SF2705 Fourier Analysis
 Fourier series and harmonic functions in the unit disk

We denote by γ a complex variable in the open or closed unit disk and we represent it in polar coordinates as $\gamma=r e^{2 \pi i x}, 0 \leq r \leq 1, x \in \mathbb{R}$ as well as in the Cartesian coordinates as $\gamma=\xi+i \eta$.

A function u defined in the open unit disk is called a harmonic function if it satisfies the Laplace equation

$$
\Delta u=\frac{\partial^{2} u}{\partial \xi^{2}}+\frac{\partial^{2} u}{\partial \eta^{2}}=0
$$

It is a standard fact from complex analysis that any real-valued harmonic function is a real part of an analytic function, i.e. $u(\gamma)=\operatorname{Re} f(\gamma)$, where f is analytic in the unit disk. Decomposing f into a Taylor series

$$
f(\gamma)=\sum_{n=0}^{\infty} \hat{f}(n) \gamma^{n}
$$

we obtain

$$
u(\gamma)=\hat{f}(0)+\frac{1}{2} \sum_{n \geq 1} \hat{f}(n) \gamma^{n}+\frac{1}{2} \sum_{n \leq-1} \overline{\hat{f}(|n|)} \bar{\gamma}^{|n|}
$$

where both series converge inside the unit disk. This means that any harmonic function is an infinite linear combination of functions $\gamma^{n}, n \geq 0$ and $\bar{\gamma}^{|n|}, n \leq-1$. Obviously, the last conclusion remains true even for complex-valued harmonic functions. The converse is also true: any infinite linear combination, convergent in the unit disk, of functions $\gamma^{n}, n \geq 0$ and $\bar{\gamma}^{|n|}, n \leq-1$ is a harmonic function.

Given a function g defined and continuous on the unit circle $\mathbb{T}=\{\gamma:|\gamma|=1\}$, the Dirichlet problem for the Laplace equation consists in finding a function u defined and continuous in the closed unit disk, harmonic in the open disk and coinciding with g on the unit circle. If we search such a function u in the form

$$
u(\gamma)=\sum_{n \geq 0} c_{n} \gamma^{n}+\sum_{n \leq-1} c_{n} \bar{\gamma}^{|n|}
$$

then we obtain a harmonic function (provided that the series converges in the disk which is true e.g. if coefficients c_{n} are bounded). Substituting (a bit formally first) boundary points $\gamma=e^{2 \pi i x}$, we obtain a requirement

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}=g\left(e^{2 \pi i x}\right)
$$

which means that c_{n} are to be choosen as Fourier coefficients $\hat{g}(n)$ of the function $g\left(e^{2 \pi i x}\right)$. We obtain therefore formula

$$
u(\gamma)=\sum_{n \geq 0} \hat{g}(n) \gamma^{n}+\sum_{n \leq-1} \hat{g}(n) \bar{\gamma}^{|n|},|\gamma|<1
$$

and it remains to prove that the obtained function u can be extended continuously to the boundary of the disk by the function g.

Considering functions $u_{r}\left(e^{2 \pi i x}\right)=u\left(r e^{2 \pi i x}\right)$, we see that

$$
u_{r}\left(e^{2 \pi i x}\right)=\sum_{n=-\infty}^{\infty} \hat{g}(n) r^{|n|} e^{2 \pi i n x}
$$

This means that the function u_{r} is a convolution of g with the Poisson kernel P_{r}, where

$$
P_{r}(x)=\sum_{n=-\infty}^{\infty} r^{|n|} e^{2 \pi i n x}=\frac{1-r^{2}}{1-2 r \cos (2 \pi x)+r^{2}}
$$

(see Exercise 1.4.8) By the result of Exercise 1.4.9, functions u_{r} converge uniformly to the function g, which gives the result.

The above arguments give also the Poisson integral formula for the solution u of the Dirichlet problem:

$$
u\left(r e^{2 \pi i x}\right)=\int_{0}^{1} \frac{1-r^{2}}{1-2 r \cos (2 \pi(x-y))+r^{2}} g\left(e^{2 \pi i y}\right) d y
$$

Another important relation between Fourier series and harmonic functions appear if we analyse harmonic conjugate functions. Remind that given a real-valued function u harmonic in the unit disk, another real-valued harmonic function v is called harmonic conjugate to u if the sum $u+i v$ is an analytic function. A standard theorem in complex analysis guarantees that such a harmonic conjugate function always exists at least locally (and hence globally in the whole disk since it is a simply connected domain) and it is unique up to an additive constant. Let us choose this constant so that the function v satisfies $v(0)=0$. Now, we assume that the function u is represented as a series

$$
u(\gamma)=\sum_{n \geq 0} \hat{u}(n) \gamma^{n}+\sum_{n \leq-1} \hat{u}(n) \bar{\gamma}^{|n|}
$$

A direct inspection shows then that one can choose the harmonic conjugate function v as

$$
v(\gamma)=-i\left(\sum_{n \geq 1} \hat{u}(n) \gamma^{n}-\sum_{n \leq-1} \hat{u}(n) \bar{\gamma}^{|n|}\right) .
$$

If we look only at the boundary values of functions u and v, then we see that the mapping of u to v transforms the Fourier series $\sum_{n=-\infty}^{\infty} \hat{u}(n) e_{n}$ to the series $\sum_{n=-\infty}^{\infty}-i \operatorname{sign}(n) \hat{u}(n) e_{n}$, where sign is the signum function

$$
\operatorname{sign}(n)=\left\{\begin{array}{l}
1, n \geq 1 \\
0, n=0 \\
-1, n \leq-1
\end{array}\right.
$$

This mapping is called the Hilbert transform. Obviously, it is a bounded operator in the space $L^{2}\left(S^{1}\right)$. But unfortunately, the Hilbert transform does not map the space $C\left(S^{1}\right)$ into itself, neither space $L^{1}\left(S^{1}\right)$ into itself (but it maps any space $L^{p}\left(S^{1}\right)$ into itself for all finite $p>1$, this is the theorem of Marcel Riesz).

