Advanced Digital Communications (EQ2410)

Lecture 11, Period 3, 2016

Task 1 Consider a MIMO system with the following channel matrix:

$$\boldsymbol{H} = \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{array} \right]$$

- (a) Calculate $\mathbf{W} = \mathbf{H}^H \mathbf{H}$.
- (b) Calculate the eigenvalues of \boldsymbol{W} .
- (c) Calculate the eigenvectors v_1 and v_2 of W such that $V^HV = I$ with $V = (v_1, v_2)$.
- (d) Calculate \boldsymbol{u}_1 and \boldsymbol{u}_2 and verify that $\boldsymbol{u}_i^H \boldsymbol{u}_j = \delta_{ij}$
- (e) Verify now that $UDV^H = H$.
- (f) For a power constraint $E[\|\hat{x}\|^2] = 2/3$ and $2\sigma^2 = 1$, calculate the optimal power allocation that maximizes the capacity.

How much do we gain compared to a uniform power allocation?