Course Summary

- Introduction to queuing systems
- Basics of probabilistic theory and Markov chains.
- Modeling and dimensioning of communication systems in terms of delay, packet loss probability, system utilization etc.
- Markovian queuing systems
 - one server and multiple servers
 - unlimited/limited queue
 - unlimited/limited population of customers
 - Poisson/non Poisson arrivals
 - arrivals in batches or one at a time
- Semi-Markovian queuing systems
- Queuing networks

Aim

After the course students shall be able to:

- define the basic queuing models for different communication systems
- dimension the systems in terms of router capacity, delay, utilization, throughput and packet loss probability,

blodning probability

k = integers

Positive random variable $X \geq 0$

sequences

DISCRETE RANDOM VARIABLE

Probability function: $p_k = P(X = k)$

<u>Properties:</u> $p_k \ge 0$; $\sum_{k=0}^{\infty} p_k = 1$

Probability distribution of X:

$$F_X(x_i) = P(X \le x_i) = \sum_{k=0}^{i} p_k$$

<u>Properties:</u> $F_X(x_i) \ge 0$; $F_X(0) = p_0$; $F_X(\infty) = 1$;

 $F_X(x_1) \le F_X(x_2)$ if $x_1 \le x_2$

Expected (mean) value (first moment) of X:

 $E[X] = m = \sum_{i=0}^{\infty} x_i p_i$

Second moment of X: $E[X^2] = \sum_{i=0}^{\infty} x_i^2 p_i$

Variance of X: $Var[X] = E[(X-m)^2] = E[X^2] - m^2$

Squered coefficient of variance: $C^2 = Var[X]/m^2$

CONTINUOUS RANDOM VARIABLE

Probability density function: $f_X(x)$

<u>Properties:</u> $f_X(x) \ge 0$; $\int_{-\infty}^{\infty} f_X(u) du = 1$

Probability distribution of X:

 $F_X(x_i) = P(X \le x) = \int_{-\infty}^{x} f_X(u) du$

<u>Properties:</u> $F_X(x_i) \ge 0$; $F_X(0) = 0$; $F_X(\infty) = 1$;

 $F_X(x_1) \le F_X(x_2)$ if $x_1 \le x_2$

Expected (mean) value (first moment) of X:

 $E[X] = m = \int_{-\infty}^{\infty} x f_X(x) dx$

Second moment of X: $E[X^2] = \int_{0}^{\infty} x^2 f_X(x) dx$

Variance of X: $Var[X] = E[(X-m)^2] = E[X^2] - m^2$

Squered coefficient of variance: C²=Var[X]/ m²

System dimensioning problems

- Given arrival intensity and traffic characteristic
 - Design a system that meets requirements on
 - Delay (waiting time and service time)
 - Loss probability
 - Number of customers in the system
 - Blocking probability

etc

- Given system and requirements
 - Define the arrival process that fits the system and requirements
 - Arrival rate can't be too high
 - Arrival pattern should be appropriate

etc

System dimensioning problems

- Given arrival intensity and traffic characteristic
 - Design a system that meets requirements on
 - Delay (waiting time and service time)
 - Loss probability
 - Number of customers in the system
 - Blocking probability

etc

- Given system and requirements
 - Define the arrival process that fits the system and requirements
 - Arrival rate can't be too high
 - Arrival pattern should be appropriate

etc

Classification of stochastic processes

□ Stochastic process SP: $X(t, \omega)$

Random variable X

- Discrete-time SP (discrete t): $X(t, \omega)$
- Continuous-time SP (continuous t): $X(n, \omega)$
- Markov process (MP): a memoryless SP
- \square Markov chain (MC): MP with discrete X
 - Discrete time MC (DTMC)
 - Continuous time MC (CTMC)
 - □ Birth-death process (**B-D** process), a special case of CTMC
 - Poisson process

Transforms;

moment generating functions

DISCRETE X

 \mathbb{Z} – transform of \mathbf{p}_i

$$P(z) = E[z^i] = \sum_{i=0}^{\infty} z^i p_i$$

$$\frac{dP(z)}{dz} = \sum_{i=0}^{\infty} i \cdot z^{i-1} p_i$$

$$\frac{d^2P(z)}{dz^2} = \sum_{i=0}^{\infty} i(1-i)z^{i-2}p_i$$

$$E[X] = P'(z) \text{ for } z = 1$$

 $E[X^2] = P''(z) + E[X] \text{ for } z = 1$

CONTINUOUS X

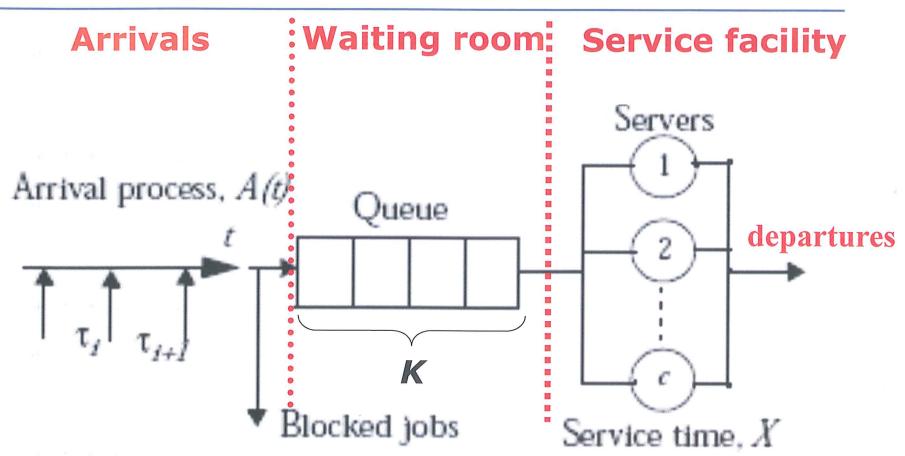
 \mathcal{Q} - transform of $f_X(x)$

$$F^*(s) = E[e^{-sX}] = \int_0^\infty e^{-sX} f_X(x) dx$$
$$\frac{dF^*(s)}{ds} = \int_0^\infty -x e^{-sx} f(x) dx$$
$$\frac{d^2F^*(s)}{ds^2} = \int_0^\infty x^2 e^{-sx} f(x) dx$$

$$E[X] = -F* '(s) for s = 0$$

 $E[X^2] = F* ''(s) for s = 0$

Queuing system



Some distributions of X

DISCRETE X

Geometric distributed X:

$$p_k = P(X = k) = a^{(k-1)} (1-a); 0 < a < 1$$

 $E[X] = 1/a$

Poisson distributed X:

$$p_k = P(X = k) = \frac{a^k}{k!}e^{-a}$$
$$E[X] = a$$

CONTINUOUS X

Exponential distributed X:

$$f_X(x) = a e^{-ax}; 0 < a < 1$$

$$E[X] = 1/a$$

Erlang, distributed X:

$$f_X(x) = \frac{a^n}{(n-1)!} x^{n-1} e^{-ax}$$

$$E[X] = n/a$$

Kendall's notation

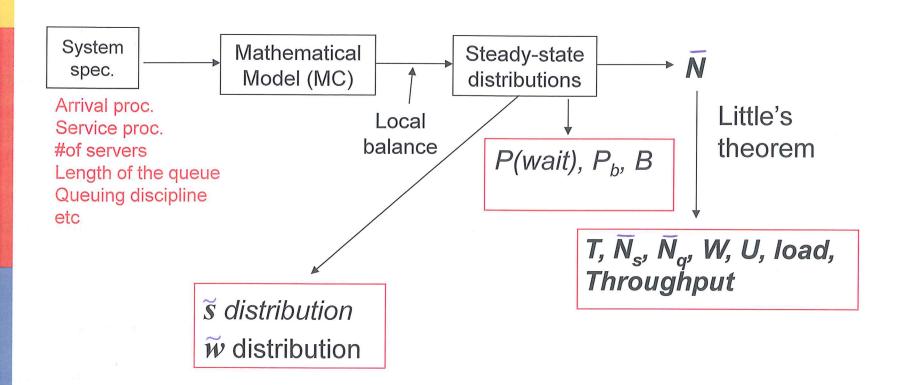
A/B/X/Y/Z

- A: arrival process
- **B**: service time
- X: number of servers
- Y: maximum occupancy (not indicated if unlimited buffer)
- Z: service order (not indicated if FCFS)
- □ A and B (arrival process and service time) can be:
 - M: Markov (memoryless): exponential distributed time
 - **D**: deterministic
 - \blacksquare E_r : r exponential distributed steps
 - \blacksquare H_k : hyper exponential with k branches
 - **G**: general (but known)

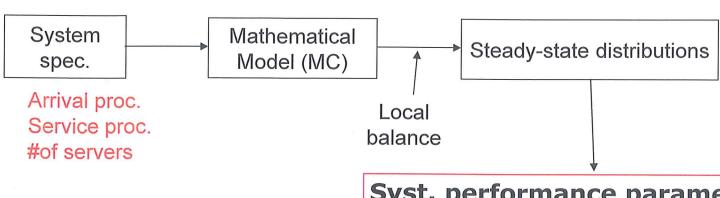
How to solve dimensioning problems?

- Analytical solution (queuing theory) for tractable systems
 - Develop a mathematical model of the system
 - The model should describe the system as accurate as possible
 - Based on your model you can be able to obtain the performance measures and dimension the system according to the requirements.
- Computer simulations for very complex systems

Dimensioning of queuing systems



Dimensioning of loss systems



Syst. performance parameters

(Time) blocking probability:

 $P_b = p_c = P(c \text{ jobs in the system at a random time})$

Call blocking probability:

 $\mathbf{B} = r_c = P(c \text{ jobs in the system at an arrival})$

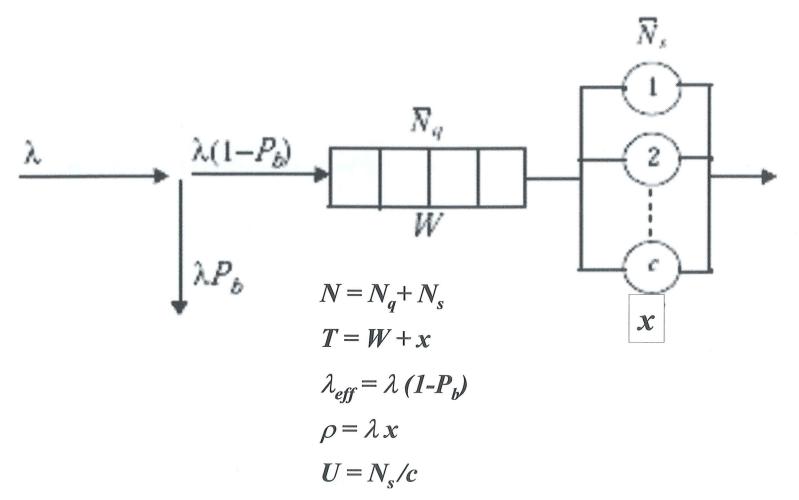
U, load, Throughput

Mean number of blocked calls/time unit Mean number of served calls/time unit

System performance parameters

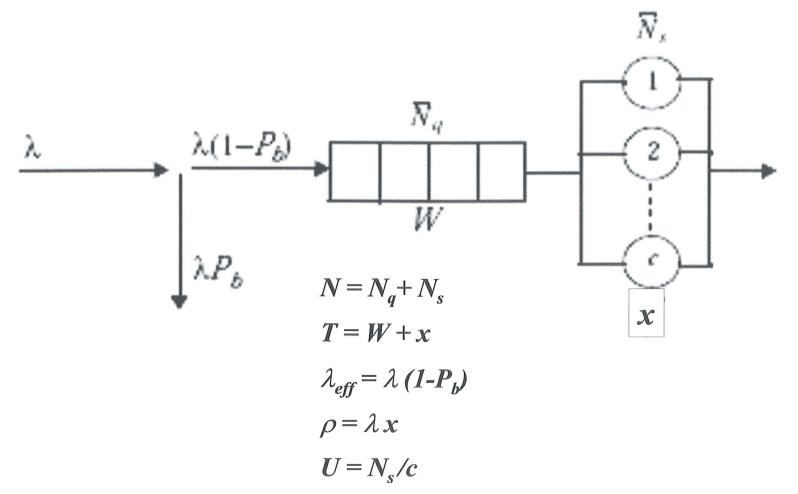
- Average number of jobs
 - \blacksquare In the system: N
 - In the servers: N_s
 - In the queue: N_q
- □ Average waiting time: *W*
- Average service time: x
- Arrival intensity: λ
- □ Utilization: $U = N_s/c$
 - fraction of time the server is occupied (if one server, i.e. c=1)
 - fraction of servers that are occupied in average
- Load, expressed in Erlang [no unit]
 - Offered: $\rho = \lambda x$
 - Carried: $\rho_{eff} = \lambda_{eff} x$
- \Box Throughput: λ_{eff}

System performance parameters



F4

System performance parameters



F4

Little's theorem

The average number of customers in the system is equal to the average arrival rate times the average time spent in the system:

$$N = \lambda T$$

☐ The average number of customers in the queue is equal to the average arrival rate times the average waiting time:

$$N_q = \lambda W$$

■ The average number of customers in the server(s) is equal to the average arrival rate times the average service time:

$$N_s = \lambda x$$

Stability conditions

- Arrival intensity is lower than departure intensity,
 i.e. mean time between arrivals is longer than mean time between departures
- □ For system with one server:
 - $\lambda < 1/x$
 - if $1/x = \mu \rightarrow \lambda < \mu$
 - Offered load ρ < 1
- □ For system with c parallel servers:
 - $\lambda < c/x \text{ or } \lambda < c\mu$
 - Offered load $\rho < c$