DD2365 Advanced Computation in Fluid Mechanics Lab 1: FEM for Stokes equations

Johan Hoffman, Johan Jansson, Niyazi Cem Degirmenci

April 6, 2016

0 Jupyter-FEniCS web PDE solver environment

The address of the web Jupyter-FEniCS environment, described more in detail below, is provided via email with the ip of the cloud virtual machine and Jupyter login. To run a program in JupyterFEniCS, open a Python 2 notebook and select the Run command under the Cell menu. Do not forget to save your notebook regularly to your own computer, by using Download as > IPython Notebook (.ipynb) under File in your notebook.

You can also set up the environment at your own computer by using the command:
sudo docker run -t -i -p 80:8000 sputnikcem/fenics-jpy
and using the login name and passwords listed on the terminal window by accessing localhost from a web browser.

1 Introduction

In this lab session you will use the FEniCS [1] framework for automated solution of partial differential equations (PDE) to formulate finite element methods (FEM) and solver the resulting discrete systems. Specifically you will investigate FEM for fluid flow modeled by the incompressible Stokes equations.

The goal of this session is to:

1. Learn the basic interface of FEniCS: form language and function, mesh and solve interfaces.
2. Become familier with the Jupyter web Python notebook interface.
3. Become familiar with different FEM methods for the the Stokes equations.

In this session we will work with the Python interface to FEniCS. We will use FEniCS version 1.6 which is installed in the Jupyter notebook (http://jupyter.org) Python web environment provided by following the instructions in the first section. On the FEniCS homepage [1] there is extensive documentation of the interface at both overview and detail level.

2 Exercises

2.1 FEniCS interface

We start with the simplest equation: the L_{2}-projection, which computes the optimal projection of a function f into a finite element space V_{h}. To compute the L_{2}-projection we want to solve the following equation in "weak" form: Find $u \in V_{h}$ such that

$$
\begin{equation*}
r(u, v)=(u, v)-(f, v)=0, \quad \forall v \in V_{h} \tag{1}
\end{equation*}
$$

where u is the unknown solution function, f is a known function, and v is a test function in a finite element test space constructed by a triangulation with cell diameter h and piecewise linear functions, with the standard notation for L_{2} inner products: $(v, w)=\int_{\Omega} v w d x$.

If we replace the finite dimensional space V_{h} with the space V of all integrable functions (with bounded integral), the "strong" form of the equation below is equivalent:

$$
\begin{equation*}
R(u)=u-f=0 \tag{2}
\end{equation*}
$$

which has the trivial solution $u=f$, with the condition that $f \in V$, i.e. f has to be integrable. In all the exercises in the lab we will use the weak form of the equations. The strong form can be derived as above if desired.

We first include the plotting interface for Jupyter:

```
%matplotlib inline
```

\%run /home/fenics/fenics-matplotlib.py

We can then define the representation of the equation in FEniCS as:

```
rom dolfin import *
import logging; logging.getLogger('UFL'). setLevel(logging.ERROR)
#to get rid of annoying warnings from UFL
f = Expression("50*exp(-50*(pow(x[0] - 0.5, 2) + pow(x[1] - 0.3, 2)))")
mesh = UnitSquareMesh(40, 40)
V = FunctionSpace(mesh, "CG", 1)
v}=\mathrm{ TestFunction(V)
u = Function(V) # FEM solution
r = (u*v - f*v) *dx
```

To solve the equation we use the compact solve() notation:

```
solve(r == 0, u)
```

and we can plot in the Jupyter environment with the provided mplot_function() function:

```
mplot_function(u)
```


2.1.1 Screenshot

The template program and the expected output when running it should look like this:

2.1.2 Questions

Now modify the above given program:
a) Add a diffusion term to the bilinear form: $\nu(\nabla u, \nabla v)$, written in FEniCS as:

```
nu * inner(grad(u), grad(v))*dx.
```

b) Compute the max-norm of the solution, this can be done by: u.vector().norm('linf').
c) The computational mesh is created with the UnitSquareMesh function. The mesh can be visualized by adding to your code:

```
fig2 = plt.figure()
plt.triplot(mesh2triang(mesh))
```

Try to refine and coarsen the mesh by changing the arguments to the UnitSquareMesh command. Use plt.colorbar() to also investigate results better.
d) Import the mshr module to your code for meshing more complex geometries. The following code for example generates a custom mesh on a rectangular domain with a circular hole:

```
XMIN = 0.; XMAX = 4.; YMIN = 0; YMAX = 1.; G = [XMIN, XMAX, YMIN, YMAX]; eps=1e -5
mesh = generate_mesh(Rectangle(Point(G[0], G[2]), Point(G[1],G[3])) - Circle(Point(.5, .5), .1), 30)
```

Try to create your own complex domains and solve the problem on that domain.
e) Add homogenous Dirichlet BC to the $x[1]=Y M I N$ wall (bottom) and homogenous Neumann BC to the $x[0]=X M A X$ wall (right), in order to add the Dirichlet BC use the DirichletBC class and add the instanciated object as an argument to your solve function. In order to add the Neumann BC you need to modify your weak form by adding a surface integral with a ds term.

2.2 Stokes equations

The Stokes equations in weak form can be stated, using the weak residual r :

$$
\begin{align*}
& r(\hat{u}, \hat{v})=(\nu \nabla u, \nabla v)-(p, \nabla \cdot v)+(\nabla \cdot u, q)=0, \tag{3}\\
& \hat{u} \in\left[V_{h}\right]^{2} \times Q_{h}, \quad \forall \hat{v} \in\left[V_{h}\right]^{2} \times Q_{h} \\
& \hat{u}=(u, p) \quad \text { (Solution: velocity and pressure) } \\
& \hat{v}=(v, q) \quad \text { (Test function) }
\end{align*}
$$

with ν a diffusion parameter. In FEniCS notation this can be written:

```
# FEM functions
V = VectorFunctionSpace(mesh, "CG", 1); Q = FunctionSpace(mesh, "CG", 1); W = V * Q; h = CellSize(mesh);
(v, q) = TestFunctions(W); w = Function(W); (u, p) = (as_vector((w[0], w[1])), w[2]); u0 = Function(v)
r = (nu*inner(grad(u), grad(v)) - p*div(v) + div(u)*q)*dx
```

To fully specify the solution, we need to add known data on the boundary $\partial \Omega$ of the domain Ω, in the form of boundary conditions. We want to specify a known inflow velocity $u_{i n}$ profile at the left side of the domain (the inlet), zero pressure at the right edge (the outlet), and zero velocity on the rest of the boundary (a "no-slip" condition).

We will apply these boundary conditions weakly which means that we will add penatly terms to the weak residual, active only on the boundary, which will force the solution to the desired values if a penatly parameter is chosen large enough. We choose the penalty parameter $\gamma=10^{4}$. For the inflow velocity, for example, we add the term $\gamma\left(u-u_{i n}, v\right)$. If γ goes to infinity, solving the equation $r(\hat{u}, \hat{v})=0, \forall v \in V_{h}$, means that $u=u_{i n}$.

We define boundary markers which are one on the part of the boundary we are interested in, and zero elsewhere; here im is the inlet marker, om is the outlet marker and nm is the no-slip marker:

```
uin = Expression(("4*(x[1]*(YMAX -x[1]))/(YMAX*YMAX)", "0."), YMAX=YMAX) # Inflow velocity
m = Expression("x[0] > XMAX - eps ? 1. : 0.", XMAX=XMAX, eps=eps) # Mark regions for boundary conditions
m = Expression("x[0] < XMIN + eps ? 1. : 0.", XMIN=XMIN, eps=eps)
hm = Expression("x[0] > XMIN + eps && x[0] < XMAX - eps ? 1. : 0.", XMIN=XMIN, XMAX=XMAX, eps=eps)
r=(grad(p) + grad(u)*u, v) + nu*inner(grad(u), grad(v)) + div(u)*q)*dx + \
    gamma*(om*p*q + im*inner(u - uin, v) + nm*inner(u, v))*ds
```


2.2.1 Questions

a) Plot the pressure and the velocity magnitude of the computed solution.
b) Change the order of approximation order of the finite element spaces V_{h} and Q_{h}, what happens to the computed solution? How does it effect the running time?
c) Add a stabilization term to the method.
d) Experiment with the computational domain; how does it change the solution?

References

[1] FEniCS. Fenics project. http://www.fenicsproject.org, 2003.

