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Legendre Symbol (1/2)

Definition. Given an odd integer b > 3, an integer a is called a
quadratic residue modulo b if there exists an integer x such that
a = x?>mod b.

Definition. The Legendre Symbol of an integer a modulo an
odd prime p is defined by

5 0 ifa=0
<—> = 1 if a is a quadratic residue modulo p
P -1 if a is a quadratic non-residue modulo p
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(i) P2 mod p
p
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(i) P2 mod p
p

Proof.
» If a=y? mod p, then alP~1)/2 = yP~1 — 1 mod p.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(i) P2 mod p
p

Proof.
» If a=y? mod p, then alP~1)/2 = yP~1 — 1 mod p.

» If alP~1)/2 = 1 mod p and b generates Z, then
alP~1)/2 — px(P—1)/2 — 1 mod p for some x. Since b is a
generator, (p— 1) | x(p —1)/2 and x must be even.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(i) P2 mod p
p

Proof.
» If a=y? mod p, then alP~1)/2 = yP~1 — 1 mod p.

» If alP~1)/2 = 1 mod p and b generates Z, then
alP~1)/2 — px(P—1)/2 — 1 mod p for some x. Since b is a
generator, (p— 1) | x(p —1)/2 and x must be even.

» If ais a non-residue, then alP=1)/2 £ 1 mod p, but
(a(”_l)/z)2 = 1mod p, so aP~1/2 = —1 mod p.
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Jacobi Symbol

Definition. The Jacobi Symbol of an integer a modulo an odd
integer b =[], p{", with p; prime, is defined by

@-1(2)

i

Note that we can have (%) = 1 even when a is a non-residue
modulo b.
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Properties of the Jacobi Symbol

Basic Properties.

Law of Quadratic Reciprocity. If a and b are odd integers, then
a (a=10-1) (b
Y =(=1y [ 2
(b) (=1 <a>

Supplementary Laws. If b is an odd integer, then

(@) m ()
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Computing the Jacobi Symbol (1/2)

The following assumes that a > 0 and that b > 3 is odd.

JACOBI(a, b)

(1) ifa<2
(2) return a
(3) s«1
(4)  while ais even
(5) S¢s- (—1)%(1’2_1)
(6) a< a2
(ry ifa<b
)

SWAP(a,b)
(9) s s (—1)iaDE-D
(10) return s- JacoBi(a mod b, b)
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Solovay-Strassen Primality Test (1/2)

The following assumes that n > 3.

SOLOVAYSTRASSEN(n, r)
(1) fori=1tor

) Choose 0 < a < n randomly.

) if (2) =00r (2) # al™1/2 mod n
(4) return composite

) return probably prime
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Solovay-Strassen Primality Test (2/2)

Analysis.

> If nis prime, then 0 # (%) = a("1)/2 mod n for all
0 < a < n, so we never claim that a prime is composite.
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Solovay-Strassen Primality Test (2/2)

Analysis.
> If nis prime, then 0 # (%) = a("1)/2 mod n for all
0 < a < n, so we never claim that a prime is composite.

> If (%) =0, then (%) = 0 for some prime factor p of n. Thus,
p | a and n is composite, so we never wrongly return from
within the loop.
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Solovay-Strassen Primality Test (2/2)

Analysis.

> If nis prime, then 0 # (%) = a("1)/2 mod n for all
0 < a < n, so we never claim that a prime is composite.

> If (%) =0, then (%) = 0 for some prime factor p of n. Thus,

p | a and n is composite, so we never wrongly return from
within the loop.

> At most half of all elements a in Z}, have the property that

(%) = a2 mod n .
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More On Primality Tests

» The Miller-Rabin test is faster.

» Testing many primes can be done faster than testing each
separately

» Those are probabilistic primality tests, but there is a
deterministic test, so Primes are in P!
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Security of RSA
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The obvious way to break RSA is to factor the public modulus N
and recover the prime factors p and q.

» The number field sieve factors N in time

0 (e(1.92+o(1))((|n N)1/3+(|n|n/v)2/3))

» The elliptic curve method factors N in time

0 (e(1+o(1wm)
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The obvious way to break RSA is to factor the public modulus N
and recover the prime factors p and q.

» The number field sieve factors N in time

0 (e(1.92+o(1))((|n N)1/3+(|n|n/v)2/3))

» The elliptic curve method factors N in time

0 (e(1+o(1wm)

Note that the latter only depends on the size of p!
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Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.
» Small Message. If m is small, then m® < N. Thus, no

reduction takes place, and m can be computed in Z by
taking the eth root.
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Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

» Small Message. If m is small, then m® < N. Thus, no
reduction takes place, and m can be computed in Z by
taking the eth root.

» ldentical Plaintexts. If a message m is encrypted under
moduli Ny, N, N3, and Ny as ¢1, ¢, ¢3, and c3, then CRT
implies a ¢ € ZE1N2N3N4 such that ¢ = ¢; mod N; and
¢ = m® mod Ny No N3Ny with m < N;.
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Additional Caveats

» Ildentical Moduli. If a message m is encrypted as ¢; and &
using distinct encryption exponents e; and e, with
gcd(er, e2) = 1, and a modulus N, then we can find a, b such

that ae; + bey = 1 and m = cfc? mod N.
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Additional Caveats

» Ildentical Moduli. If a message m is encrypted as ¢; and &
using distinct encryption exponents e; and e, with
gcd(er, e2) = 1, and a modulus N, then we can find a, b such
that ae; + bey = 1 and m = cfc? mod N.

» Reiter-Franklin Attack. If e is small then encryptions of m
and f(m) for a polynomial f € Zy/[x] allows efficient
computation of m.
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Additional Caveats

» Ildentical Moduli. If a message m is encrypted as ¢; and &
using distinct encryption exponents e; and e, with
gcd(er, e2) = 1, and a modulus N, then we can find a, b such
that ae; + bey = 1 and m = cfc? mod N.

» Reiter-Franklin Attack. If e is small then encryptions of m
and f(m) for a polynomial f € Zy/[x] allows efficient
computation of m.

» Wiener's Attack. If 3d < N'/* and q < p < 2q, then N can
be factored in polynomial time with good probability.
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Factoring From Order of Multiplicative Group

Given N and ¢(N), we can find p and g by solving

N = pq
¢(N) = (p—1)(g - 1)
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Factoring From Encryption & Decryption Exponents (1/3)

» If N = pg with p and g prime, then the CRT implies that
x?=1mod N

has four distinct solutions in Z};, and two of these are
non-trivial, i.e., distinct from £1.
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Factoring From Encryption & Decryption Exponents (1/3)

» If N = pg with p and g prime, then the CRT implies that
x?=1mod N

has four distinct solutions in Z};, and two of these are
non-trivial, i.e., distinct from £1.

» If x is a non-trivial root, then
(x—=1)(x+1)=tN
but Nt (x —1),(x+1), so

ged(x —1,N) >1 and ged(x+1,N)>1.
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Factoring From Encryption & Decryption Exponents (2/3)

» The encryption & decryption exponents satisfy
ed =1 mod ¢(N) ,
so if we have ed — 1 = 2°r with r odd, then
(p —1) = 2°r, which divides 2°r and

(g — 1) = 2%r, which divides 2°r .

» If v € Z}, is random, then w = v" is random in the subgroup
of elements with order 2’ for some 0 < i < max{sp, sq}.

DD2448 Foundations of Cryptography March 11, 2016



Factoring From Encryption & Decryption Exponents (3/3)

Suppose s, > s;. Then for some 0 < i < sp,
w? = 41 mod q

and

w? mod p

is uniformly distributed in {1, —1}.
Conclusion.

w? (mod N) is a non-trivial root of 1 with probability 1/2, which
allows us to factor N.
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Semantic Security
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Semantic Security (1/3)

» RSA clearly provides some kind of “security”, but it is clear
that we need to be more careful with what we ask for.
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Semantic Security (1/3)

» RSA clearly provides some kind of “security”, but it is clear
that we need to be more careful with what we ask for.

> Intuitively, we want to leak no information of the encrypted
plaintext.
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Semantic Security (1/3)

» RSA clearly provides some kind of “security”, but it is clear
that we need to be more careful with what we ask for.

> Intuitively, we want to leak no knowledge of the encrypted
plaintext.
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Semantic Security (1/3)

» RSA clearly provides some kind of “security”, but it is clear
that we need to be more careful with what we ask for.

> Intuitively, we want to leak no knowledge of the encrypted
plaintext.

» In other words, no function of the plaintext can efficiently be
guessed notably better from its ciphertext than without it.

Idea! Define only lack of knowledge and not what knowledge
actually is.
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Semantic Security (2/3)

Expg&A (Semantic Security Experiment).
1. Generate Public Key. (pk,sk) + Gen(1").
2. Adversarial Choice of Messages. (mg, m1,s) < A(pk).
3. Guess Message. Return the first bit of A(Epk(mp),s).
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Semantic Security (2/3)

Expgs’A (Semantic Security Experiment).
1. Generate Public Key. (pk,sk) + Gen(1").
2. Adversarial Choice of Messages. (mg, m1,s) < A(pk).
3. Guess Message. Return the first bit of A(Epk(mp),s).

Definition. A cryptosystem CS = (Gen, E, D) is said to be
semantically secure if for every polynomial time algorithm A

‘ Pr[Expgs,A =1] - PF[EXPés,A =1]|

is negligible.
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Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!
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Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that CS = (Gen, E, D) is a semantically secure
cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with
t(n) polynomial, is encrypted by repeated independent
encryption of each component using the same public key is also
semantically secure.
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Semantic Security (3/3)

Every semantically secure cryptosystem must be probabilistic!

Theorem. Suppose that CS = (Gen, E, D) is a semantically secure
cryptosystem.

Then the related cryptosystem where a t(n)-list of messages, with
t(n) polynomial, is encrypted by repeated independent
encryption of each component using the same public key is also
semantically secure.

Semantic security is useful!
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