

M. Xiao ommTh/EES/KTH

Overview

Space-Time Channe Modeling

Information Theoreti

Spatial Multiplexing Space-Time Coding Lecture 11: Space-Time Communication / MIMO Advanced Digital Communications (EQ2410)¹

M. Xiao CommTh/EES/KTH

Wednesday, Mar. 2, 2014 10:00-12:00, B22

1/17

Lecture 11 MIMO

M. Xiao mmTh/EES/KTI

Overvie

Space-Time Channe Modeling

Information Theoret Limits

Spatial Multiplexing Space-Time Coding

Overview

- Overview
- 2 Space-Time Channel Modeling
- 3 Information Theoretic Limits
- 4 Spatial Multiplexing
- **5** Space-Time Coding
- **6** Beamforming

Notes			
Notes			

¹Textbook: U. Madhow, Fundamentals of Digital Communications, 2008

M. Xiao nmTh/EES/KTH

Overview

Space-Time Channe

Information Theoretic

Spatial Multiplexing

Beamformin

Overview

Space-Time Communication

- Communication systems with multiple transmit and receive antennas
- Multiple-input/multiple-output systems (MIMO)
- Multiple transmit/receive antennas \rightarrow diversity, increased capacity
- Multiple antennas in communication systems
 - Base stations: many antennas
 - Mobiles: 1-2 antennas
 - WIFI (IEEE 802.11n): 2-4 antennas

3 / 17

Lecture 11

M. Xiao CommTh/EES/KTI

Overviev

Space-Time Channel Modeling

Information Theoreti Limits

Spatial Multiplexing

Beamforming

Space-Time Channel Modeling

• Linear antenna array, m antennas, spacing d

 \bullet Phase difference ϕ and delay τ between neighboring antennas

$$\phi(\theta) = \frac{2\pi d \sin \theta}{\lambda}, \text{ with } \lambda = c/f_c$$

$$\tau = \frac{d \sin \theta}{c}$$

- Received complex baseband signal at antenna $i: y(t-i\tau)e^{j(i-1)\phi}$ (y(t): received signal at the first antenna)
- Narrowband assumption: bandwidth of $y \ll f_c \Rightarrow y(t i\tau) \approx y(t)$
 - ightarrow Gain vector $\mathbf{a}(heta) = (1, e^{j\phi}, \dots, e^{j(m-1)\phi})^T$
 - \rightarrow Array manifold: $\{a(\theta)\}$, for $\theta \in [-\pi/2, \pi/2]$

ivotes				
	·		·	

Notes

M. Xiao ommTh/EES/KTI

Overview

Space-Time Channe Modeling

Information Theoretic Limits

Spatial Multiplexing Space-Time Coding

Space-Time Channel Modeling

• Multipath propagation (M paths, $T_m \ll T_s$):

$$\mathbf{h} = (h_1, \dots, h_m)^T = \sum_{i=1}^M g_i \mathbf{a}(\theta_i)$$

- Gain of the i-th multipath component: gi
- Angle of the *i*-th multipath component: θ_i
- → Central limit theorem: h is zero-mean, proper complex Gaussian with covariance matrix

$$\mathbf{C}_h = \sum_{i=1}^M |g_i|^2 \mathbf{a}(heta_i) \mathbf{a}(heta_i)^H$$

- Power-angle profile: $P(\theta)$
 - Power density for a given angle θ ($\int P(\theta)d\theta = 1$)
 - For a large number of multipath components, we get

$$\mathbf{C}_h = \int \mathbf{a}(\theta) \mathbf{a}(\theta)^H P(\theta) d\theta$$

5 / 17

Notes

Lecture 11

M. Xiao CommTh/EES/KTH

Overvie

Space-Time Channe Modeling

Information Theoret Limits

Spatial Multiplexin

Beamforming

Space-Time Channel Modeling

- MIMO
 - N_T transmit antennas, transmit manifold $\mathbf{a}_T(\theta)$, departure angle θ
 - N_R receive antennas, receive manifold $\mathbf{a}_R(\gamma)$, arrival angle γ
- Channel characterization for narrowband signaling

$$\mathbf{H} = \sum_{l} g_{l} \mathbf{a}_{R}(\gamma_{l}) \mathbf{a}_{T}(\theta_{l})^{T}$$

- **H**: $(N_R \times N_T)$ matrix
- j-th column gives the receive array response to the j-th transmit antenna

- Line-of-sight (LOS) link: $\mathbf{H} = \mathbf{a}_R(\gamma)\mathbf{a}_T(\theta)^T$
- ullet Rich scattering: H_{ij} i.i.d., zero-mean, proper complex Gaussian

-			
Notes			

M. Xiao

Overview

Space-Time Channe Modeling

Information Theoreti

Spatial Multiplexing Space-Time Coding

Information Theoretic Limits - Channel Capacity

• Channel model: $N_R \times N_T$ MIMO channel

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$$
 with $\mathbf{w} \sim CN(\mathbf{0}, 2\sigma^2\mathbf{I})$

• Channel capacity (channel unknown at the transmitter)

$$C = \max_{C_x} I(\mathbf{x}; \mathbf{y}) = \max_{C_x} \log \det \left(\mathbf{I} + \frac{1}{2\sigma^2} \mathbf{H} \mathbf{C}_x \mathbf{H}^H \right)$$

with the transmit covariance matrix \mathbf{C}_x .

 Helpful tool: use a singular value decomposition to reduce the MIMO channel into a number of k parallel scalar channels.

7 / 17

Notes

Lecture 11 MIMO

M. Xiao CommTh/EES/KTH

Overviev

Space-Time Channe Modeling

Information Theoreti Limits

Spatial Multiplexing

Information Theoretic Limits – Singular value decomposition

Define

$$\mathbf{W} = \left\{ \begin{array}{ll} \mathbf{H}^H \mathbf{H} & \text{if } N_T \leq N_R \\ \mathbf{H} \mathbf{H}^H & \text{if } N_R \leq N_T \end{array} \right. \quad \text{and} \quad \begin{array}{ll} m = \min(N_T, N_R) \\ M = \max(N_T, N_R) \end{array}$$

W is nonnegative definite (i.e., all eigenvalues are nonnegative), and **W** has dimension $(m \times m)$.

- Consider the case $N_T \leq N_R$; i.e., $m = N_T$ and $M = N_R$.
- Let \mathbf{v}_i be the length-m eigenvector to the eigenvalue $\lambda_i \geq 0$ of \mathbf{W} (i.e., $\mathbf{W}\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for $\lambda_i > 0$ and $\mathbf{W}\mathbf{v}_i = \mathbf{0}$ for $\lambda_i = 0$).
- Matrix of eigenvectors $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_m)$, normalization $\mathbf{V}^H \mathbf{V} = \mathbf{I}$ \rightarrow eigenvectors are an orthonormal basis of the input space.
- Assumption: k nonzero eigenvalues $\lambda_i > 0$ for $i \in \{1, \dots, k\}$, and m k eigenvalues $\lambda_i = 0$ for $i \in \{k + 1, \dots, m\}$.

N			
Notes			

M. Xiao

Overview

Space-Time Channe

Information Theoretic

Spatial Multiplexing

Beamforming

Information Theoretic Limits – Singular value decomposition

- Define the length-M (receive) vectors $\mathbf{u}_i = \lambda_i^{-\frac{1}{2}} \mathbf{H} \mathbf{v_i}$, $i \in \{1, \dots, k\}$ (i.e., vectors \mathbf{u}_i are orthonormal, $\mathbf{u}_i^H \mathbf{u}_i = \delta_{ij}$).
- Define $\mathbf{U} = (\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{u}_1', \dots, \mathbf{u}_{m-k}')$ with \mathbf{u}_i' such that $\mathbf{U}^H \mathbf{U} = \mathbf{I}_m$. \rightarrow the vectors in \mathbf{U} are an orthonormal basis for the output space.
- We can show that

$$\mathbf{H}\mathbf{x} = \sum_{i=1}^{m} \mathbf{u}_{i} \sqrt{\lambda_{i}} \mathbf{v}_{i}^{H} \mathbf{x} = \mathbf{U} \mathbf{D} \mathbf{V}^{H} \mathbf{x}$$

$$H = UDV^H$$

with $\mathbf{D} = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_m}) \rightarrow \operatorname{singular} \operatorname{values} \sqrt{\lambda_i}$

- Proof: Use $\mathbf{x} = \sum_{i=1}^{m} \mathbf{v}_i \mathbf{v}_i^H \mathbf{x}$ and solve $\mathbf{H} \mathbf{x}$.
- If we now choose $\hat{\mathbf{y}} = \mathbf{U}^H \mathbf{y}$ and $\hat{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$, we get

$$\hat{\mathbf{y}} = \mathbf{D}\hat{\mathbf{x}} + \hat{\mathbf{w}}$$

 \rightarrow the channel is decomposed into k parallel channels!

9 / 17

Notes

Lecture 11 MIMO

M. Xiao CommTh/EES/KT

Overviev

Space-Time Channe

nformation Theoretic

Spatial Multiplexin

Beamforming

Information Theoretic Limits - MIMO Capacity

• Channel known at the transmitter: use $\hat{\mathbf{y}} = \mathbf{D}\hat{\mathbf{x}} + \hat{\mathbf{w}}$ and do waterfilling for the symbols $\hat{\mathbf{x}}$:

$$C_{CSI-T} = \sum_{i=1}^{k} \log(1 + \frac{\lambda_i P_i}{2\sigma^2})$$
 with $P_i = \left[a - \frac{2\sigma^2}{\lambda_i}\right]^+$

and a such that $E[\|\mathbf{x}\|^2] \leq P$ is fulfilled $(P_i = E[|\hat{x}_i|^2])$.

- No channel-state information at the transmitter
 - Choose the input distribution $P(\mathbf{X})$ to maximize the mutual information

$$I(\mathbf{Y}; \mathbf{X}) = H(\mathbf{Y}) - H(\mathbf{Y}|\mathbf{X})$$

- \rightarrow Since $H(\mathbf{Y}|\mathbf{X}) = H(\mathbf{W})$ (i.e., the conditional entropy is independent of the input), it is sufficient maximize $H(\mathbf{Y})$.
- \rightarrow $H(\mathbf{Y})$ is maximized if \mathbf{Y} is proper complex Gaussian.
- (Differential) entropy for a complex Gaussian vector $\mathbf{Z} \sim \mathit{CN}(\mathbf{m}, \mathbf{C})$

$$H(\mathbf{Z}) = \log \det(\pi e \mathbf{C}) = \sum_{i=1}^{n} (\log(\lambda_i) + \log(\pi e))$$

with λ_i denoting the eigenvalues of **C**

es	

M. Xiao ommTh/FFS/KTI

Overview

Space-Time Channe Modeling

Information Theoretic

Spatial Multiplexing Space-Time Coding Information Theoretic Limits – MIMO Capacity

• With $C_w = 2\sigma^2 I$ and $C_y = HC_x H^H + 2\sigma^2 I$ we get

$$I(\mathbf{Y}; \mathbf{X}) = H(\mathbf{Y}) - H(\mathbf{W}) = \log \det(\mathbf{I} + \frac{1}{2\sigma^2} \mathbf{H} \mathbf{C}_x \mathbf{H}^H)$$

• Mutual information for spatially white input with $\mathbf{C}_{x} = P\mathbf{I}/N_{T}$

$$C_{white} = \log \det (\mathbf{I} + rac{\mathit{SNR}}{\mathit{N_T}} \mathbf{H} \mathbf{H}^H) = \sum_{i=1}^k \log (1 + rac{\mathit{SNR}}{\mathit{N_T}} \lambda_i)$$

with $SNR = P/2\sigma^2$.

- \rightarrow Optimal for rich scattering when entries in \boldsymbol{H} are i.i.d., zero-mean complex Gaussian
- Ergodic capacity for rich scattering

$$C_{rich \; scattering} = \sum_{i=1}^{k} E[\log(1 + rac{SNR}{N_T} \lambda_i)]$$

11 / 17

Notes

Lecture 11

M. Xiao CommTh/EES/KTH

Overviev

Space-Time Channel Modeling

Information Theoreti

Spatial Multiplexin

Spatial Multiplexing

• Motivation: MIMO capacity scales with $min(N_T, N_R)$

$$C = \min(N_T, N_R) \mathsf{E}\left[\log\left(1 + \frac{SNR}{N_T}\lambda\right)\right]$$

- ightarrow How can this be achieved?
- 60 N_T = 1 50 N_T = 2 50 N_T = 5 N_T = 5 N_T = 10 N_T = 5 N_T = 10 N_T = 10 N_T = 20 0 N_T = 20 0 N_T = 20 0 N_T = 20
- Observation: MIMO system can be interpreted as a CDMA system

$$\mathbf{y} = b_1 \mathbf{h}_1 + \ldots + b_{N_T} \mathbf{h}_{N_T} + \mathbf{w}$$

- Each user/each stream is mapped to one antenna (or a group of antennas) → spatial multiplexing.
- "Spreading codes" **h**_i are generated "by nature".
- BLAST: Bell-Labs layered space-time architecture
- Linear receiver processing: MMSE or ZF
- Diversity: coding across several antennas.

Notes		

M. Xiao ommTh/EES/KTH

Overview

Space-Time Channe Modeling

Information Theoretic

Spatial Multiplevin

C --- T: -- C- I:

eamforming

Space-Time Coding

Motivation

- Time diversity can only be achieved for (very) mobile users or for a quickly changing environment.
- For slow or static users (e.g., often in WIFI) frequency and spatial diversity is important.
- → Space-time codes for exploiting spatial diversity.

Model

- Narrowband, time-invariant system without time and frequency diversity
- N_T transmit antennas, $N_R = 1$ receive antennas ($N_R > 1$: maximum ratio combining for antenna outputs)

$$y[m] = hx[m] + w[m] = h_1x_1[m] + ... + h_{N_T}x_{N_T}[m] + w[m]$$

with $h = (h_1, ..., h_{N_T})$.

- Capacity: $C(\mathbf{h}) = \log(1 + G \cdot SNR)$ with $G = \frac{\|\mathbf{h}\|^2}{N_T} = \frac{1}{N_T} \sum_{l=1}^{N_T} |h_l|^2$ \rightarrow fluctuations in h_i are averaged out; improved outage capacity.
- Problem: without structure in x the detection complexity is high (e.g., exponential in N_T for ML). → Space-time code design!

13 / 17

Notes

Lecture 11 MIMO

M. Xiao CommTh/EES/KTH

Overview

Space-Time Channe

nformation Theoret _imits

opaciai maicipiosii

Space-Time Coding

Space-Time Coding - Antenna Hopping

• Use one transmit antenna at a time in an alternating fashion

b[1], b[2], b[3],	Y	<i>b</i> [1]	b[4]		
Input symbols	\vee	<i>b</i> [2]		•	• • •
	\vee		<i>b</i> [3]	•	
	1	Antenna h	opping space-	time code	

[U. Madhow, Fundamentals of Dig. Comm., 2008]

• Achievable rate: average of the rates of the sub-channels

$$C_{hopping}(\mathbf{h}) = rac{1}{N_T} \sum_{l=1}^{N_T} \log(1 + |h_l|^2 SNR) < C(\mathbf{h})$$

M. Xiao CommTh/EES/KTH

Dyon dow

Space-Time Channe Modeling

Information Theoret
Limits

Space Time Codiu

Beamformin,

Space-Time Coding - Alamouti Code

- Space-time code which achieves the capacity $C(\mathbf{h})$ for $N_T=2$
- Two symbols b[1] and b[2] are transmitted using two channel uses

$$\mathbf{x}[1] = \begin{bmatrix} x_1[1] \\ x_2[1] \end{bmatrix} = \begin{bmatrix} b[1] \\ b[2] \end{bmatrix}$$

$$\mathbf{x}[2] = \begin{bmatrix} x_1[2] \\ x_2[2] \end{bmatrix} = \begin{bmatrix} -b^*[2] \\ b^*[1] \end{bmatrix}$$
Input symbols
$$\begin{bmatrix} b[2] \\ b^*[1] \end{bmatrix}$$
Output of Alamouti space-time encoder

[U. Madhow, Fundamentals of Dig. Comm., 2008]

• The corresponding received signals

$$y[1] = h_1x_1[1] + h_2x_2[1] + w[1] = h_1b[1] + h_2b[2] + w[1]$$

and

$$y[2] = h_1x_1[2] + h_2x_2[2] + w[2] = -h_1b^*[2] + h_2b^*[1] + w[2]$$

15 / 17

Notes

Lecture 11 MIMO

M. Xiao CommTh/EES/KTH

Overviev

Space-Time Channe Modeling

Information Theoreti Limits

.

Space-Time Coding

Space-Time Coding - Alamouti Code

Consider now

$$\mathbf{y} = \begin{bmatrix} y[1] \\ y^*[2] \end{bmatrix} = \underbrace{\begin{bmatrix} h_1 \\ h_2^* \end{bmatrix}}_{=\mathbf{v}_0} b[1] + \underbrace{\begin{bmatrix} h_2 \\ -h_1^* \end{bmatrix}}_{=\mathbf{v}_1} b[2] + \begin{bmatrix} w_1 \\ w_2^* \end{bmatrix}$$

• Correlate \mathbf{y} with \mathbf{v}_0 and \mathbf{v}_1 to get the decision variables

$$Z_1 = \mathbf{v}_0^H \mathbf{y}, \text{ for } b[1],$$

 $Z_2 = \mathbf{v}_1^H \mathbf{y}, \text{ for } b[2]$

- Observation: $\mathbf{v}_0^H \mathbf{v}_1 = \mathbf{v}_1^H \mathbf{v}_0 = 0$, i.e., two parallel AWGN channels with the effective SNR $\|\mathbf{v}_0\|^2/2\sigma^2 = \|\mathbf{v}_1\|^2/2\sigma^2 = \|\mathbf{h}\|^2/2\sigma^2$.
- With $P_1 = P_2 = P/2$ the Alamouti code achieves the capacity $C(\mathbf{h})$.
- Optimal strategy if the transmitter does not know the channel h.

				_
Notes				

M. Xiao mmTh/EES/KTI

Overview

Space-Time Channe Modeling

Information Theoreti

Spatial Multiplexin

Space-Time Codin

Beamforming

Beamforming

• If the channel vector \mathbf{h} is known at the transmitter, we can use the spatial matched filter at the transmitter \mathbf{h}^H by transmitting

$$\mathbf{x}[n] = \mathbf{h}^H b[n]$$

• Received signal at time n

$$y[n] = b[n] \cdot \sum_{k=1}^{N_T} |h_k|^2 + w[n] = b[n] \cdot ||\mathbf{h}||^2 + w[n]$$

• Optimal strategy if the transmitter knows the channel **h**.

17 / 17

lotes			
lotes			
otes			
lotes			
lotes			
otes			
lotes			