
Objektorienterad
Programkonstruktion

Föreläsning 11
8 dec 2015

Processer

● Vad vi i dagligt tal menar när vi pratar om ett program som kör

● En process har referenser till en mängd reserverat minne

● En process har referenser till systemresurser, som t.ex filer, sockets,
mm

● Ett operativsystem har (minst) en scheduler som ansvarar för att tilldela
olika processer tid i processorn för att exekvera sina instruktioner

● Processer har olika prioritet, utifrån vilken turordningen I schedulern
bestäms

● Det går att kommunicera mellan processer, men det är ungefär lika
bökigt inom en dator som mellan två olika datorer

● I vanliga fall körs javamotorn som en process, men det går att skapa
flera ny processer inifrån ett javaprogram

Trådar

● En process är i sin tur uppdelad i trådar (minst en)

● Trådarna kan exekvera parallellt med varandra

● Varje tråd kan schemaläggas separat av schedulern, utifrån en given
prioritetsordning. Vid samma prioritet får trådarna turas om, hur ofta
de byts ut varierar med schedulern (och OS:et)

● Alla trådar kan ha tillgång till allt minne och filpekare som hör till
processen.

● Det delade minnet gör att en context switch ofta går fortare mellan
trådar än mellan processer

● Det delade minnet gör att det är lätt att kommunicera mellan olika
trådar i samma process

● Java skapas trådar med klassen Thread och gränssnittet Runnable

Processer och trådar

Thread

● I Java skapas trådar ur klassen Thread

● Trådobjektet innehåller kod som körs parallellt med den tråd som
startade den

● Koden som ska köras i en tråd finns definierad i dess run()-
metod

● Trådklassen definierar bl.a

– start(), sätter igång tråden

– sleep(int ms) låter tråden vänta tillfälligt

– setPriority(int newPriority) sätter prioriteten, har
nästan ingen effekt!

– join(int ms) väntar på att tråden ska bli klar

Runnable

● Ett alternativ till att ärva från klassen Thread är att skapa en egen
klass som implementerar Runnable

● Då måste ens klass implementera metoden run()

● Ett trådobjekt kan skapas med en Runnable som argument till
konstruktorn, då körs run() från Runnableobjektet när start()
anropas på tråden

● Fördelen med att ärva från Thread är att det ofta blir mindre kod att
skriva

● Fördelen med att implementera en egen Runnable-klass är att man
kan ärva från en helt annan klass, om man behöver specialiserad
funktionalitet

● Thread implementerar Runnable

Thread-exempel

public class HelloThread extends Thread {

 public void run() {

 System.out.println("Hello from a thread!");

 }

}

public class ThreadDemo{

 public static void main(String args[]) {

 HelloThread hello = new HelloThread();

 hello.start();

 System.out.println("Hello from main!");

 }

}

Runnable

public class HelloRunnable implements Runnable {

 public void run() {

 System.out.println("Hello from a thread!");

 }

}

public class RunnableDemo{

 public static void main(String args[]) {

 Thread hello = (new Thread(new HelloRunnable()));

 hello.start();

 System.out.println("Hello from main!");

 }

}

Exempel: en multitrådad server

● En server kan med fördel skapa en egen tråd för varje extern
förfrågan

● En huvudloop lyssnar efter anslutningar, och startar en ny
tråd varje gång det kommer en anslutning utifrån

● De nya trådarna kan ha en konstruktor som tar en Socket
som argument

Multitrådad server i Java

try {

 serverSocket = new ServerSocket(1025);

} catch (IOException e) {

 System.out.println("listen failed on port: 1025");

}

while(!done){

 Socket sock = null;

 try {

 sock = serverSocket.accept();

 } catch (IOException e) {

 System.out.println("Accept failed: 1025");

 }

 Thread thr = new Thread(new Handler(sock));

 thr.start(),

}

Threadpool

● Concurrency pattern (ej GoF)

● Skapa ett antal trådar en gång för alla

● Uppgifter som skall utföras av en tråd läggs i en uppgiftskö (Task
Queue)

● Så fort en tråd blir färdig med sin uppgift tilldelas den nästa uppgift ur
kön

● Begränsar antalet trådar som kan skapas

● Minskar overhead för att skapa nya trådar

● Lämplig när det finns en väldigt stor mängd (små) uppgifter som ska
utföras

● Ett fåtal trådar kan göra att de första uppgifter som slutförs blir klara
fortare än om man har många trådar

Threadpool i Java

● Java definierar gränssnittet Executor, som liksom Thread kan ta en
Runnable och köra den

● Det är inte definierat när/hur en Executor kör en Runnable

● I stället för

 (new Thread(myRunnable)).start();

● kan vi anropa

 myExecutor.execute(myRunnable);

● Ett sätt att skapa en ExecutorService som består av en Thread Pool är med
fabriksmetoden

newFixedThreadPool(int poolSize)

● som finns i

java.util.concurrent.Executors

Threadpool i Java

public class NetworkService implements Runnable{

 private ServerSocket serverSocket;

 private ExecutorService pool;

 public NetworkService(int port, int poolSize) throws IOException
{

 serverSocket = new ServerSocket(port);

 pool = Executors.newFixedThreadPool(poolSize);

 }

 public void run() {

 try {

 while (true) {

 pool.execute(new Handler(serverSocket.accept()));

 }

 } catch (IOException ex) {

 pool.shutdown();

 }

 }

}

Handler

class Handler implements Runnable {

 private final Socket socket;

 Handler(Socket socket) {

 this.socket = socket;

 }

 public void run() {

 // read and service request on socket

 }

}

Titel

● Innehåll 1

● Innehåll 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

