REGLERTEKNIK KTH

REGLERTEKNIK AK EL1000/EL1120

Kortfattade lösningsförslag till tentamen 2016–03–15

1. (a) i. Laplactransformering ger

$$ms^{2}Y(s) + \beta sY(s) + kY(s) = U(s)$$

$$\Rightarrow Y(s) = \underbrace{\frac{1}{ms^{2} + \beta s + k}}_{G(s)} U(s).$$

ii. Vi har att $G(s) = \frac{1}{s+1}$. Systemet har en pol i s = -1 och är asymptotiskt stabilt. Vi kan alltså använda frekvensanalys för att beräkna stationär utsignal enligt Glad & Ljung, sidorna 81–82. Insignalen har frekvensen $\omega = \sqrt{3}$ och vi måste beräkna

$$|G(i\omega)| = \frac{1}{\sqrt{1+\omega^2}} = \frac{1}{2}$$

arg $G(i\omega) = \arg 1 - \arg(1+i\omega) = -\arctan\omega = -\frac{\pi}{3}$ rad.

Eftersom insignalen har amplitud 2 blir den stationära utsignalen

$$y(t) = 2|G(i\omega)|\sin[\omega t + \arg G(i\omega)] = \sin\left(\sqrt{3}t - \frac{\pi}{3}\right)$$

iii. Laplace transformen av utsignalen ges av Y(s) = G(s)U(s) där
 $G(s) = \frac{1}{s+1}$ och Laplace transformen av insignalen ges av $U(s) = \frac{1}{s-1}$ (Glad &
 Ljung, sidan 233, (A.19)). Vi har alltså att utsignalen blir

$$y(t) = \mathcal{L}^{-1}\left(\frac{1}{(s+1)(s-1)}\right) = \frac{1}{2}(e^t - e^{-t})$$

enligt Glad & Ljung, sidan 233, (A.20).

(b) Invers Laplacetransform applicerad på regulatorn ger

$$\dot{u}(t) + 10u(t) = 5\dot{e}(t) - 15e(t).$$

Med Euler-bakåt erhålls approximationen

$$\frac{1}{0.1}(u(t) - u(t - 0.1)) + 10u(t) = 5\frac{1}{0.1}(e(t) - e(t - 0.1)) - 15e(t).$$

Om vi löser ut u(t) fås regulatoralgoritmen

$$u(t) = \frac{1}{2}u(t - 0.1) + \frac{7}{4}e(t) - \frac{5}{2}e(t - 0.1).$$

2. (a) i. Från blockschemat och med de indikerade tillstånden fås

$$(s+1)X_1(s) = -2U(s)$$

 $(s-1)X_2(s) = X_1(s) + U(s).$
 $Y(s) = X_2(s).$

Invers Laplacetransform ger tillståndsmodellen

$$\dot{x} = \underbrace{\begin{pmatrix} -1 & 0\\ 1 & 1 \end{pmatrix}}_{A} x + \underbrace{\begin{pmatrix} -2\\ 1 \end{pmatrix}}_{B} u$$
$$y = \underbrace{\begin{pmatrix} 0 & 1 \end{pmatrix}}_{C} x.$$

- ii. Styrbarhetsmatrisen är $S = \begin{bmatrix} B & AB \end{bmatrix} = \begin{pmatrix} -2 & 2 \\ 1 & -1 \end{pmatrix}$. Eftersom det(S) = 0 är systemet *inte* styrbart.
- iii. Överföringsfunktionen ges av

$$Y(s) = \frac{1}{s-1} \left(\frac{-2}{s+1} + 1\right) U(s) = \frac{1}{s-1} \frac{s-1}{s+1} U(s) = \frac{1}{s+1} U(s).$$

Eftersom en pol förkortas bort är tillståndsmodellen inte minimal, så att vi fann modellen icke-styrbar är inte förvånande (se Glad & Ljung, Resultat 8.11).

(b) Vi har att

$$A = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \end{pmatrix}.$$

Styrlagen antar formen $u = -(l_1 \ l_2) x + l_0 r$ och vi måste bestämma l_0, l_1 och l_2 . Eftersom slutna systemets poler ska ligga i s = -2 har vi

$$\det(sI - A + BL) = s^{2} + (2 + l_{1})s + 1 + l_{2} = (s + 2)^{2} = s^{2} + 4s + 4.$$

Detta ger $l_1 = 2$ och $l_2 = 3$. Slutna systemets överföringsfuntion från r till y blir

$$G_c(s) = C(sI - A + BL)^{-1}Bl_0 = \frac{(s+2)}{(s+2)^2}l_0 = \frac{l_0}{s+2}.$$

Eftersom statiska förstärkningen ska vara ett har vi $G_c(0) = l_0/2 = 1$ vilket ger $l_0 = 2.$

Figur 1: Blockschemat i uppgift 4.

- 3. (a) G(s) tycks redan ha en integrator eftersom $|G(i\omega)|$ går mot oändligheten då $\omega \to 0$, och förstärkningen ökar en faktor 10 då frekvensen minska med en faktor 10. Då behöver inte regulatorn en integrator för att följa steg i referensen i stationäritet.
 - (b) i. Vi vill ha $1 = |F_1(i0.8)G(i0.8)| = K|G(i0.8)|$ och $|G(i0.8)| \approx 0.18$. Alltså är K = 5.56. Avläsning av arg G(i0.8) ger att $\varphi_m = 20^\circ$.
 - ii. Man ser i figuren att arg $G(i0.25) \approx -130^{\circ}$ vilket ger önskad fasmarginal $\varphi_m = 50^{\circ}$ om vi väljer K så att K|G(i0.25)| = 1 (skärfrekvens blir $\omega_c = 0.25$ rad/s). Detta ger K = 0.67 då $|G(i0.25)| \approx 1.5$.
 - iii. $F_3(s)$ är en fasavancerande länk och vi väljer dess parametrar därefter. Vi ser i figuren att $|G(i0.8)| \approx 0.2$ och arg $G(i0.2) = -160^{\circ}$. För att få fasmarginal $\varphi_m = 50^{\circ}$ måste vi höja fasen med 30°. Detta ger $\beta = 0.34$. Parametern τ_D väljs med formeln $\tau_D = \frac{1}{\omega_{c,d}\sqrt{\beta}} = \frac{1}{0.8\sqrt{0.34}} \approx 2.14$. Slutligen väljs K så att önskad skärfrekvens på 0.8 rad/s uppnås: $K = \frac{\sqrt{\beta}}{|G(i0.8)|} \approx 3.18$.
 - (c) Regulatorn $F_2(s)$ ger långsammast stegsvar eftersom den har lägst skärfrekvens $(\omega_c = 0.25 \text{ rad/s})$. Alltså motsvarar den steg I. Regulatorerna $F_1(s)$ och $F_3(s)$ har samma skärfrekvens $(\omega_c = 0.8 \text{ rad/s})$, men $F_3(s)$ har högre fasmarginal. Alltså motsvarar $F_3(s)$ det bättre dämpade stegsvaret, vilket är steg III. Slutligen har vi då att $F_1(s)$ motsvarar steg II.
- 4. (a) Låt oss definiera signaler $E_2 = D_2 + F_2 Y$ och $E_1 = R F_1 E_2$ givna enligt figur 1.

Utsignalen Y kan nu uttryckas

$$\begin{split} Y &= G_2 \left[D_1 + G_1 E_1 \right] \\ &= G_2 \{ D_1 + G_1 \left[R - F_1 E_2 \right] \} \\ &= G_2 \{ D_1 + G_1 \left[R - F_1 (D_2 + F_2 Y) \right] \} \\ &= G_2 D_1 + G_2 G_1 \{ \left[R - F_1 (D_2 + F_2 Y) \right] \} \\ &= G_2 D_1 + G_2 G_1 \left[R - F_1 D_2 - F_1 F_2 Y \right] \\ &= G_2 D_1 + G_2 G_1 R + G_2 G_1 \left[-F_1 D_2 - F_1 F_2 Y \right] \\ &= G_2 D_1 + G_2 G_1 R - G_2 G_1 F_1 D_2 - G_2 G_1 F_1 F_2 Y \end{split}$$

Vi får

$$[1 + G_2G_1F_1F_2]Y = G_2D_1 + G_2G_1R - G_2G_1F_1D_2$$

vilket ger

$$Y = \underbrace{\left[\frac{G_2G_1}{1 + G_2G_1F_1F_2}\right]}_{H_1(s)}R + \underbrace{\left[\frac{G_2}{1 + G_2G_1F_1F_2}\right]}_{H_2(s)}D_1 + \underbrace{\left[\frac{-G_2G_1F_1}{1 + G_2G_1F_1F_2}\right]}_{H_3(s)}D_2$$

(b) Då $G_2 = F_2 = 1$ ges överföringsfunktionen från r till y av

$$Y = \frac{G_1}{1 + G_1 F_1} R = \frac{\frac{1}{s+1}}{1 + \frac{1}{s+1} \frac{5}{s+K-3}} R$$
$$= \frac{s + K - 3}{(s+1)(s+K-3) + 5} R = \frac{s + K - 3}{s^2 - 2s + 2 + K(s+1)} R,$$

vilket ger den önskade ekvationen $s^2 - 2s + 2 + K(s+1) = 0$ för polerna.

- (c) Regler för ritning av rotort med $P(s) = s^2 2s + 2$ (n = 2) och Q(s) = s + 1 (m = 1) ger (se Glad & Ljung, avsnitt 3.7):
 - Startpunkter ges av P(s) = 0, alltså s = 1 i och s = 1 + i.
 - Eftersom m = 1 har vi en ändpunkt som ges av Q(s) = 0, alltså s = -1.
 - Vi har n m = 2 1 = 1 asymptot, men riktningen $\theta = \frac{\pi}{n m} = \pi$, alltså längs negativa realaxeln.
 - Intervallet $(-\infty, -1]$ av reella axeln tillhör rotorten eftersom vi bara har en start- och ändpunkt på reella axeln (ändpunkten i s = -1).
 - För att avgöra stabilitet måste vi hitta rotortens skärning med imaginäraxeln. Vi kan då söka lösningar $s = i\omega$ till P(s) + KQ(s) = 0. Detta ger ett ekvationssystemet i K och ω som kan lösas. Alternativt studerar vi direkt polynomekvationen

$$s^2 + (K-2)s + 2 + K = 0$$

Figur 2: Rotort för uppgift 4.

och avgör för vilka $K \ge 0$ denna har rötter i vänstra halvplanet. Detta ger asymptotisk stabilitet för K > 2. I ledningen angavs att en del av rotorten ligger på en cirkelbåge, vilket också kan användas för att hitta skärningspunkterna med imaginäraxeln.

Informationen ovan tillsammans med ledningen i uppgiften ger rotorten i figur 2.

5. (a) Slutna systemets överföringsfunktion ges av

$$G_c(s) = \frac{K_P G(s)}{1 + K_P G(s)}.$$

Från figur 7 i tentan ser man att $G(i\infty) = 1$ för alla system A–D. Samtidigt ser vi från figur 8 att $G_c(i\infty) = 0.5$. Detta ger en ekvation för regulatorförstärkningen enligt

$$G_c(i\infty) = 0.5 = \frac{K_P}{1 + K_P} \Leftrightarrow K_P = 1.$$

När K_P är känd får vi en ekvation för G(0) enligt

$$G_c(0) = 1.5 = \frac{G(0)}{1 + G(0)} \Leftrightarrow G(0) = -3.$$

Bara systemet A uppfyller detta villkor, vilket alltså är det G(s) som använts.

(b) Systemets överföringsfunktion antar formen $G(s) = \frac{s+a}{s+b}$ enligt ledningen. Från nyquistdiagrammet för system D har vi att

$$-i = G(i3) = \frac{i3+a}{i3+b} \stackrel{(i3+b\neq 0)}{\longleftrightarrow} -i(i3+b) = i3+a$$
$$\Leftrightarrow 3-ib = i3+a.$$

Likhet av real- och imaginärdelarna ger att a = 3 och b = -3. Alltså är $G(s) = \frac{s+3}{s+3}$.

$$\overline{s-3}$$
.

Slutna systemets överföringsfunktion blir då

$$G_c(s) = \frac{G(s)F(s)}{1 + G(s)F(s)} = \frac{\frac{K_I(s+3)}{s(s-3)}}{1 + \frac{K_I(s+3)}{s(s-3)}} = \frac{K_I(s+3)}{s^2 + (K_I - 3)s + 3K_I}.$$

Detta system är asymptotiskt stabilt då rötterna till $s^2 + (K_I - 3)s + 3K_I = 0$ ligger i vänstra komplexa halvplanet. Detta är uppfyllt då och endast då $K_I > 3$, vilket är svaret på problemet.