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SF2705 Fourier Analysis

Fourier series and harmonic functions in the unit disk

We denote by γ a complex variable in the open or closed unit disk and we represent
it in polar coordinates as γ = re2πix, 0 ≤ r ≤ 1, x ∈ R as well as in the Cartesian
coordinates as γ = ξ + iη.

A function u de�ned in the open unit disk is called a harmonic function if it satis�es
the Laplace equation

∆u =
∂2u

∂ξ2
+
∂2u

∂η2
= 0.

It is a standard fact from complex analysis that any real-valued harmonic function is
a real part of an analytic function, i.e. u(γ) = Re f(γ), where f is analytic in the unit
disk. Decomposing f into a Taylor series

f(γ) =
∞∑
n=0

f̂(n)γn,

we obtain

u(γ) = f̂(0) +
1

2

∑
n≥1

f̂(n)γn +
1

2

∑
n≤−1

f̂(|n|)γ̄|n|,

where both series converge inside the unit disk. This means that any harmonic function
is an in�nite linear combination of functions γn, n ≥ 0 and γ̄|n|, n ≤ −1. Obviously, the
last conclusion remains true even for complex-valued harmonic functions. The converse
is also true: any in�nite linear combination, convergent in the unit disk, of functions
γn, n ≥ 0 and γ̄|n|, n ≤ −1 is a harmonic function.

Given a function g de�ned and continuous on the unit circle T = {γ : |γ| = 1},
the Dirichlet problem for the Laplace equation consists in �nding a function u de�ned
and continuous in the closed unit disk, harmonic in the open disk and coinciding with
g on the unit circle. If we search such a function u in the form

u(γ) =
∑
n≥0

cnγ
n +

∑
n≤−1

cnγ̄
|n|,

then we obtain a harmonic function (provided that the series converges in the disk
which is true e.g. if coe�cients cn are bounded). Substituting (a bit formally �rst)
boundary points γ = e2πix, we obtain a requirement

∞∑
n=−∞

cne
2πinx = g(e2πix)

which means that cn are to be choosen as Fourier coe�cients ĝ(n) of the function
g(e2πix). We obtain therefore formula

u(γ) =
∑
n≥0

ĝ(n)γn +
∑
n≤−1

ĝ(n)γ̄|n|, |γ| < 1

and it remains to prove that the obtained function u can be extended continuously to
the boundary of the disk by the function g.



Considering functions ur(e
2πix) = u(re2πix), we see that

ur(e
2πix) =

∞∑
n=−∞

ĝ(n)r|n|e2πinx.

This means that the function ur is a convolution of g with the Poisson kernel Pr, where

Pr(x) =
∞∑

n=−∞

r|n|e2πinx =
1− r2

1− 2r cos(2πx) + r2

(see Exercise 1.4.8) By the result of Exercise 1.4.9, functions ur converge uniformly to
the function g, which gives the result.

The above arguments give also the Poisson integral formula for the solution u of
the Dirichlet problem:

u(re2πix) =

∫ 1

0

1− r2

1− 2r cos(2π(x− y)) + r2
g(e2πiy) dy.

Another important relation between Fourier series and harmonic functions appear
if we analyse harmonic conjugate functions. Remind that given a real-valued function u
harmonic in the unit disk, another real-valued harmonic function v is called harmonic
conjugate to u if the sum u+ iv is an analytic function. A standard theorem in complex
analysis guarantees that such a harmonic conjugate function always exists at least
locally (and hence globally in the whole disk since it is a simply connected domain)
and it is unique up to an additive constant. Let us choose this constant so that the
function v satis�es v(0) = 0. Now, we assume that the function u is represented as a
series

u(γ) =
∑
n≥0

û(n)γn +
∑
n≤−1

û(n)γ̄|n|.

A direct inspection shows then that one can choose the harmonic conjugate function
v as

v(γ) = −i

(∑
n≥1

û(n)γn −
∑
n≤−1

û(n)γ̄|n|

)
.

If we look only at the boundary values of functions u and v, then we see that the map-
ping of u to v transforms the Fourier series

∑∞
n=−∞ û(n)en to the series∑∞

n=−∞−i sign (n)û(n)en, where sign is the signum function

sign (n) =


1, n ≥ 1;
0, n = 0;
−1, n ≤ −1.

This mapping is called the Hilbert transform. Obviously, it is a bounded operator in
the space L2(S1). But unfortunately, the Hilbert transform does not map the space
C(S1) into itself, neither space L1(S1) into itself (but it maps any space Lp(S1) into
itself for all �nite p > 1, this is the theorem of Marcel Riesz).


