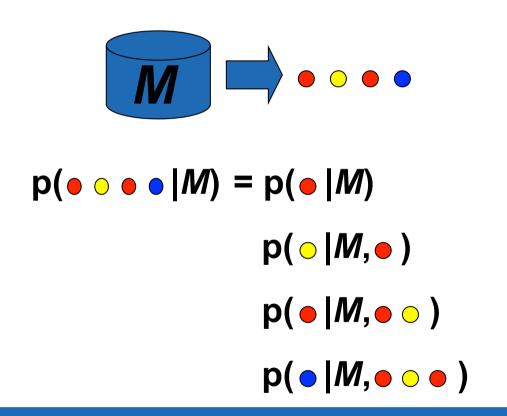
- Probability of each word in language
- Multiply probabilities of query terms to get probability of query

Discuss in pairs/groups:

- What are the limitations of this model?
- How can the model be improved?

Stochastic Language Models

A statistical model taking order into account



Model Approximations

Unigram Language Models

What we had in first example

$$p(\bullet \circ \bullet \circ | M) = p(\bullet | M)p(\circ | M)p(\bullet | M)p(\bullet | M)$$

Bigram (generally, n-gram) Language Models

$$p(\bullet \circ \bullet \circ | M) = p(\bullet | M)p(\circ | M, \bullet)p(\bullet | M, \circ)p(\bullet | M, \bullet)$$

Other Language Models

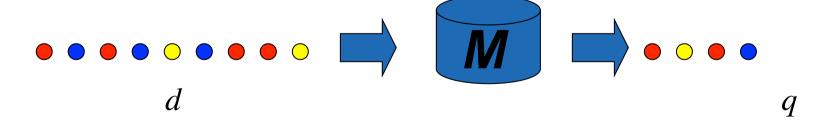
- Grammar-based models (PCFGs), etc.
 - Generalizations of bigrams
 - Probably not the first thing to try in IR

Fundamental problem of LMs

Usually we don't know the model M

 But have a sample of text (document d) representative of that model

Estimate language model *M* from sample *d*Then compute the observation probability of *q*



LMs vs. BIMs for IR

LMs computationally tractable, intuitively appealing

- Conceptually simple and explanatory
- Formal mathematical model
- Natural use of collection statistics

LMs provide effective retrieval if

- Language models are accurate representations of the data
- Users have some sense of term distribution

LMs vs. BIMs for IR

LM has no explicit "Relevance"

- Relevance feedback is difficult to integrate, as are user preferences, and other general issues of relevance
- Current extensions focus on putting relevance back into the model

LM assumes that documents and expressions of information user need are of the same type

- Unrealistic
- Very simple models of language
- Current extensions add more model layers

Next

Assignment 1 left?

- You can present it at the session for Assignment 2
- Reserve two slots, one for each assignment!

Computer hall session (March 8, 13.00-...)

- Orange (Osquars Backe 2, level 4)
- Examination of computer Assignment 2

Lecture 8 (March 11, 10.15-12.00)

- B1
- Readings: Sahlgren

Interesting guest lectures, see the VT 16 schedule!