IE1206 Embedded Electronics

PIC-block Documentation, Seriecom Pulse sensors

I, U, R, P, serial and parallel

Pulse sensors, Menu program
e Start of programing task

Lel pP=>»| Le2

Le3 | Ex1 |=>| KC1 LAB1

Le4 |=>»] Ex2

Le5 |=>»] Ex3 P> KC2 LAB2

Le6 P> Ex4 P Le7 p—>»| KC3 LAB3
TR

Ex6 P> Lel0 |=>| Lell = KC4 LAB4

Lel2 P> Ex7 pP—> Display

Lel3 2| Written exam

Kirchhoffs laws Node analysis Two-terminals R2R AD

Two-terminals, AD, Comparator/Schmitt

Transients PWM
Step-up, RC-oscillator

Phasor jo PWM CCP CAP/IND-sensor

LC-osc, DC-motor, CCP PWM

LP-filter Trafo

e Display of programing task

Trafo, Ethernet contact
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Easy to generate a sinusoidal voltage

Our entire power grid works
with sinusoidal voltage.

When the loop rotates with
constant speed In a magnetic
field a sine wave is generated. :

o DEGREES OF
ROTATION

So much easier, It can not be
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The sine wave — what do you remember?

Y A .
T period
CIN ™. 1 Y RMS
Y top, amplitude
A4 - -
t time
1 Y

v(t) =Y sin(ot) @ = 2f f:? v _ "
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(11.1) Phase ¢

Yo,
If a sine curvedoes T f=1kHz
not begin with 0 the °1 t
function expression ol—— = .
has a phase angle . v Ysin(qu))\/
Specify this function mathematically:

u(t)=6-sin(27-1000-t+ @)
u(0)=3=6-sin(p) = gozarcsin(gj:O,SZrad (=30°)

u(t) = 6-sin(6283-t +0,52)
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Apples and pears? _
PP P ve.

In circuit analyses it iIs common (eg. In textuuuns) w
expresses the angle of the sine function mixed in

radians m-t [rad] and in degrees ¢ [°].

This 1s obviously improper, but practical (!). The
user must "convert" phase angle to radians to
calculate the sine function value for any given time t.

(You have now been warned ...)

Conversion:
_ . X[°]= x[rad] -57,3
u(t) = 6-5m(62§3-t + 3%) ) X[rad]= X[°]-0,017
? ?
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Mean and effective value

All pure AC voltages, has the|mean value 0.

e More Interesting Is the
mean square, rms.

:
et = JU()dt =[0
0

effective value|- root

\/]'u(t)zdt
U =1/9
-
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(11.2) Example. RMS.

The rms value is what is normally used for an alternating
voltage U. 1,63 V effective value gives the same power in a

resistor as a 1,63 V pure DC voltage would do.

i
M Ut
2

RMS, effective value

-
-

0 5 10 15 20 25| ¢ [ms]
<€ > | € > | € >

-2+

f >

=163V

-

u(t)” dt

U = -C‘)‘ O _\/(22+(—2)2+0)°5-103 \/8.5,103
T 15-10° 15102
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Sine wave effective value

Ex. 11.3

sin? has the
mean value v~

Therefore:

U

U
2

—

sin®(x) |

RMS,
— effective value

j.

\/jsinz(x)d;:\/gz\lﬁ

e Effective value is often called RMS ( Root Mean Square ).

William Sandgvist william@kth.se



William Sandgvist william@kth.se



Addition of sinusoidal quantities

QO
% u .
() y, = A sin(at + ¢,) +
% - Yit+Y, =7
+ A
<> Y, = A, sin(et +¢,) S
S T
O
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Addition of sinusoidal quantities

When we shall apply the circuit laws on AC circuits, we must
add the sines. The sum of two sinusoidal quantities of the same

frequency is always a new sine of this frequency, but with a new
amplitude and a new phase angle.

( Ooops! The result of the rather laborious calculations are
shown below).

V(O] A, sin(at+) [y, ®]=A, sin(et+9,) [y@) =y, 1) +y,0)=

JA? +AZ 4 2A A, cos(p, - ,) -SinLa)t +arctan 218IN@) + A, 5IN(e,) )
A, cos(g;) + A, cos(p,)
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Sine wave as a pointer

A sinusoidal voltage or current, /
y(t) =Y -sin(w-t) <
can be represented by a pointer that
rotates (counterclockwise) with the \
angular velocity o [rad/sec] . e
2 Wikipedia Phasors

William Sandgvist william@kth.se


http://en.wikipedia.org/wiki/Phasors
http://en.wikipedia.org/wiki/File:Unfasor.gif

Simpler with vectors
y2it)

Mﬂ”
: -/ yit)

If you ignore the "revolution”

and adds the pointers with
vector addition, as they stand at
the time t = 0, it then becomes a

- i

. ®yit)
. @ p2(t)
@ ()

whole lot easier!

%9 Wikipedia Phasors

http://en._wikipedia.org/wiki/Phasors
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http://en.wikipedia.org/wiki/Phasors
http://en.wikipedia.org/wiki/File:Sumafasores.gif

Pointer with complex numbers

A AC voltage 10 V that has the i ;miginary
phase 30° is usually written: i
10 £30° ( Phasor) 2| 12

ol
/Y

Once the vector additions require  — 2> 1.
more than the most common -1
geometrical formulas, it is instead
preferable to represent pointers
with complex numbers.

10/30° < 10-e®” < 10-c0s30°+10-j-sin30°

In electricity one uses j as imaginary unit, as I is already in use
for current.

Real axis
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Phasor

Sinusoidal alternating quantities can be represented as pointers,
phasors.

“amount” Z ”phase”

A pointer (phasor) can either be viewed as a vector expressed in
polar coordinates, or as a complex number.

It Is Important to be able to describe alternating current phenomena
without necessarily having to require that the audience has a
knowledge of complex numbers - hence the vector method.

The complex numbers and jo-method are powerful tools that
facilitate the processing of AC problems. They can be generalized
to the Fourier transform and Laplace transform, so the electro
engineer’s use of complex numbers is extensive.
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peak/effective value - phasor

Imaginary

j‘HaXiS
p2(t) S
4 wir) 2112/ |
/ 11 !
'] s > : -
i/ - _u[_l_l] -1_1_ 1 2 & w\
z-—a+jb Real axis

The phasor lengths corresponds to sine peak values,
but since the effective value only Is the peak value
scaled by 1/72 so it does not matter if you count
with peak values or effective values - as long as you
are consistent!
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The inductor and capacitor
counteracts changes

The inductor and capacitor counteracts changes,
such as when connecting or disconnecting a source
to a circulit.

What If the source then is sinusoidal AC — which Is
then changing continuously?

A A" A W

~(D Tt ?

William Sandgvist william@kth.se



Alternating current through resistor

A sinusoidal currentig(t) through a

: : : U_=
resistor R provides a proportional == Rlg
sinusoidal voltage drop ug(t) according ?o | +U,-
Ohm's law. The current and voltage are in R
phase. No energy is stored in the resistor. O O
R
Phhasors U and I become parallel to each Ur > /.
other.

R(t) » -Sin(awt) u,(t)=i,(t)-R = uR(t)zR-fR-sin(a)t)
r|  Vector phasor

C
;U

Up =R-1; | e« Complex phasor

The phasor may be a peak pointer or effective value pointer as long as you
do not mix different types.
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Alternating current through inductor

A sinusoidal current i, (t) throughaninductor \ U =2 =fL/
provides, due to self-induction, a votage drop

u, (t) which is 90° before the current. Energy I +U, -
stored in the magnetic field is used to provide | o—p Y YV Y
this voltage. [

>/
The phasor U, will be oL-1, and itis 90° before I_. The entity wL is the
“amount” of the inductor’s AC resistance, reactance X, [Q].

i, (t) =1, -sin(at) uL(t)zLdiat(t) = uL(t)za)L-fL-cos(a)t):a)L-fL-sin(cot+%)

U =awlL-1 | e Vector phasor

When using complex pointers one multiplies oL with ”j”, this rotates the
voltage pointer +90° (in complex plane). The method automatically keeps
track of the phase angles!

U =joL-1, =jX_ -1 | e Complex phasor
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Alternating current through capacitor

A sinusoidal current i-(t) throug a

p |
+U .- c
capacitor will charge it with the "voltage ST
drop” uc(t) that lags 90° behind the c :
current. Energy Is storered in the electric ¢ 1
- © ¥V Uc=orrc e
field.
Phasor U. Is |/(wC) and it lags 90° after I.. .
The entity 1/(oC) is the "amount” of the Ue=—="lc

capacitor’s AC resistance, reactance X. [€]. Vector on
e VECLOI pnasor

Q du.(t) 1 dg 1 . 1 ¢.
U== =— - —=—-I.(t Uc(t) =—- |1 (1) dt

S o oo e = u® =2 i)
: ~ 1 =~ 1 -~ . T
I (t) = 1 -sin(wt) = uC(t):——-IC-cos(a)t):—-IC-sm(a)t—E)
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Complex phasor and the sign of reactance

IC

If you use complex phasor you get the U g
-90° phase by dividing (1/oC) with ”j”. C
phase by g (L/C) ] H%C%@

Ue

The method with complex pointer automatically keeps track
of the phase angles if we consider the capacitor reactance X
as negative, and hence the inductor reactance X, as positive.

U L I J L .| = | X L Complex phasor
:-—o j— —_— - — ° X
—C 10C —C oC —° c wC PIXP
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L +C In series

L C
o—" Y Y L, || O =

5i0  —4j] |

L C
o—" Y Y L, || =

4i0  -5jQ | |
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Reactance freqguency dependency

X,| | X 1 .
Q] | LU, Q] |
_..._r”“v_‘v"‘r_ ]
IIIII fl [Ile] o ]f][JI—Ijzj
1
X [=oL ‘XC‘:w.C
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LOG — LOG plot

Iog(jXL\)— scale [Q] Iog(jxc\)— scale [Q]

10 ¢

_ - +Ur: -
I 10" e H C

10 10’ 10° 10° 1ot 10"

10° 10°

log(f ) - scale [Hz] log(f ) - scale [Hz]

Often electronics engineers use log-log scale. The inductor
and capacitor reactances will then both be "linear" relationship

In such charts.
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R LC

/ ] |
+ IND
o Y
U ? VYL o+ ) -
% ) p—
N | _ ||
| CAP

U
In general, our circuits are a mixture of different R L and C. The
phase between | and U is then not £90° but can have any
Intermediate value. Positive phase means that the inductances
dominates over capacitances, we have inductive character IND.
Negative phase means that the capacitance dominates over the
Inductances, we have capacitive character CAP.

The ratio between the voltage U and current I, the AC resistance,
Is called impedace Z [2]. We then have OHM"s AC law:
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Phasor diagrams

fq+Uq-R —————————————————— +{J -

—— +U - : c

_____ S-S YR AN !
Yy U .

R i M

: ;. N 1

——————————————————

In order to calculate the AC

resistance, the impedance, Z,ofa  + O_.L

composite circuit one must add U )
curre_:nts and voltages phasors to ~, I
obtain the total current | and the o "

total voltage U.

2=

the AC World!
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Ex. Phasor diagram (11.5)

Elementary diagrams for R L and C

——————————————————

At a certain frequency f the capacitor has the reactance |X| and the resistor R

has the same amount (absolute value), R [Q].

Use the elementary diagrams for
R and C as building blocks to
draw the whole circuit phasor

1 —
2nfC

B |Xc| = R

U f . '
~
!R

diagram (for this actual
frequency f ).

r_i_c
+ 'c
U
o 1
: |Xc|=

27fC_

R
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Try it your self ...




Example. Phasor diagram.
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Impedance Z

The circuit AC resistance, A
impedance Z, one get as the ratici”;j( i
between the length of U and |

phasors. The impedance phase ¢
IS the angle between U and | log /
phasors.

The current is before the voltage
In phase, so the circuit has a TN
capacitive character, CAP. N

( Something else had hardly been o
to wait since there are no coils in U 3
the circuit)
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Complex phasors, jo-method

Complex phasors. OHM’s law for R L and C.
Uz =1z"R ¢ =arg(R) =0°

U =1-JX =1 -joL ¢ =arg(JoL)=+90°

U=l JXc =1 —— =arg(——) =—arg(jwC) =-90° FKnces —
Uc=1cJAc=1¢ jC @ g(ja)C) g(jC) %
Complex phasors. OHM’s law for Z. "N
U-1z | z-= p=arg(2) =arg| = | =argU) ~arg(1)

Im[Z] X
RelU|=Rell -Z arg(Z) = arctan — arctan| —
U] [1-Z] 9(2) [Re-z- (Rj

Im[U]=Im[l-Z] | Infact, there will be four useful relationships!

B e Re, o Im, o Abs, e Arg
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Ex. Complex phasors.

j o U=20V C=320uF R=10Q f=50Hz

+
u, —

i
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U f

Ex. Complex phasors.

u, —— 1 1 1

joC  j2z-f-C j27-50.320-10°°
)‘rﬁljﬁ U:_ Iif}
L]
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U f

Ex. Complex phasors.

Ty o U=20V C=320pF R=10Q f=50Hz

U, 1 1 1 .
: — = == —-=—10]
joC j2z-f-C j27-50-320-10

DX et
R

joC _10:(-10j) (10+10) e

/ = : — =
el 1 10-10j (10+10j)
JoC
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U f

Ex. Complex phasors.

U=20V C=320uF R=10Q f=50Hz

1 1 1 .
== == —-=-10]
joC j2r-f-C j27-50-320-10

R. 1
, __ joC _10-(-10)) (10+10) . .
e, 1 10-10j (10+10j)
JoC
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U f

Ex. Complex phasors. |

U=20V C=320uF R=10Q f=50Hz

1 1 1 .
== == —-=-10]
joC j2r-f-C j27-50-320-10

R. 1
, __ joC _10-(-10)) (10+10) . .
e, 1 10-10j (10+10j)
JoC
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Ex. Complex phasors. |

U=20V C=320uF R=10Q f=50Hz
U+lc 11 1 __10]
ij*() ' joC  j2z-f-C  j27-50-320-10°
s + 1 C i
['JR u, i . R joC _10-(-10)) (10+10j) _
_ ) T SRIC ™ R, 1 10-10j (10+10j)
JoC
[ — 20 * 88 _g4r12)
z 1 T.10j+(5-5)) 1-3) (1+3))
J C =RIJ/IC

| = i|=+/0,42 +1,2% =1,26
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U f

Ex. Complex phasors. U,

U=20V C=320uF R=10Q f=50Hz

1 1 1 .
== == —-=-10]
joC j2r-f-C j27-50-320-10

R. 1
, __ joC _10-(-10)) (10+10) . .
e, 1 10-10j (10+10j)
JoC
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U f

Ex. Complex phasors. U,

ic U=20V C=320puF R=10Q f=50Hz
== 1 1 1 __10]
) ‘ joC j2z-f-C j27-50-320-10°°
/
R u”ic R+ : :
R Y , __ joC _10-(-10)) (10+10) . .
] T e 1 10-10j (10+10})
JoC
1 : : .
U, =1-——=(04+12))-(-10))=12-4
JoC

U, =[12-4] = {122 + (—4)? =12,65
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U f

Ex. Complex phasors. U,

U=20V C=320uF R=10Q f=50Hz

1 1 1 .
== == —-=-10]
joC j2r-f-C j27-50-320-10

R. 1
, __ joC _10-(-10)) (10+10) . .
e, 1 10-10j (10+10j)
JoC
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Ex. Complex phasors. U,

y 11 1 _10]

joC  j2r-f-C  j27-50-320-10°°

Uf,
v
() JrR + Iic R 1
R Y, joC  10-(-10j) (10+10j)

. JoC : =
; T Lric = 1 10-10j (10+10))

i U=20V C=320uF R=10Q f=50Hz

R+C
0
\oltage divider: J
1 5 -10j+(5-5)) 1-3j (1+3])
JCOC —=RIJIC

=[8+4j=+8"+4° =8,94
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U f

Ex. Complex phasors. |-

U=20V C=320uF R=10Q f=50Hz

1 1 1 .
== == —-=-10]
joC j2r-f-C j27-50-320-10

R. 1
, __ joC _10-(-10)) (10+10) . .
e, 1 10-10j (10+10j)
JoC
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Ex. Complex phasors. |-

U f

. =

U=20V C=320uF R=10Q f=50Hz

1 1 1 :
== == —-=-10]
JoC j2x-f-C j27-50-320-10

R. 1
joC 10-(-10j) (10+10))
Lric = 1 . =0~
Ry~  10-10j (0+10))
JoC
U 8+4] :
=2 ST _ _04408]
1 -10j
JoC

0,4+08]=+0,4?+0,8% =0,89
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U f

Ex. Complex phasors. I

U=20V C=320uF R=10Q f=50Hz

1 1 1 .
== == —-=-10]
joC j2r-f-C j27-50-320-10

R. 1
, __ joC _10-(-10)) (10+10) . .
e, 1 10-10j (10+10j)
JoC
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U f

Ex. Complex phasors. I

U=20V C=320uF R=10Q f=50Hz
1 _ 1 _ 1
joC j2r-f-C j27-50-320-10°°
r. 1
joC 10-(-10j) (10+10}))
Lpyc = = —- —=5-5
1 10-10j (10+10j)

R+ ——
JoC

=-10]

I, =

Do 84 _08404]
R 10

0,8+0,4 | =+/0,82+0,42 = 0,89
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U, f Ui

RE

1,2 14 16 18 20 [A] U

T T T T x
10 12 14 16 18 20 [V]

You get the phasor
chart by plotting the
points in the complex
124)  plane!
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Rotate diagram ...

When we draw the phasor
diagram it was natural to have

U, as reference phase W, R
(=horizontal), with the jco- Y L S
method U was the natural 2 %"" %, D1, ey ©
choice of reference phase ) «/% [ﬁR T
(=real). N

Because it is easy to rotate the /g o2 B "y 9

chart, so, in practice, we have w/ U 2 %

the freedom of choosing any A \ L ”",;s b .

entity as the reference. ez L 4 i
arg(U,) =arg(8+4)) = arctan(gj = 26,7° = “a

x (C0S(—26,7°) + j-sin(—26,7°))| Multiply the all complex numbers by this
factor and the rotation will take effect!
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Summary

Sinusoidal alternating quantities can be represented as pointers,
phasors,

“amount” £ ”phase”.

A pointer (phasor) can either be seen as a vector expressed in
polar coordinates, or as a complex number.

Calculations are usually best done with the complex
method, while phasor diagrams are used to visualize
and explain alternating current phenomena.
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Notation

Instant value
Top value

|>< X X

Complex phasor

X |X| Absolute value, the amount

William Sandgvist william@kth.se



William Sandgvist william@kth.se



	IE1206 Embedded Electronics
	Easy to generate a sinusoidal voltage
	The sine wave – what do you remember?
	(11.1) Phase 
	Apples and pears?
	Slide Number 6
	Mean and effective value
	(11.2) Example. RMS.
	Sine wave effective value
	Slide Number 10
	Addition of sinusoidal quantities
	Addition of sinusoidal quantities
	Sine wave as a pointer
	Simpler with vectors
	Pointer with complex numbers
	Phasor
	 peak/effective value - phasor
	Slide Number 18
	The inductor and capacitor counteracts changes
	Alternating current through resistor
	Alternating current through inductor
	Alternating current through capacitor
	Complex phasor and the sign of reactance
	L+C in series
	Slide Number 25
	Reactance frequency dependency
	LOG – LOG plot 
	Slide Number 28
	R  L  C
	Phasor diagrams
	Ex. Phasor diagram (11.5)
	Slide Number 32
	Example. Phasor diagram.
	Slide Number 34
	Impedance  Z
	Slide Number 36
	Complex phasors,  j-method
	Ex. Complex phasors.
	Ex. Complex phasors.
	Ex. Complex phasors.
	Ex. Complex phasors.
	Ex. Complex phasors.  I
	Ex. Complex phasors.  I
	Ex. Complex phasors.  U1
	Ex. Complex phasors.  U1
	Ex. Complex phasors.  U2
	Ex. Complex phasors.  U2
	Ex. Complex phasors.  IC
	Ex. Complex phasors.  IC
	Ex. Complex phasors.  IR
	Ex. Complex phasors.  IR
	Slide Number 52
	Rotate diagram …
	Slide Number 54
	Summary
	Notation
	Slide Number 57

