
DD2365 Advanced Computation in Fluid Mechanics

Lab 1: FEM for Stokes equations

Johan Hoffman, Johan Jansson, Niyazi Cem Degirmenci

April 6, 2016

0 Jupyter-FEniCS web PDE solver environment

The address of the web Jupyter-FEniCS environment, described more in detail below, is provided
via email with the ip of the cloud virtual machine and Jupyter login. To run a program in Jupyter-
FEniCS, open a Python 2 notebook and select the Run command under the Cell menu. Do not forget
to save your notebook regularly to your own computer, by using Download as > IPython Notebook
(.ipynb) under File in your notebook.

You can also set up the environment at your own computer by using the command:

sudo docker run -t -i -p 80:8000 sputnikcem/fenics-jpy

and using the login name and passwords listed on the terminal window by accessing localhost from
a web browser.

1 Introduction

In this lab session you will use the FEniCS [1] framework for automated solution of partial differential
equations (PDE) to formulate finite element methods (FEM) and solver the resulting discrete systems.
Specifically you will investigate FEM for fluid flow modeled by the incompressible Stokes equations.

The goal of this session is to:

1. Learn the basic interface of FEniCS: form language and function, mesh and solve interfaces.

2. Become familier with the Jupyter web Python notebook interface.

3. Become familiar with different FEM methods for the the Stokes equations.

In this session we will work with the Python interface to FEniCS. We will use FEniCS version 1.6
which is installed in the Jupyter notebook (http://jupyter.org) Python web environment provided
by following the instructions in the first section. On the FEniCS homepage [1] there is extensive
documentation of the interface at both overview and detail level.

2 Exercises

2.1 FEniCS interface

We start with the simplest equation: the L2-projection, which computes the optimal projection of a
function f into a finite element space Vh. To compute the L2-projection we want to solve the following
equation in ”weak” form: Find u ∈ Vh such that

r(u, v) = (u, v)− (f, v) = 0, ∀v ∈ Vh (1)

where u is the unknown solution function, f is a known function, and v is a test function in a finite
element test space constructed by a triangulation with cell diameter h and piecewise linear functions,
with the standard notation for L2 inner products: (v, w) =

∫
Ω vw dx.

1

If we replace the finite dimensional space Vh with the space V of all integrable functions (with
bounded integral), the ”strong” form of the equation below is equivalent:

R(u) = u− f = 0 (2)

which has the trivial solution u = f , with the condition that f ∈ V , i.e. f has to be integrable. In all
the exercises in the lab we will use the weak form of the equations. The strong form can be derived
as above if desired.

We first include the plotting interface for Jupyter:

%m a t p l o t l i b i n l i n e

%run / h o m e / f e n i c s / fenics−m a t p l o t l i b . py

We can then define the representation of the equation in FEniCS as:

f r o m d o l f i n i m p o r t ∗
i m p o r t l o g g i n g ; l o g g i n g . g e t L o g g e r (’ UFL ’) . s e t L e v e l (l o g g i n g . E R R O R)
#to get r i d o f annoying warnings from UFL

f = E x p r e s s i o n (" 50* exp (-50*(pow (x [0] - 0.5 , 2) + pow (x [1] - 0.3 , 2))) ")
m e s h = U n i t S q u a r e M e s h (40 , 40)

V = F u n c t i o n S p a c e (mesh , " CG " , 1)
v = T e s t F u n c t i o n (V)
u = F u n c t i o n (V) # FEM so l u t i on

r = (u∗v − f∗v)∗ dx

To solve the equation we use the compact solve() notation:

s o l v e (r == 0 , u)

and we can plot in the Jupyter environment with the provided mplot function() function:

m p l o t _ f u n c t i o n (u)

2.1.1 Screenshot

The template program and the expected output when running it should look like this:

2

2.1.2 Questions

Now modify the above given program:

a) Add a diffusion term to the bilinear form: ν(∇u,∇v), written in FEniCS as:

nu * inner(grad(u), grad(v))*dx.

b) Compute the max-norm of the solution, this can be done by: u.vector().norm(’linf’).

c) The computational mesh is created with the UnitSquareMesh function. The mesh can be visu-
alized by adding to your code:

f i g 2 = plt . f i g u r e ()
plt . t r i p l o t (m e s h 2 t r i a n g (m e s h))

Try to refine and coarsen the mesh by changing the arguments to the UnitSquareMesh command.
Use plt.colorbar() to also investigate results better.

d) Import the mshr module to your code for meshing more complex geometries. The following code
for example generates a custom mesh on a rectangular domain with a circular hole:

X M I N = 0 . ; X M A X = 4 . ; Y M I N = 0; Y M A X = 1 . ; G = [XMIN , XMAX , YMIN , Y M A X] ; eps=1e−5
m e s h = g e n e r a t e _ m e s h (R e c t a n g l e (P o i n t (G [0] , G [2]) , P o i n t (G [1] , G [3])) − C i r c l e (P o i n t (. 5 , . 5) , . 1) , 30)

Try to create your own complex domains and solve the problem on that domain.

e) Add homogenous Dirichlet BC to the x[1] = YMIN wall (bottom) and homogenous Neumann
BC to the x[0] = XMAX wall (right), in order to add the Dirichlet BC use the DirichletBC

class and add the instanciated object as an argument to your solve function. In order to add the
Neumann BC you need to modify your weak form by adding a surface integral with a ds term.

2.2 Stokes equations

The Stokes equations in weak form can be stated, using the weak residual r:

r(û, v̂) = (ν∇u,∇v)− (p,∇ · v) + (∇ · u, q) = 0, (3)

û ∈ [Vh]2 ×Qh, ∀v̂ ∈ [Vh]2 ×Qh

û = (u, p) (Solution: velocity and pressure)

v̂ = (v, q) (Test function)

with ν a diffusion parameter. In FEniCS notation this can be written:

FEM func t i on s
V = V e c t o r F u n c t i o n S p a c e (mesh , " CG " , 1) ; Q = F u n c t i o n S p a c e (mesh , " CG " , 1) ; W = V ∗ Q ; h = C e l l S i z e (m e s h) ;
(v , q) = T e s t F u n c t i o n s (W) ; w = F u n c t i o n (W) ; (u , p) = (a s _ v e c t o r ((w [0] , w [1])) , w [2]) ; u0 = F u n c t i o n (V)

r = (nu∗ i n n e r (g r a d (u) , g r a d (v)) − p∗ div (v) + div (u)∗ q)∗ dx

To fully specify the solution, we need to add known data on the boundary ∂Ω of the domain Ω,
in the form of boundary conditions. We want to specify a known inflow velocity uin profile at the left
side of the domain (the inlet), zero pressure at the right edge (the outlet), and zero velocity on the
rest of the boundary (a “no-slip” condition).

We will apply these boundary conditions weakly which means that we will add penatly terms to
the weak residual, active only on the boundary, which will force the solution to the desired values
if a penatly parameter is chosen large enough. We choose the penalty parameter γ = 104. For the
inflow velocity, for example, we add the term γ(u− uin, v). If γ goes to infinity, solving the equation
r(û, v̂) = 0, ∀v ∈ Vh, means that u = uin.

We define boundary markers which are one on the part of the boundary we are interested in, and
zero elsewhere; here im is the inlet marker, om is the outlet marker and nm is the no-slip marker:

3

uin = E x p r e s s i o n ((" 4*(x [1] * (YMAX - x [1])) / (Y M A X * Y M A X) " , " 0. ") , Y M A X=Y M A X) # Inf low v e l o c i t y
om = E x p r e s s i o n (" x [0] > X M A X - eps ? 1. : 0. " , X M A X=XMAX , eps=eps) # Mark r eg i on s f o r boundary cond i t i on s
im = E x p r e s s i o n (" x [0] < X M I N + eps ? 1. : 0. " , X M I N=XMIN , eps=eps)
nm = E x p r e s s i o n (" x [0] > X M I N + eps && x [0] < X M A X - eps ? 1. : 0. " , X M I N=XMIN , X M A X=XMAX , eps=eps)

r = (g r a d (p) + g r a d (u)∗ u , v) + nu∗ i n n e r (g r a d (u) , g r a d (v)) + div (u)∗ q)∗ dx + \
g a m m a ∗(om∗p∗q + im∗ i n n e r (u − uin , v) + nm∗ i n n e r (u , v))∗ ds

2.2.1 Questions

a) Plot the pressure and the velocity magnitude of the computed solution.

b) Change the order of approximation order of the finite element spaces Vh and Qh, what happens
to the computed solution? How does it effect the running time?

c) Add a stabilization term to the method.

d) Experiment with the computational domain; how does it change the solution?

References

[1] FEniCS. Fenics project. http://www.fenicsproject.org, 2003.

4

