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Overview

Space-Time Communication

• Communication systems with multiple transmit and receive antennas

• Multiple-input/multiple-output systems (MIMO)

• Multiple transmit/receive antennas → diversity, increased capacity

• Multiple antennas in communication systems
• Base stations: many antennas

• Mobiles: 1-2 antennas

• WIFI (IEEE 802.11n): 2-4 antennas
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Space-Time Channel Modeling

• Linear antenna array, m antennas, spacing d

d sin θθ

d

• Phase difference φ and delay τ between neighboring antennas

φ(θ) =
2πd sin θ

λ
, with λ = c/fc

τ =
d sin θ

c

• Received complex baseband signal at antenna i : y(t − iτ)e j(i−1)φ

(y(t): received signal at the first antenna)

• Narrowband assumption: bandwidth of y � fc ⇒ y(t − iτ) ≈ y(t)

→ Gain vector a(θ) = (1, e jφ, . . . , e j(m−1)φ)T

→ Array manifold: {a(θ)}, for θ ∈ [−π/2, π/2]
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Space-Time Channel Modeling

• Multipath propagation (M paths, Tm � Ts):

h = (h1, . . . , hm)T =
M∑
i=1

gia(θi )

• Gain of the i-th multipath component: gi

• Angle of the i-th multipath component: θi

→ Central limit theorem: h is zero-mean, proper complex Gaussian
with covariance matrix

Ch =
M∑
i=1

|gi |2a(θi )a(θi )
H

• Power-angle profile: P(θ)
• Power density for a given angle θ (

∫
P(θ)dθ = 1)

• For a large number of multipath components, we get

Ch =

∫
a(θ)a(θ)HP(θ)dθ
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Space-Time Channel Modeling

• MIMO
• NT transmit antennas, transmit manifold aT (θ), departure angle θ

• NR receive antennas, receive manifold aR(γ), arrival angle γ

• Channel characterization for narrowband signaling

H =
∑
l

glaR(γl)aT (θl)
T

• H: (NR × NT ) matrix

• j-th column gives the receive array response to the j-th transmit
antenna

H12

H21
H =

H11 H12

H21 H22

H11

H22

• Line-of-sight (LOS) link: H = aR(γ)aT (θ)T

• Rich scattering: Hij i.i.d., zero-mean, proper complex Gaussian
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Information Theoretic Limits
– Channel Capacity

• Channel model: NR × NT MIMO channel

y = Hx + w with w ∼ CN(0, 2σ2I)

• Channel capacity (channel unknown at the transmitter)

C = max
Cx

I (x; y) = max
Cx

log det

(
I +

1

2σ2
HCxH

H

)
with the transmit covariance matrix Cx .

• Helpful tool: use a singular value decomposition to reduce the
MIMO channel into a number of k parallel scalar channels.
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Information Theoretic Limits
– Singular value decomposition

• Define

W =

{
HHH if NT ≤ NR

HHH if NR ≤ NT
and

m = min(NT ,NR)
M = max(NT ,NR)

W is nonnegative definite (i.e., all eigenvalues are nonnegative), and
W has dimension (m ×m).

• Consider the case NT ≤ NR ; i.e., m = NT and M = NR .

• Let vi be the length-m eigenvector to the eigenvalue λi ≥ 0 of W
(i.e., Wvi = λivi for λi > 0 and Wvi = 0 for λi = 0).

• Matrix of eigenvectors V = (v1, . . . , vm), normalization VHV = I
→ eigenvectors are an orthonormal basis of the input space.

• Assumption: k nonzero eigenvalues λi > 0 for i ∈ {1, . . . , k}, and
m − k eigenvalues λi = 0 for i ∈ {k + 1, . . . ,m}.
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Information Theoretic Limits
– Singular value decomposition

• Define the length-M (receive) vectors ui = λ
− 1

2
i Hvi, i ∈ {1, . . . , k}

(i.e., vectors ui are orthonormal, uH
i uj = δij).

• Define U = (u1, . . . , uk , u
′
1, . . . , u

′
m−k) with u′i such that UHU = Im.

→ the vectors in U are an orthonormal basis for the output space.

• We can show that

Hx =
m∑
i=1

ui

√
λiv

H
i x = UDVHx

H = UDVH

with D = diag(
√
λ1, . . . ,

√
λm) → singular values

√
λi

• Proof: Use x =
m∑
i=1

viv
H
i x and solve Hx.

• If we now choose ŷ = UHy and x̂ = VHx, we get

ŷ = Dx̂ + ŵ

→ the channel is decomposed into k parallel channels!
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Information Theoretic Limits
– MIMO Capacity

• Channel known at the transmitter: use ŷ = Dx̂ + ŵ and do
waterfilling for the symbols x̂:

CCSI−T =
k∑

i=1

log(1 +
λiPi

2σ2
) with Pi =

[
a− 2σ2

λi

]+

and a such that E[‖x‖2] ≤ P is fulfilled (Pi = E[|x̂i |2]).

• No channel-state information at the transmitter
• Choose the input distribution P(X) to maximize the mutual

information
I (Y;X) = H(Y)− H(Y|X)

→ Since H(Y|X) = H(W) (i.e., the conditional entropy is independent
of the input), it is sufficient maximize H(Y).

→ H(Y) is maximized if Y is proper complex Gaussian.

• (Differential) entropy for a complex Gaussian vector Z ∼ CN(m,C)

H(Z) = log det(πeC) =
n∑

i=1

(log(λi ) + log(πe))

with λi denoting the eigenvalues of C
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Information Theoretic Limits
– MIMO Capacity

• With Cw = 2σ2I and Cy = HCxH
H + 2σ2I we get

I (Y;X) = H(Y)− H(W) = log det(I +
1

2σ2
HCxH

H)

• Mutual information for spatially white input with Cx = PI/NT

Cwhite = log det(I +
SNR

NT
HHH) =

k∑
i=1

log(1 +
SNR

NT
λi )

with SNR = P/2σ2.

→ Optimal for rich scattering when entries in H are i.i.d., zero-mean
complex Gaussian

• Ergodic capacity for rich scattering

Crich scattering =
k∑

i=1

E [log(1 +
SNR

NT
λi )]
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Spatial Multiplexing

• Motivation: MIMO capacity
scales with min(NT ,NR)

C = min(NT ,NR)E

[
log

(
1 +

SNR

NT
λ

)]
→ How can this be achieved?
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• Observation: MIMO system can be interpreted as a CDMA system

y = b1h1 + . . .+ bNT hNT + w

• Each user/each stream is mapped to one antenna (or a group of
antennas) → spatial multiplexing.

• “Spreading codes” hi are generated “by nature”.

• BLAST: Bell-Labs layered space-time architecture

• Linear receiver processing: MMSE or ZF

• Diversity: coding across several antennas.
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Space-Time Coding

• Motivation
• Time diversity can only be achieved for (very) mobile users or for a

quickly changing environment.

• For slow or static users (e.g., often in WIFI) frequency and spatial
diversity is important.

→ Space-time codes for exploiting spatial diversity.

• Model
• Narrowband, time-invariant system without time and frequency

diversity

• NT transmit antennas, NR = 1 receive antennas
(NR > 1: maximum ratio combining for antenna outputs)

y [m] = hx[m] + w [m] = h1x1[m] + . . .+ hNT
xNT

[m] + w [m]

with h = (h1, . . . , hNT
).

• Capacity: C(h) = log(1 + G ·SNR) with G = ‖h‖2

NT
= 1

NT

∑NT
l=1 |hl |

2

→ fluctuations in hi are averaged out; improved outage capacity.

• Problem: without structure in x the detection complexity is high
(e.g., exponential in NT for ML). → Space-time code design!
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Space-Time Coding
– Antenna Hopping

• Use one transmit antenna at a time in an alternating fashion

[U. Madhow, Fundamentals of Dig. Comm., 2008]

• Achievable rate: average of the rates of the sub-channels

Chopping (h) =
1

NT

NT∑
l=1

log(1 + |hl |2SNR) < C(h)
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Space-Time Coding
– Alamouti Code

• Space-time code which achieves the capacity C(h) for NT = 2

• Two symbols b[1] and b[2] are transmitted using two channel uses

x[1] =

[
x1[1]
x2[1]

]
=

[
b[1]
b[2]

]
x[2] =

[
x1[2]
x2[2]

]
=

[
−b∗[2]
b∗[1]

]
[U. Madhow, Fundamentals of Dig. Comm., 2008]

• The corresponding received signals

y [1] = h1x1[1] + h2x2[1] + w [1] = h1b[1] + h2b[2] + w [1]

and

y [2] = h1x1[2] + h2x2[2] + w [2] = −h1b
∗[2] + h2b

∗[1] + w [2]
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Space-Time Coding
– Alamouti Code

• Consider now

y =

[
y [1]
y∗[2]

]
=

[
h1

h∗2

]
︸ ︷︷ ︸

=v0

b[1] +

[
h2

−h∗1

]
︸ ︷︷ ︸

=v1

b[2] +

[
w1

w∗2

]

• Correlate y with v0 and v1 to get the decision variables

Z1 = vH0 y, for b[1],

Z2 = vH1 y, for b[2]

• Observation: vH0 v1 = vH1 v0 = 0, i.e., two parallel AWGN channels
with the effective SNR ‖v0‖2/2σ2 = ‖v1‖2/2σ2 = ‖h‖2/2σ2.

• With P1 = P2 = P/2 the Alamouti code achieves the capacity C(h).

• Optimal strategy if the transmitter does not know the channel h.
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Beamforming

• If the channel vector h is known at the transmitter, we can use the
spatial matched filter at the transmitter hH by transmitting

x[n] = hHb[n]

• Received signal at time n

y [n] = b[n] ·
NT∑
k=1

|hk |2 + w [n] = b[n] · ‖h‖2 + w [n]

• Optimal strategy if the transmitter knows the channel h.
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