DD2448 Foundations of Cryptography Lecture 7

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

March 11, 2016

Definition. Given an odd integer $b \ge 3$, an integer a is called a **quadratic residue** modulo b if there exists an integer x such that $a = x^2 \mod b$.

Definition. The **Legendre Symbol** of an integer a modulo an **odd prime** p is defined by

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{cc} 0 & \text{ if } a = 0 \\ 1 & \text{ if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{ if } a \text{ is a quadratic non-residue modulo } p \end{array} \right. .$$

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Proof.

▶ If $a = y^2 \mod p$, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Proof.

- ▶ If $a = y^2 \mod p$, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.
- If $a^{(p-1)/2}=1 \mod p$ and b generates \mathbb{Z}_p^* , then $a^{(p-1)/2}=b^{\times (p-1)/2}=1 \mod p$ for some x. Since b is a generator, $(p-1)\mid x(p-1)/2$ and x must be even.

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Proof.

- ▶ If $a = y^2 \mod p$, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.
- If $a^{(p-1)/2}=1 \mod p$ and b generates \mathbb{Z}_p^* , then $a^{(p-1)/2}=b^{x(p-1)/2}=1 \mod p$ for some x. Since b is a generator, $(p-1)\mid x(p-1)/2$ and x must be even.
- ▶ If a is a non-residue, then $a^{(p-1)/2} \neq 1 \mod p$, but $\left(a^{(p-1)/2}\right)^2 = 1 \mod p$, so $a^{(p-1)/2} = -1 \mod p$.

Jacobi Symbol

Definition. The **Jacobi Symbol** of an integer a modulo an odd integer $b = \prod_i p_i^{e_i}$, with p_i prime, is defined by

$$\left(\frac{a}{b}\right) = \prod_{i} \left(\frac{a}{p_i}\right)^{e_i} .$$

Note that we can have $\left(\frac{a}{b}\right) = 1$ even when a is a non-residue modulo b.

Properties of the Jacobi Symbol

Basic Properties.

$$\left(\frac{a}{b}\right) = \left(\frac{a \bmod b}{b}\right)$$

$$\left(\frac{ac}{b}\right) = \left(\frac{a}{b}\right) \left(\frac{c}{b}\right) .$$

Law of Quadratic Reciprocity. If a and b are odd integers, then

$$\left(\frac{a}{b}\right) = (-1)^{\frac{(a-1)(b-1)}{4}} \left(\frac{b}{a}\right) .$$

Supplementary Laws. If b is an odd integer, then

$$\left(rac{-1}{b}
ight) = (-1)^{rac{b-1}{2}} \quad ext{and} \quad \left(rac{2}{b}
ight) = (-1)^{rac{b^2-1}{8}} \ .$$

Computing the Jacobi Symbol (1/2)

The following assumes that $a \ge 0$ and that $b \ge 3$ is odd.

```
JACOBI(a, b)
     if a < 2
(1)
(2)
            return a
(3) s \leftarrow 1
(4) while a is even
(5)
            s \leftarrow s \cdot (-1)^{\frac{1}{8}(b^2-1)}
(6)
            a \leftarrow a/2
(7) if a < b
(8)
            SWAP(a,b)
            s \leftarrow s \cdot (-1)^{\frac{1}{4}(a-1)(b-1)}
(9)
(10)
         return s \cdot \text{JACOBI}(a \mod b, b)
```

Solovay-Strassen Primality Test (1/2)

The following assumes that $n \ge 3$.

```
SOLOVAYSTRASSEN(n, r)
```

- (1) **for** i = 1 **to** r
- (2) Choose 0 < a < n randomly.
- (3) if $\left(\frac{a}{n}\right) = 0$ or $\left(\frac{a}{n}\right) \neq a^{(n-1)/2} \mod n$
- (4) **return** composite
- (5) **return** probably prime

Solovay-Strassen Primality Test (2/2)

Analysis.

▶ If *n* is prime, then $0 \neq \left(\frac{a}{n}\right) = a^{(n-1)/2} \mod n$ for all 0 < a < n, so we never claim that a prime is composite.

Solovay-Strassen Primality Test (2/2)

Analysis.

- ▶ If *n* is prime, then $0 \neq \left(\frac{a}{n}\right) = a^{(n-1)/2} \mod n$ for all 0 < a < n, so we never claim that a prime is composite.
- ▶ If $\left(\frac{a}{n}\right) = 0$, then $\left(\frac{a}{p}\right) = 0$ for some prime factor p of n. Thus, $p \mid a$ and n is composite, so we never wrongly return from within the loop.

Solovay-Strassen Primality Test (2/2)

Analysis.

- ▶ If *n* is prime, then $0 \neq \left(\frac{a}{n}\right) = a^{(n-1)/2} \mod n$ for all 0 < a < n, so we never claim that a prime is composite.
- ▶ If $\left(\frac{a}{n}\right) = 0$, then $\left(\frac{a}{p}\right) = 0$ for some prime factor p of n. Thus, $p \mid a$ and n is composite, so we never wrongly return from within the loop.
- ▶ At most half of all elements a in \mathbb{Z}_n^* have the property that

$$\left(\frac{a}{n}\right) = a^{(n-1)/2} \bmod n .$$

More On Primality Tests

- The Miller-Rabin test is faster.
- Testing many primes can be done faster than testing each separately
- ► Those are *probabilistic* primality tests, but there is a *deterministic* test, so Primes are in P!

Security of RSA

Factoring

The obvious way to break RSA is to factor the public modulus N and recover the prime factors p and q.

▶ The number field sieve factors N in time

$$O\left(e^{(1.92+o(1))\left((\ln N)^{1/3}+(\ln \ln N)^{2/3}\right)}\right)$$
 .

The elliptic curve method factors N in time

$$O\left(e^{(1+o(1))\sqrt{2\ln p \ln \ln p}}\right)$$
.

Factoring

The obvious way to break RSA is to factor the public modulus N and recover the prime factors p and q.

▶ The number field sieve factors N in time

$$O\left(e^{(1.92+o(1))\left((\ln N)^{1/3}+(\ln \ln N)^{2/3}\right)}\right)$$
 .

The elliptic curve method factors N in time

$$O\left(e^{(1+o(1))\sqrt{2\ln p \ln \ln p}}\right)$$
.

Note that the latter only depends on the size of p!

Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

▶ Small Message. If m is small, then $m^e < N$. Thus, no reduction takes place, and m can be computed in \mathbb{Z} by taking the eth root.

Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

- ▶ Small Message. If m is small, then $m^e < N$. Thus, no reduction takes place, and m can be computed in \mathbb{Z} by taking the eth root.
- ▶ **Identical Plaintexts.** If a message m is encrypted under moduli N_1 , N_2 , N_3 , and N_4 as c_1 , c_2 , c_3 , and c_3 , then CRT implies a $c \in \mathbb{Z}^*_{N_1 N_2 N_3 N_4}$ such that $c = c_i \mod N_i$ and $c = m^e \mod N_1 N_2 N_3 N_4$ with $m < N_i$.

Additional Caveats

▶ **Identical Moduli.** If a message m is encrypted as c_1 and c_2 using distinct encryption exponents e_1 and e_2 with $gcd(e_1, e_2) = 1$, and a modulus N, then we can find a, b such that $ae_1 + be_2 = 1$ and $m = c_1^a c_2^b \mod N$.

Additional Caveats

- ▶ **Identical Moduli.** If a message m is encrypted as c_1 and c_2 using distinct encryption exponents e_1 and e_2 with $gcd(e_1, e_2) = 1$, and a modulus N, then we can find a, b such that $ae_1 + be_2 = 1$ and $m = c_1^a c_2^b \mod N$.
- ▶ Reiter-Franklin Attack. If e is small then encryptions of m and f(m) for a polynomial $f \in \mathbb{Z}_N[x]$ allows efficient computation of m.

Additional Caveats

- ▶ **Identical Moduli.** If a message m is encrypted as c_1 and c_2 using distinct encryption exponents e_1 and e_2 with $gcd(e_1, e_2) = 1$, and a modulus N, then we can find a, b such that $ae_1 + be_2 = 1$ and $m = c_1^a c_2^b \mod N$.
- ▶ Reiter-Franklin Attack. If e is small then encryptions of m and f(m) for a polynomial $f \in \mathbb{Z}_N[x]$ allows efficient computation of m.
- ▶ Wiener's Attack. If $3d < N^{1/4}$ and q , then <math>N can be factored in polynomial time with good probability.

Factoring From Order of Multiplicative Group

Given N and $\phi(N)$, we can find p and q by solving

$$N = pq$$
 $\phi(N) = (p-1)(q-1)$

Factoring From Encryption & Decryption Exponents (1/3)

▶ If N = pq with p and q prime, then the CRT implies that

$$x^2 = 1 \mod N$$

has **four distinct solutions** in \mathbb{Z}_N^* , and **two** of these are **non-trivial**, i.e., distinct from ± 1 .

Factoring From Encryption & Decryption Exponents (1/3)

▶ If N = pq with p and q prime, then the CRT implies that

$$x^2 = 1 \mod N$$

has **four distinct solutions** in \mathbb{Z}_N^* , and **two** of these are **non-trivial**, i.e., distinct from ± 1 .

If x is a non-trivial root, then

$$(x-1)(x+1)=tN$$

but
$$N \nmid (x - 1), (x + 1)$$
, so

$$gcd(x-1, N) > 1$$
 and $gcd(x+1, N) > 1$.

Factoring From Encryption & Decryption Exponents (2/3)

▶ The encryption & decryption exponents satisfy

$$ed = 1 \mod \phi(N)$$
,

so if we have $ed - 1 = 2^{s}r$ with r odd, then

$$(p-1)=2^{s_p}r_p$$
 which divides $2^s r$ and $(q-1)=2^{s_q}r_q$ which divides $2^s r$.

▶ If $v \in \mathbb{Z}_N^*$ is random, then $w = v^r$ is random in the subgroup of elements with order 2^i for some $0 \le i \le \max\{s_p, s_q\}$.

Factoring From Encryption & Decryption Exponents (3/3)

Suppose $s_p \ge s_q$. Then for some $0 < i < s_p$,

$$w^{2^i} = \pm 1 \bmod q$$

and

$$w^{2^i} \mod p$$

is uniformly distributed in $\{1, -1\}$.

Conclusion.

 $w^{2^i} \pmod{N}$ is a non-trivial root of 1 with probability 1/2, which allows us to factor N.

Semantic Security

▶ RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.

- ► RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- Intuitively, we want to leak no information of the encrypted plaintext.

- ► RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- ▶ Intuitively, we want to leak no **knowledge** of the encrypted plaintext.

- ► RSA clearly provides some kind of "security", but it is clear that we need to be more careful with what we ask for.
- Intuitively, we want to leak no knowledge of the encrypted plaintext.
- ▶ In other words, no function of the plaintext can efficiently be guessed notably better from its ciphertext than without it.

Idea! Define only **lack** of knowledge and not what knowledge actually is.

 $\operatorname{Exp}_{\mathcal{CS},\mathcal{A}}^b$ (Semantic Security Experiment).

- 1. Generate Public Key. $(pk, sk) \leftarrow Gen(1^n)$.
- 2. Adversarial Choice of Messages. $(m_0, m_1, s) \leftarrow A(pk)$.
- 3. **Guess Message.** Return the first bit of $A(E_{pk}(m_b), s)$.

 $\operatorname{Exp}_{\mathcal{CS},\mathcal{A}}^b$ (Semantic Security Experiment).

- 1. Generate Public Key. $(pk, sk) \leftarrow Gen(1^n)$.
- 2. Adversarial Choice of Messages. $(m_0, m_1, s) \leftarrow A(pk)$.
- 3. **Guess Message.** Return the first bit of $A(E_{pk}(m_b), s)$.

Definition. A cryptosystem $\mathcal{CS} = (Gen, E, D)$ is said to be semantically secure if for every polynomial time algorithm A

$$|\operatorname{\mathsf{Pr}}[\operatorname{Exp}^0_{\mathcal{CS},\mathcal{A}}=1]-\operatorname{\mathsf{Pr}}[\operatorname{Exp}^1_{\mathcal{CS},\mathcal{A}}=1]|$$

is negligible.

Every semantically secure cryptosystem must be probabilistic!

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that $\mathcal{CS} = (\mathsf{Gen}, \mathsf{E}, \mathsf{D})$ is a semantically secure cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with t(n) polynomial, is encrypted by **repeated independent encryption** of each component using the **same public key** is also semantically secure.

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that $\mathcal{CS} = (\mathsf{Gen}, \mathsf{E}, \mathsf{D})$ is a semantically secure cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with t(n) polynomial, is encrypted by **repeated independent encryption** of each component using the **same public key** is also semantically secure.

Semantic security is useful!