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Easy to generate a sinusoidal voltage 

Our entire power grid works 
with sinusoidal voltage. 

When the loop rotates with 
constant speed in a magnetic 
field a sine wave is generated. 

So much easier, it can not be 
… 
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The sine wave – what do you remember? 
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(11.1) Phase ϕ 

)sin(ˆ)( ϕω += tYty

If a sine curve does 
not begin with 0 the 
function expression 
has a phase angle ϕ. 

Specify this function mathematically: 
)10002sin(6)( ϕπ +⋅⋅⋅= ttu

y
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Apples and pears? 
In circuit analyses it is common (eg. in textbooks) to 
expresses the angle of the sine function mixed in 
radians ω·t [rad] and in  degrees ϕ [°]. 

This is obviously improper, but practical (!). The 
user must "convert" phase angle to radians to 
calculate the sine function value for any given time t. 

(You have now been warned …) 

)306283sin(6)( °+⋅⋅= ttu

Conversion: 
x[°]= x[rad] ⋅57,3 
x[rad]= x[°]⋅0,017 

? ? 
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Mean and effective value 
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All pure AC voltages, has the mean value 0. 

• More interesting is the effective value – root 
mean square, rms. 
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(11.2) Example. RMS. 
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The rms value is what is normally used for an alternating 
voltage U.  1,63 V effective value gives the same power in a 
resistor as a 1,63 V pure DC voltage would do. 

RMS, effective value 
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Sine wave effective value 

2
1

2
1d)(sin2 ==∫ xx

)(sin2 x
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• Effective value is often called RMS ( Root Mean Square ). 

sin2 has the 
mean value  ½ 

Therefore: 

2
ÛU =

RMS,  
effective value 

Ex. 11.3 
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Addition of sinusoidal quantities 

)sin(ˆ
111 ϕω += tAy

)sin(ˆ
222 ϕω += tAy

?21 =+ yy
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Addition of sinusoidal quantities 
When we shall apply the circuit laws on AC circuits, we must 
add the sines. The sum of two sinusoidal quantities of the same 
frequency is always a new sine of this frequency, but with a new 
amplitude and a new phase angle. 
  
( Ooops! The result of the rather laborious calculations are 
shown below).  
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Sine wave as a pointer 

A sinusoidal voltage or current, 

 

can be represented by a pointer that 
rotates (counterclockwise) with the 
angular velocity ω [rad/sec] . 

)sin(ˆ)( tYty ⋅⋅= ω

Wikipedia Phasors 

http://en.wikipedia.org/wiki/Phasors
http://en.wikipedia.org/wiki/File:Unfasor.gif
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Simpler with vectors 

If you ignore the "revolution" 
and adds the pointers with 
vector addition, as they stand at 
the time t = 0, it then becomes a 
whole lot easier! 

Wikipedia Phasors 

http://en.wikipedia.org/wiki/Phasors 

http://en.wikipedia.org/wiki/Phasors
http://en.wikipedia.org/wiki/File:Sumafasores.gif
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Pointer with complex numbers 

°⋅⋅+°⋅⇔⋅⇔°∠ ° 30sinj1030cos10e103010 30j

A AC voltage 10 V that has the 
phase 30°  is usually written: 

10 ∠ 30°    ( Phasor ) 
Once the vector additions require 
more than the most common 
geometrical formulas, it is instead 
preferable to represent pointers 
with complex numbers.  

In electricity one uses j as imaginary unit, as i is already in use 
for current. 

baz j+=

Imaginary 
axis 

Real axis 



William Sandqvist  william@kth.se 

Phasor 

A pointer (phasor) can either be viewed as a vector expressed in 
polar coordinates, or as a complex number.  

It is important to be able to describe alternating current phenomena 
without necessarily having to require that the audience has a 
knowledge of complex numbers - hence the vector method.  

The complex numbers and jω-method are powerful tools that 
facilitate the processing of AC problems. They can be generalized 
to the Fourier transform and Laplace transform, so the electro 
engineer’s use of complex numbers is extensive. 

Sinusoidal alternating quantities can be represented as pointers, 
phasors. 

”amount” ∠ ”phase” 
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 peak/effective value - phasor 

baz j+=

The phasor lengths corresponds to sine peak values, 
but since the effective value only is the peak value 
scaled by 1/√2  so it does not matter if you count 
with peak values or effective values - as long as you 
are consistent! 

Imaginary 
axis 

Real axis 
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The inductor and capacitor 
counteracts changes 

William Sandqvist  william@kth.se 

The inductor and capacitor counteracts changes, 
such as when connecting or disconnecting a source 
to a circuit.  

What if the source then is sinusoidal AC – which is 
then changing continuously? 

? 
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Alternating current through resistor 

RR

RRRRRR )sin(ˆ)()()()sin(ˆ)(
IRU

tIRtuRtitutIti
⋅=

⋅⋅=⇒⋅=⋅= ωω

A sinusoidal currentiR(t)  through a 
resistor R provides a proportional 
sinusoidal voltage drop uR(t) according to 
Ohm's law. The current and voltage are in 
phase. No energy is stored in the resistor. 

Phasors UR and IR become parallel to each 
other. 

RR IRU ⋅=

The phasor may be a peak pointer or effective value pointer as long as you 
do not mix different types. 

• Complex phasor 

• Vector phasor 
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Alternating current through inductor 

LL
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LLL

A sinusoidal current iL(t)  through an inductor 
provides, due to self-induction, a votage drop 
uL(t)  which is 90° before the current. Energy 
stored in the magnetic field is used to provide 
this voltage. 

When using complex pointers one multiplies ωL  with  ”j”, this rotates the 
voltage pointer +90° (in complex plane). The method automatically keeps 
track of the phase angles! 

LLLL jj IXILU ⋅=⋅= ω

• Vector phasor 

• Complex phasor 

The phasor UL will be  ωL·IL  and it is 90° before IL.  The entity ωL is the 
”amount” of the inductor’s AC resistance, reactance  XL [Ω]. 
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Alternating current through capacitor 
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A sinusoidal current iC(t)  throug a 
capacitor will charge it with the ”voltage 
drop”  uC(t)  that lags 90° behind  the 
current. Energy is storered in the electric 
field. 

• Vector phasor 

Phasor UC is  IC/(ωC)  and it lags 90° after IC.  
The entity  1/(ωC)  is the ”amount” of the 
capacitor’s AC resistance, reactance   XC  [Ω]. 

CC
1 I
C

U ⋅=
ω
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Complex phasor and the sign of reactance 

If you use complex phasor you get the  
-90° phase by dividing (1/ωC)  with ”j”. 

C
XI

C
I

C
U CCCC ωωω

11-j
j

1
−=⇒⋅=⋅= • Complex phasor 

The method with complex pointer automatically keeps track 
of the phase angles if we consider the capacitor reactance XC  
as negative, and hence the inductor reactance XL as positive. 



L+C in series 

William Sandqvist  william@kth.se 

Ωj5 Ω− j4 Ω+ j1

Ωj4 Ω− j5
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Reactance frequency dependency 
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LOG – LOG plot  

Often electronics engineers use log-log scale. The inductor 
and capacitor reactances will then both be "linear" relationship 
in such charts. 

( ) ][log Ω− scaleX L ( ) ][log Ω− scaleX C

( ) ]Hz[log scalef − ( ) ]Hz[log scalef −
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R  L  C 

In general, our circuits are a mixture of different R L and C. The 
phase between I and U is then not ±90°  but can have any 
intermediate value. Positive phase means that the inductances 
dominates over capacitances, we have inductive character IND. 
Negative phase means that the capacitance dominates over the 
inductances, we have capacitive character CAP. 

The ratio between the voltage U and current I,  the AC resistance, 
is called impedace Z [Ω].  We then have OHM´s AC law: I

UZ =

CAP 
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Phasor diagrams 

In order to calculate the AC 
resistance, the impedance, Z, of a 
composite circuit one must add 
currents and voltages phasors to 
obtain the total current I and the 
total voltage U. 

I
UZ = The phasor diagram is our "blind stick" in to 

the AC World! 
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Ex. Phasor diagram (11.5) 

At a certain frequency f  the capacitor has the reactance |XC| and the resistor R  
has the same amount (absolute value), R [Ω]. 

Elementary diagrams for R L and C 

Use the elementary diagrams for 
R and C as building blocks to 
draw the whole circuit phasor 
diagram  (for this actual 
frequency f  ). 



Try it your self … 
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Example. Phasor diagram. 
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Impedance  Z 
The circuit AC resistance, 
impedance Z, one get as the ratio 
between the length of U and I  
phasors. The impedance phase ϕ 
is the angle between  U and I  
phasors.  

The current is before the voltage 
in phase, so the circuit has a 
capacitive character, CAP. 

( Something else had hardly been 
to wait since there are no coils in 
the circuit ) 
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Complex phasors,  jω-method 
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Complex phasors. OHM’s law for  R  L  and  C. 

Complex phasors. OHM’s law for  Z. 
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In fact, there will be four useful relationships! 
• Re, • Im, • Abs, • Arg 
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Ex. Complex phasors. 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors. 
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U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors. 
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U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors. 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors.  I 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors.  I 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 

j10
10320502j

1
2j

1
j

1
6 −=

⋅⋅⋅
=

⋅⋅
= −ππω CfC

j55
)j1010(
)j1010(

j1010
)j10(10

j
1

j
1

R//C −=
+
+

⋅
−
−⋅

=
+

⋅
=

C
R

C
R

Z

ω

ω

26,12,14,0j2140

j2,14,0
)j31(
)j31(

j3-1
4

j)5-(5j10-
20

j
1

22

C//R

=+=+=

+=
+
+

⋅=
+

=
+

==

,,I

Z
C

U
Z
UI

ω



William Sandqvist  william@kth.se 

Ex. Complex phasors.  U1 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors.  U1 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors.  U2 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors.  U2 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Voltage divider: 



William Sandqvist  william@kth.se 

Ex. Complex phasors.  IC 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors.  IC 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors.  IR 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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Ex. Complex phasors.  IR 

U = 20 V  C = 320 µF   R = 10 Ω   f = 50 Hz 
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You get the phasor 
chart by plotting the 
points in the complex 
plane! 
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Rotate diagram … 
When we draw the phasor 
diagram it was natural to have 
U2 as reference phase 
(=horizontal), with the jω-
method U was the natural 
choice of reference phase 
(=real). 

Because it is easy to rotate the 
chart, so, in practice, we have 
the freedom of choosing any 
entity as the reference. 

))7,26sin(j)7,26(cos(

7,26
8
4arctan)j48arg()arg( 2

°−⋅+°−×

°=
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
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=+=U

Multiply the all complex numbers by this 
factor and  the rotation will take effect! 
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Summary 
Sinusoidal alternating quantities can be represented as pointers, 
phasors,  
 
                               ”amount” ∠ ”phase”. 

A pointer (phasor) can either be seen as a vector expressed in 
polar coordinates, or as a complex number. 

Calculations are usually best done with the complex 
method, while phasor diagrams are used to visualize 
and explain alternating current phenomena. 
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Notation 

X

x Instant value 
X̂ Top value 

XX Absolute value, the amount 

Complex phasor 
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