IE1206 Embedded Electronics

Quick Formula for exponential

- Rising process

$$
x(t)=1-e^{-\frac{t}{\tau}}
$$

- Falling process

$$
x(t)=e^{-\frac{t}{\tau}}
$$

The Quick Formula directly provides the equation for a rising/falling exponential process:
$x_{0}=$ process start value
$x_{\infty}=$ process end value $\tau=$ process time constant

$$
x(t)=x_{\infty}-\left(x_{\infty}-x_{0}\right) e^{-\frac{t}{\tau}}
$$

Time constants

- More complex circuits one simplifies with equivalent circuits to one of these elementary shapes. (If this is not possible advanced courses will have a transform methood available).

William Sandqvist william@kth.se

Continuity requirements

Summary

$\stackrel{c \mid}{\square}$
The Capacitor has voltage inertia
In a capacitor, charging is always continuous The capacitor voltage is always continuous.

The Inductor has current inertia

In an inductor the magnetic flux is always continuous In an inductor current is always continuous.

"All" by "the rest"

$$
\begin{aligned}
& x=X\left(1-e^{-\frac{t}{\tau}}\right) \Rightarrow \frac{x}{X}=1-e^{-\frac{t}{\tau}} \Rightarrow \ln \left(1-\frac{x}{X}\right)=-\frac{t}{\tau} \Rightarrow t=-\tau \cdot \ln \frac{X-x}{X} \\
& t=\tau \cdot \ln \frac{X}{X-x}=\tau \cdot \ln \frac{\text { "all" }}{\text { "rest" }}
\end{aligned}
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Capacitor charging (10.5)

$R=2000 \Omega$ and $C=1000 \mu \mathrm{~F}$
Obtain an expression for $u_{\mathrm{C}}(t)$
Draw function $u_{\mathrm{C}}(t)$
Calculate how long it takes for u_{C} to reach +10 V ?

Capacitor charging (10.5)

$R=2000 \Omega$ and $C=1000 \mu \mathrm{~F}$
Obtain an expression for $u_{\mathrm{C}}(t)$
Draw function $u_{\mathrm{C}}(t)$
Calculate how long it takes for u_{C} to reach +10 V ?

$$
\begin{aligned}
& u_{\mathrm{C} 0}=5 \mathrm{~V} \\
& u_{\mathrm{C} \infty}=15 \mathrm{~V} \\
& \tau=2000 \cdot 1000 \cdot 10^{-6}=2 \mathrm{~s}
\end{aligned}
$$

Capacitor charging (10.5)

$R=2000 \Omega$ and $C=1000 \mu \mathrm{~F}$
Obtain an expression for $u_{\mathrm{C}}(t)$

Draw function $u_{\mathrm{C}}(t)$

Calculate how long it takes for u_{C} to reach +10 V ?

Capacitor charging (10.5)

$R=2000 \Omega$ and $C=1000 \mu \mathrm{~F}$
Obtain an expression for $u_{\mathrm{C}}(t)$

Draw function $u_{\mathrm{C}}(t)$

Calculate how long it takes for u_{C} to reach +10 V ?

Note: Capacitor voltage is continuous - If you put a voltage across a capacitor it can not charge instantaneously (would require infinite current). The voltage will not change at once.

Capacitor charging (10.5)

$R=2000 \Omega$ and $C=1000 \mu \mathrm{~F}$
Obtain an expression for $u_{\mathrm{C}}(t)$
Draw function $u_{\mathrm{C}}(t)$
Calculate how long it takes for u_{C} to reach +10 V ?

Capacitor charging (10.5)

$R=2000 \Omega$ and $C=1000 \mu \mathrm{~F}$

Obtain an expression for $u_{\mathrm{C}}(t)$
Draw function $u_{\mathrm{C}}(t)$
Calculate how long it takes for u_{C} to reach +10 V ?

Capacitor charging (10.5)

$R=2000 \Omega$ and $C=1000 \mu \mathrm{~F}$
Obtain an expression for $u_{\mathrm{C}}(t)$
Draw function $u_{\mathrm{C}}(t)$
Calculate how long it takes for u_{C} to reach +10 V ?

Capacitor charging (10.5)

$R=2000 \Omega$ and $C=1000 \mu \mathrm{~F}$

Obtain an expression for $u_{\mathrm{C}}(t)$

Draw function $u_{\mathrm{C}}(t)$

Calculate how long it takes for u_{C} to reach +10 V ?

Capacitor charging (10.5)

$R=2000 \Omega$ and $C=1000 \mu \mathrm{~F}$

Obtain an expression for $u_{\mathrm{C}}(t)$

Draw function $u_{C}(t)$

Calculate how long it takes for u_{C} to reach +10 V ?

$$
\begin{aligned}
& t=\tau \cdot \ln \frac{\text { "all" }}{\text { "rest" }}=2 \cdot \ln \frac{15-5}{15-10}= \\
& =2 \cdot 0,695=1,39 \mathrm{~s}
\end{aligned}
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Neon lamp (10.9)

S $\quad R_{1} 600 \mathrm{k} \Omega$

Flash-circuit with neon lamp.

Neon lamp (10.9)

a) When will the first flashing light be?

> The circuit's Thevenin equivalent:
> $R_{\mathrm{I}}=600| | 400=240 \mathrm{k} \Omega$
> $E_{0}=200 \cdot 400 / 1000=80 \mathrm{~V}$

The capacitor is charged from 0 V up to 80 V at 65 V the neon lamp lights up (and discharges the capacitor to 55 V when it goes off).

$$
\begin{aligned}
& \tau=R_{I} \cdot C=240 \cdot 10^{3} \cdot 2,2 \cdot 10^{-6}=0,528 \\
& t=\tau \cdot \ln \frac{\text { all }}{\text { rest }}=0,528 \cdot \ln \frac{80-0}{80-65}=0,88 \mathrm{~s}
\end{aligned}
$$

Neon lamp (10.9)

b) How long will it take until the next blink?

The capacitor is now charging from 55 V up to 80 V at 65 V when the neon lamp lights up (and discharges the capacitor to 55 V , then it goes off).

$$
\tau=0,528
$$

Flash frequency:

$$
t=\tau \cdot \ln \frac{\text { all }}{\text { rest }}=0,528 \cdot \ln \frac{80-55}{80-65}=0,27 \mathrm{~s}
$$

$$
f=\frac{1}{T}=\frac{1}{0,27}=3,7 \mathrm{~Hz}
$$

Neon lamp (10.9)

c) If R_{2} is removed, how long does it then between flashes?

If R_{2} is removed E will not be votage divded.
$E=200$.
Timeconstant will be changed.

The capacitor is charging now from 55 V up to 200 V at 65 V when the neon lamp lights up (and discharges the capacitor to 55 V when it goes off).

$$
\begin{aligned}
& \tau=R_{1} \cdot C=600 \cdot 10^{3} \cdot 2,2 \cdot 10^{-6}=1,32 \\
& t=\tau \cdot \ln \frac{\text { all }}{\text { rest }}=1,32 \cdot \ln \frac{200-55}{200-65}=0,094 \mathrm{~s}
\end{aligned}
$$

Flash frequency:

$$
f=\frac{1}{T}=\frac{1}{0,094}=11 \mathrm{~Hz}
$$

William Sandqvist william@kth.se

Schmitt-trigger (10.10)

William Sandqvist william@kth.se

Trigger levels? (10.10)

William Sandqvist william@kth.se

RC-oscillator (10.10)

The comparator charges the capacitor to the upper trigger level, then it turns the output on and discharges the capacitor to the lower trigger level. The frequency of the output of the comparator depends on the product $R \cdot C$. Since C is constant so will the R controls the frequency.

RC-oscillator frequency (10.10)

$$
\tau=R \cdot C=5 \cdot 10^{3} \cdot 150 \cdot 10^{-9}=0,75 \cdot 10^{-3}
$$

$t_{1}=\tau \cdot \ln \frac{\text { all }}{\text { rest }}=0,75 \cdot 10^{-3} \cdot \ln \frac{5-\frac{1}{3} \cdot 5}{\frac{1}{3} \cdot 5}=0,75 \cdot 10^{-3} \cdot \ln 2=5,2 \mathrm{~ms}$
$t_{2}=t_{1} \quad T=2 \cdot t_{1}=2 \cdot 5,2 \cdot 10^{-3}=10,4 \mathrm{~ms} \quad f=\frac{1}{T}=\frac{1}{10,4 \cdot 10^{-3}}=962 \mathrm{~Hz}$
The supply voltage 5 V went shorten away. The frequency is thus independent of changes in the supply voltage!

William Sandqvist william@kth.se

Inductor connection and disconnection (10.8)

E is a DC source. At the time t_{1} the switch is closed.

Inductor connection and disconnection (10.8)

E is a DC source. At the time t_{1} the switch is closed.
a) How large is the current through the coil in the first moment?

Inductor connection and disconnection (10.8)

E is a DC source. At the time t_{1} the switch is closed.
a) How large is the current through the coil in the first moment?

Answer: The inductor has has "current inertia". The first moment $\left(t_{1}\right)$ the current will be the "same" $i=0$.

Inductor connection and disconnection (10.8)

b) How large is the current through the inductor after a long time interval?

Inductor connection and disconnection (10.8)

b) How large is the current through the inductor after a long time interval?

Inductor connection and disconnection (10.8)

b) How large is the current through the inductor after a long time interval?

Answer: After a long time, the changes have faded away. The voltage across the inductor (is due to changes) then is 0 , the inductor is "shorting" the 100Ω parallel resistor. The 100Ω series resistor limits the current from the voltage source. $i=10 \mathrm{~V} / 100 \Omega=0,1 \mathrm{~A}$.

Inductor connection and disconnection (10.8)

b) How large is the current through the inductor after a long time interval?

Answer: After a long time, the changes have faded away. The voltage across the inductor (is due to changes) then is 0 , the inductor is "shorting" the 100Ω parallel resistor. The 100 Ω series resistor limits the current from the voltage source. $i=10 \mathrm{~V} / 100 \Omega=0,1 \mathrm{~A}$.

Inductor connection and disconnection (10.8)

c) Later at time t_{2} the switch is opened.

Now set up an expression of current through the coil as a function of time t for the time after t_{2}. Let t_{2} be a new
 starting time $t=t_{2}=0$.

Inductor connection and disconnection (10.8)

Before switch opening

Inductor connection and disconnection (10.8)

After switch opening

Inductor connection and disconnection (10.8)

After switch opening

After t_{2} the current starts from the "same value" 0,1 A (i_{0}) as before the switch opening, and then the current will decrease down to 0 (i_{∞}).
Time constant will be $\tau=L / R=1 / 100=0,01 \mathrm{~s}$.

Inductor connection and disconnection (10.8)

After switch opening

After t_{2} the current starts from the "same value" 0,1 A (i_{0}) as before the switch opening, and then the current will decrease down to 0 (i_{∞}).
Time constant will be $\tau=L / R=1 / 100=0,01 \mathrm{~s}$.
Quick formula: $x(t)=x_{\infty}-\left(x_{\infty}-x_{0}\right) e^{-\frac{t}{\tau}}$

$$
\begin{aligned}
& \quad i_{L \infty} \downarrow i_{L \infty} \downarrow i_{L 0} \downarrow \\
& i_{\mathrm{L}}(t)=0-(0-0,1) \cdot e^{-\frac{t}{0,01}} \Leftrightarrow i_{\mathrm{L}}(t)=0,1 \cdot e^{-\frac{t}{0,01}}=0,1 \cdot e^{-100 \cdot t}
\end{aligned}
$$

Inductor connection and disconnection (10.8)

After switch opening

After t_{2} the current starts from the "same value" 0,1 A (i_{0}) as before the switch opening, and then the current will decrease down to 0 (i_{∞}).
Time constant will be $\tau=L / R=1 / 100=0,01 \mathrm{~s}$.
Snabbformeln: $x(t)=x_{\infty}-\left(x_{\infty}-x_{0}\right) e^{-\frac{t}{\tau}}$
$i_{\mathrm{L}}(t)=0-(0-0,1) \cdot e^{-\frac{t}{0,01}} \Leftrightarrow i_{\mathrm{L}}(t)=0,1 \cdot e^{-\frac{t}{0,01}} 0,1 \cdot e^{-100 \cdot t}$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Inductor connection and disconnection (10.8)

When the voltage source 10 V is disconnected, the current is driven by the inductor. The voltage drop over the 100Ω resistor U_{R} at first is $-100 \cdot 0,1=-10 \mathrm{~V}$. The minus sign comes from the fact that the current is entering the resistor in the part of the resistor we defined negative.

Inductor connection and disconnection (10.8)

When the voltage source 10 V is disconnected, the current is driven by the inductor. The voltage drop over the 100Ω resistor U_{R} at first is $-100 \cdot 0,1=-10 \mathrm{~V}$. The minus sign comes from the fact that the current is entering the resistor in the part of the resistor we defined negative.

Inductor connection and disconnection (10.8)

When the voltage source 10 V is disconnected, the current is driven by the inductor. The voltage drop over the 100Ω resistor U_{R} at first is $-100 \cdot 0,1=-10 \mathrm{~V}$. The minus sign comes from the fact that the current is entering the resistor in the part of the resistor we defined negative.

- Suppose the resistor is 1000Ω. Then u_{R} at first moment had been -100 V !

Inductor connection and disconnection (10.8)

When the voltage source 10 V is disconnected, the current is driven by the inductor. The voltage drop over the 100Ω resistor U_{R} at first is $-100 \cdot 0,1=-10 \mathrm{~V}$. The minus sign comes from the fact that the current is entering the resistor in the part of the resistor we defined negative.

- Suppose the resistor is 1000Ω. Then u_{R} at first moment had been -100 V !
- Suppose the resistor is 10000Ω then the voltage had been -1000V !

Inductor connection and disconnection (10.8)

When the voltage source 10 V is disconnected, the current is driven by the inductor. The voltage drop over the 100Ω resistor U_{R} at first is $-100 \cdot 0,1=-10 \mathrm{~V}$. The minus sign comes from the fact that the current is entering the resistor in the part of the resistor we defined negative.

- Suppose the resistor is 1000Ω. Then u_{R} at first moment had been -100 V !
- Suppose the resistor is 10000Ω then the voltage had been -1000 V !
- When the circuit is broken the inductor tries to "keep" the current, until all the magnetic energy has been consumed. If you omit the resistor from the circuit, ie, $R=\infty$ there will be a very high voltage.

Ex. To break the current to a coil will produce a high voltage

William Sandqvist william@kth.se

William Sandqvist william@kth.se

(Steppermotor the digital motor)

CCW

William Sandqvist william@kth.se

How fast can it run?

- The motor takes one step every pulse.

The faster you drive, the shorter the pulses. Due to the time constant τ do not have time to reach the peak current in the windings and the motor becomes weak.

But there is a trick ...

L/5R is faster - Who could have guessed?

$\tau=\frac{L}{R+4 \cdot R}=\frac{L}{5 \cdot R}$

One introduces series resistors. At the same time you raise the voltage to maintain the current. Now the engine can run much faster!

Fastest?

If the stepper motor is driven from a current source then this will have a high internal resistance ($R_{\mathrm{I}}=\infty$). Time constant will be close to 0 and the stepper motor will have torque at higher pulse frequencies.
A driver with constant current are called a "chopper". (One disadvantage of a chopper is that it generates a lot of interference).

$$
\tau=\frac{L}{R}=\frac{L}{\infty}=0
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

