
ID1019
Johan Montelius

Programming II

2016-03-19 09:00-13:00

7.5 credits

Name:

Instructions

• You are not allowed to have any material besides pen and paper. Mo-
biles etc, should be left to the guards.

• All answers should be written in these pages, use the space allocated
after each question to write down your answer.

• Answers should be written in English.

• You should hand in the whole exam.

• No additional pages should be handed in.

Grade

The exam is divided into a number of questions where some are a bit harder
than others. The harder questions are marked with a star points*, and will
give you points for the higher grades. The exam is thus divided into basic
points and points for higher grades. First of all make sure that you pass the
basic points before engaging with the higher points.
Note that, of the 40 basic points only at most 34 are counted, the points for
higher grades will not make up for lack of basic points. The limits for the
grads are as follows:
• E: 24 basic points

1

• D: 30 basic points

• C: 34 basic points

• B: 34 basic points and 14 higher points

• A: 34 basic points and 20 higher points

The limits could be adjusted to lower values but not raised.

Gained points

Don't write anything here.
Question 1 2 3 4 5 6 Σ

Max B/H 4/- 10/2 2/6 4/2 4/4 16/10 40/24

B/H

Total number of points:

Grade:

2

Name:

1 Data structures and pattern matching

1.1 what is Y [2 points]

What is the resulting binding for Y i the following pattern matching expres-
sions (each one by its own), in the case that the matching succeeds:
• [X, Y|_] = [1,2,3]

• [X,_ |Y] = [1,2]

• [X,Z,Y] = [1|[2|[3]]]

• Z = 2, X = {foo, Z}, {_, Y} = X

• X = 1, Z = [], Y = [X,Z]

1.2 String concatentation in constant time [2 points]

If we represent strings as lists of ASCII values it is easy to read from a string
since the �rst element can be reached in constant time (it's in the beginning
of the list). It is however rather cumbersome to concatenate two strings since
this would be done using an append operations. We could represent a string
as either 1/ a list of ASCII values or 2/ a structure that holds two strings. The
advantage would be that one would then be able to concatenate two strings
in constant time. The disadvantage would of course be that it sometimes is
a bit harder to �nd the �rst character.
Give a description of this form of representing a string. You can decides
exactly how it is represented; if possible, use the so called type notation.
Implement the function concat/2 that takes two strings as arguments and
returns the concatenated string.

2 Recursive functions

2.1 remove all sequences of repetiotions [2 points]

Assume that we have a list of elements and want to create a list consisting of
the same elements in the same order but were we have removed repetitions
of elements that come after each other. If we have the list:
[1,2,2,3,1,2,4,4,4,2,3,3,1]

3

Name:

We should create the list:

[1,2,3,1,2,4,2,3,1]

Note that we still have duplicates of elements, such as 2 in the example, but
that these are not immediately after each other.
How is the function reduce/1 implemented that has the above given pro-
perties?

2.2 Caesar cipher [2 points]

A Caesar cipher is maybe the simplest form of encryption and is performed
by replacing every character in a message by the character that is three
positions earlier in the alphabet. The world �hej� is thus encoded as �ebg�.
Assume that we only use the characters 'a' to 'z' and that the alphabet is a
ring; that is, 'a' is encoded as 'x', 'b' as 'y' and 'c' as 'z'. Space is encoded
as space so the message �encoded you are� is encoded as �bkzlaba vlr xob�.
The ASCII value for space is 32 (we can write $ but it is a bit hard to

4

Name:

see the space). The value for 'a' is 97 and 'z' has the value 122. Write the
function encode/1 that takes a string and returns the encoded versions.

2.3 Three of a kind in poker [2 points]

Assume that we want to implement a program that plays poker. We have
chosen to represent a �hand� as a list of �ve unordered cards.
Write a function triss/1 that determines if we have a hand that holds three-
of-a-kind (three cards with the same rank). The function should return true

if we have a three-of-a-kinda otherwise false. You decide how cards are
represented.
It could return true if we have four-of-a-kind of a so called �full house� (a
three-of-a-kind and a pair) since both these hands contains a three-of-a-kind.
You can use the library function lists:filter/2 that takes a function and
a list of elements and returned a list of those elements for which the function
returns true.
As an example the call:
> lists:filter(fun(X) -> X > 3 end, [8,2,6,3]).

will return [8,6].

5

Name:

2.4 merge sort better than quick sort [2 points]

The algorithm merge sort is based on that you �rst divide a list into two
equal parts, sort the two parts and then concat the two sorted lists. The
algorithm can be implemented as follows:
msort([]) -> [];

msort(A) ->

{L1, L2} = split(A),

merge(msort(L1), msort(L2)).

Assume the list contains integers. How do you implement the function merge/2?

2.5 from a heap to a list [2 points]

Assume we have a so called �heap� that is represented as a binary tree. A heap
is either empty, that we represent by the atom nil, or a node that consist
of a one element and two branches that are both heaps, {node, Element,

Left, Right}.
An important property of a heap is that the smallest element is always found
in the root of the tree. The second smallest element is either in the left or
right branch but since both these are heaps it will be in the root of either
branch.
Implement a function heap_to_list/2 that take a heap as argument and

6

Name:

returns a ordered list of all elements. You can not use and library functions
but you can use something that you just have written ;-).

2.6 remove the smallest [2 points*]

The big advantage of a heap is that we always will �nd the smallest element in
the root. It might not be trivial to remove the smallest element and rearrange
the remaining elements to form a new heap. The solution is however rather
simple if you think recursively.
Implement a function pop/1, that takes a heap and returns {ok, Value,

Rest} where Value is the smallest element of the heap and Rest a new heap

7

Name:

where the value has been removed. If you try to pop from an empty heap
the function should return false.

3 Evaluating expressions

We have during the course worked with describing how a language can be
de�ned by formally describing which terms, expressions and data structures
we have and how we by rules can describe what should happen when we
evaluate expressions. The following questions assume that we have de�ned a
small language given the guidelines we have presented.

3.1 evaluating an expression [2 points]

Evaluate the following expressions, assume that:

σ = {X/a, Y/{a, b}}

• Eσ(a)→

8

Name:

• Eσ({X,X})→

• Eσ(Y)→

3.2 and, or and xor [2 points*]

It would be very nice if we in the language could use built in Boolean ope-
rators. To handle this we would extend the syntax of the language and also
add rules for how these new constructs should be evaluated.
To make things simple we write all Boolean expressions with parenthesis so
that the associations are clear. The operands are '&' for and, '|' for or and
'x' for xor. We of course also want to have the two Boolean values true and
false. We want to be able to write sequences as:
A = true, B = false, ((A & B) | (A x B))

Since we want to extend the expressions we can handle we change the descrip-
tions of <expr> to also include Boolean expressions.

〈expr〉 ::= ... | 〈bool〉

Now we only need to describe what the Boolean expressions <bool> look like
using a BNF grammar, what does the description look like?

We also need rules that describe what to do when evaluating a Boolean
expression. How do we describe the new rules for the evaluation function E?

9

Name:

In this description you should use the notation ∧, ∨ and ⊕ to describe what
should be done.

3.3 lambda [4 points*]

Assume that we have extended our language to also handle lambda expres-
sions. We have a syntax for them and evaluate them using the following
rules:
• Eσ((fun(vars) -> sequence end)→ closure(param, sequence, θ)

Here param is a sequence of variable identi�ers and θ the subset of σ that
holds the variable bindings for the free variables in sequence.
The question is now what to do when we apply our closure on a sequence of
arguments.

• Eσ(closure(param, sequence, θ)(args))− > ...?

4 Komplexitet

In the answers to the following questions, make sure that you describe what
n is and justify your answer.

10

Name:

4.1 traverser a tree [2 points]

Assume that we have a binary tree where a node is represented as eit-
her {leaf, E} or {tree, Left, Right}. Assume that the tree is balan-
ced - what is the asymptotic time complexity to traverse the tree using the
following function:

traverse({leaf, E}) -> [E];

traverse({node, Left, Right}) ->

traverse(Left) ++ traverse(Right).

4.2 kanske lite bättre ... eller [2 poäng]

Is there any di�erence if we instead write like this:

traverse(Tree) -> traverse(Tree, []).

traverse({leaf, E}, Sofar) -> [E|Sofar];

traverse({node, Left, Right}, Sofar) ->

traverse(Left, traverse(Right, Sofar)).

4.3 traverse a heap [2 points*]

In question we turned a heap into a lists. What is the asymptotic time
complexity for this operation? Assume that the heap is balanced so we're

11

Name:

not interested in the extreme situation where we have all elements in one
branch.

5 Concurrency

5.1 atomic swap [2 points]

Implement a procedure new/1 that creates a process that can work as a
memory cell. The argument to the procedure is the initial value of the cell.
The process should handle two messages: {swap, New, From} and {set,

New}. In the �rst case, the process that requested the update, From, receive
a message in return {ok, Old}, where Old is the value the cell had before
the update. In the second case, no messages is returned.

5.2 spin-lock [2 points]

A not so e�cient way of implementing a lock is a so called spin-lock. The
idea is to try to take the lock and keep trying until the lock is taken. Assume
that we have implemented the function new/1 in the previous question and
we want to use the cell to implement a spin-lock.
Implement three procedures: create/0, lock/1 and release/1. The proce-

12

Name:

dure create/0 should return a lock that lock/1 and release/1 can use.
The procedures lock/1 and release/1 shall return ok.

5.3 a semaphor [4 points*]

A spin-lock might do, but it more convenient to have a lock in form of a
so called semaphore. A semaphore is a construction where you can request
a lock and the lock will be given to you when it is available. If the lock is
taken, you have to wait but you don't have to do anything or even be aware
of that you're waiting. A semaphore is also more general in that it can allow
more than one process to hold the lock but it has a maximum value on how
many processes. If this value is 1 we call it a binary semaphore.
How shall we implement a semaphore in Erlang? We could implement it
as a process that can take two messages: {request, From} and release.
A process that that sends a request message will if/when there are locks
available, receive a messages granted in return. When the process is done in
the critical section it should send a release message to the semaphore that
then can hand the resource to the next process in line.
Implement the function new/1 that creates a semaphore with the given fun-

13

Name:

ctionality. The argument to the procedure is the number of resources that
the semaphore controls.

6 Programming

6.1 a small calcylator [total 6 + 2 points]

You shall implement a small calcylator that should handle arithmetic ex-
pressions with addition and subtraction over integers.

6.1.1 represent and evaluate [6 points]

You should �rst give a representation of arithmetic expressions and then

14

Name:

implement the function eval/1, that takes an expressions and returns the
result of evaluating the expression.

6.1.2 add an environment [2 points*]

Assume that we also want to handle variables in our arithmetic expressions.
We must extend our representation to also describe variables and then im-
plement a function eval/2 that takes an expression and an environment and
returns an answer.
To make things simpler we assume that we already have implemented a
module env, that exports a function lookup/2 that takes an identi�er and
an environment and returns either {Id, Value} of there is a binding for the
variable or false if there is no binding.
The function eval/2 should return either {ok, Res} if the evaluation suc-

15

Name:

ceeds or error if we for example try to evaluate an expression with unbound
variables. Implement the function eval/2.

6.2 a barber [total 6 + 2 points]

A classical example on a synchronization problem is how to handle customers
in a barber shop. Assume that we have one barber that of course only can
shave one customer at a time. We do however have three chairs in a waiting
room so customers that enter the shop can take a seat and wait. A customer
who enters the door and �nds that all chairs are taken will turn in the door
and take a walk before trying again. If you do turn in the door you will not
be guaranteed to be shaved but if you sit down to wait you will be shaved
when it's your turn and no one will be shaved before you if the enter the
shop after you.
6.2.1 how to implment a waiting room [6 points]

When we implement this in Erlang it is natural to divide the problem in
two processes: one that handles the waiting room and one that acts as the
barber. The barber can ask the waiting room for the next customer and will
then receive a pid of the next man to be shaved. The customer is asked to
sit down in the barbers chair and after a while he will receive a message that
the swing is complete.
The procedure that implements the barber could be implemented as follows:
barber(Waiting) ->

Waiting ! {next, self()},

receive

{ok, Customer} ->

Customer ! have_a_seat,

cut_cut_cut_shave_hot_towel_talk(),

16

Name:

Customer ! thatz_it,

barber(Waiting)

end.

The waiting room will answer greetings from curomers that enter the shop,
and will either ask them to sit down and wait or tell them that it is full. How
can the recursive function that describes the waiting room be implemented.

6.2.2 a customer as a state diagram [2 poäng*]

A customer is, when it is created, given access to the pid of a waiting room.
He should announce his arrival as he enters the door. If he is asked to sit
down he will wait his turn and will when the shaving is completed he can do
what ever he likes, but we will let him terminate. Id all chairs are taken the
customer should take a walk around the block and then return to the barber
shop.
How would you draw the customer as a state diagram. Show all states that
the customer can be in and what messages that will take him from one state

17

Name:

to the other. Also describe what messages are sent as the customer enters
new state.

6.3 a LDAP server [total 4 + 6 points]

LDAP, Lightweight Directory Access Protocol, is a protocol over which and
can do queries towards a directory service. The protocol is implemented over
TCP/IP and has a number of di�erent messages to do queries, add, modify
or delete information in a directory. LDAP is used by for example mail clients
when they fetch addresses from s shared address register.
6.3.1 a simple solution [4 points]

Assuming we have a module, ldap, that can handle a request from a client,
a LDAP server could have the following structure:
-define(Port, 67).

start() ->

spawn(fun() -> init(?Port) end).

init(Port) ->

case gen_tcp:listen(Port, [binary, {active, true}]) of

{ok, Listen} ->

handler(Listen),

gen_tcp:close(Listen);

{error, Error} ->

io:format("ldap server: initialization failed: ~w~n", [Error]),

error

end.

18

Name:

handler(Listen) ->

case gen_tcp:accept(Listen) of

{ok, Client} ->

ldap:request(Client),

handler(Listen);

{error, Error} ->

error

end.

This structure has a limitation in how quickly it can handle requests. Descri-
be this limitation and propose a simple solution that will allow us to handle
more request per time unit.

6.3.2 two birds with one stone [3 poäng*]

We assume that you have solved the previous question in a satisfactory
way. This would mean that the server would be able to handle many more
request per time unit but there is an additional advantage. The solution
most certainly gives us an advantage that has to do with the fact that ldap
is a rather complex and maybe not totally reliable. What is the problem and

19

Name:

why is the solution that you provide in the previous question also a solution
to this problem?

6.3.3 a lesser problem, maybe [3 points*]

The solution that you have proposed in the previous question is probably
�ne in most situations. It might however not have ideal properties if our
server receives huge amount of requests in a very short time. What is the
problem and how could you control the situation.
You don't have to implement a solution but describe what a solution might
look like and what if the solution is adding any problems.

20

