Objektorienterad
Programkonstruktion

Forelasning 11
8 dec 2015




Processer

Vad vi i dagligt tal menar nar vi pratar om ett program som kor
En process har referenser till en mangd reserverat minne

En process har referenser till systemresurser, som t.ex filer, sockets,
mm

Ett operativsystem har (minst) en scheduler som ansvarar for att tilldela
olika processer tid i processorn for att exekvera sina instruktioner

Processer har olika prioritet, utifran vilken turordningen | schedulern
bestams

Det gar att kommunicera mellan processer, men det ar ungefar lika
bokigt inom en dator som mellan tva olika datorer

| vanliga fall kdrs javamotorn som en process, men det gar att skapa
flera ny processer inifran ett javaprogram



Tradar

 En process ari sin tur uppdelad i tradar (minst en)
* Tradarna kan exekvera parallellt med varandra

» Varje trad kan schemalaggas separat av schedulern, utifran en given
prioritetsordning. Vid samma prioritet far tradarna turas om, hur ofta
de byts ut varierar med schedulern (och OS:et)

« Alla tradar kan ha tillgang till allt minne och filpekare som hor till
processen.

» Det delade minnet gor att en context switch ofta gar fortare mellan
tradar an mellan processer

* Det delade minnet gor att det ar latt att kommunicera mellan olika
tradar i samma process

« Java skapas tradar med klassen Thread och granssnittet Runnable






Thread

| Java skapas tradar ur klassen Thread

Tradobjektet innehaller kod som kors parallellt med den trad som
startade den

Koden som ska koras i en trad finns definierad i dess run()-
metod

Tradklassen definierar bl.a

start (), satter igang traden
sleep(int ms) later traden vanta tillfalligt

setPriority(int newPriority) satter prioriteten, har
nastan ingen effekt!

join(int ms) vantar pa att traden ska bli klar



Runnable

Ett alternativ till att arva fran klassen Thread ar att skapa en egen
klass som implementerar Runnable

Da maste ens klass implementera metoden run|()

Ett tradobjekt kan skapas med en Runnable som argument till
konstruktorn, da kors run () fran Runnableobjektet nar start ()
anropas pa traden

Fordelen med att arva fran Thread ar att det ofta blir mindre kod att
skriva

Fordelen med att implementera en egen Runnable-klass ar att man
kan arva fran en helt annan klass, om man behover specialiserad
funktionalitet

Thread implementerar Runnable



Thread-exempel

public class HelloThread extends Thread {

public void run() {

System.out.println("Hello from a thread!");

public class ThreadDemo{
public static void main(String args[]) {
HelloThread hello = new HelloThread();
hello.start();

System.out.println("Hello from main!");



Runnable

public class HelloRunnable implements Runnable {

public void run() {

System.out.println("Hello from a thread!");

public class RunnableDemo{
public static void main(String args[]) {

Thread hello = (new Thread(new HelloRunnable()));
hello.start();

System.out.println("Hello from main!");



Exempel: en multitradad server

« En server kan med fordel skapa en egen trad for varje extern
forfragan

« En huvudloop lyssnar efter anslutningar, och startar en ny
trad varje gang det kommer en anslutning utifran

« De nya tradarna kan ha en konstruktor som tar en Socket
som argument



ko

BN

£l Multitradad server i Java

"’%&4)1(4%?9“

try {
serverSocket = new ServerSocket(1025);
} catch (IOException e) {
System.out.println("listen failed on port: 1025");

while(!done) {

Socket sock = null;

try {
sock = serverSocket.accept();

} catch (IOException e) {
System.out.println("Accept failed: 1025");

}

Thread thr = new Thread(new Handler(sock));

thr.start(),



Threadpool

« Concurrency pattern (ej GoF)
« Skapa ett antal tradar en gang for alla

« Uppgifter som skall utféras av en trad laggs i en uppgiftsko (Task
Queue)

« Sa fort en trad blir fardig med sin uppqift tilldelas den nasta uppgift ur
kon

« Begransar antalet tradar som kan skapas
» Minskar overhead for att skapa nya tradar

« Lamplig nar det finns en valdigt stor mangd (sma) uppgifter som ska
utforas

« Ett fatal tradar kan gora att de forsta uppgifter som slutfors blir klara
fortare an om man har manga tradar



Threadpool i Java

« Java definierar granssnittet Executor, som liksom Thread kan ta en
Runnable och kora den

o Det ar inte definierat nar/hur en Executor KOr en Runnable
» | stallet for

(new Thread(myRunnable)).start();
e Kkan vi anropa

myExecutor.execute(myRunnable);

» Ett satt att skapa en ExecutorService som bestar av en Thread Pool ar med
fabriksmetoden

newFixedThreadPool (int poolSize)
 somfinns i

java.util.concurrent.Executors



Threadpool i Java

public class NetworkService implements Runnable({
private ServerSocket serverSocket;

private ExecutorService pool;

public NetworkService(int port, int poolSize) throws IOException

serverSocket = new ServerSocket(port);

pool = Executors.newFixedThreadPool (poolSize);

public void run() {
try {
while (true) {
pool.execute(new Handler (serverSocket.accept()));
}
} catch (IOException ex) {
pool.shutdown();



Handler

class Handler implements Runnable {

private final Socket socket;
Handler (Socket socket) {

this.socket = socket;

public void run() {

// read and service request on

socket



Titel

 Innehall 1

 Innehall 2



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

