
Physical Database Design
These slides are mostly taken verbatim, or with minor

changes, from those prepared by
Stephen Hegner (http://www.cs.umu.se/ hegner/)

of Ume̊a University
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Data Independence — a Basic Consideration

Data Independence refers to the condition that the functionality of the
external user interface(s) to the DBMS be independent of the internal
storage representation of the data.

• One of the fundamental features of the relational model is that it exhibits
such independence by design.

• Nevertheless, it is important for the sophisticated user to have some
understanding of the internal storage model, because certain choices of
approach to queries may affect performance substantially.

• ... although it should never affect correctness.
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Types of Access

• There are many different types of access which a comprehensive DBMS
must support:

Key-based: Retrieval of data based upon the values of specific keys suggests
an indexed or hashed strategy.

Sequential processing: Retrieval of large amounts of data in some order
suggests that the data themselves should be stored in some appropriate
order.

Range queries: Retrieval of data for which certain parameters fall within a
range of values suggests that the above two approaches need to be
combined.

• It is generally not possible to provide optimal access for all of these
possibilities.

• Nevertheless, much is known about how to obtain such access with
reasonable performance.
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Records

Record: The basic entity of storage in a DBMS.

• In the ubiquitous row-based implementation of the relational model, each
tuple is represented as a record.

Field: The basic physical data item.

• Each record is divided into one or more fields.

• In the usual implementation of the relational model, each field of a record
corresponds to an attribute, with the field containing the value for that
attribute.

Fixed-length record: The most common implementation is to allocate a
fixed-size field for each attribute.

CREATE TABLE department

(dept_name VARCHAR (20),

building VARCHAR (15),

budget NUMERIC (12,2)

CHECK (budget > 0),

PRIMARY KEY (dept_name)

);

dept name building budget
21 bytes 16 bytes 4 bytes
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Variable-Length Records of a Fixed Type

Variable-length records: There are a number of situations in which it is
useful to allow the length of a record of a given type to vary.

• Most often, this possibility arises because the length of one or more fields
is variable.

Predominately-null fields: If a field is null in most records, it may be
advantageous to represent the null value with a bit marker.

Fields with sets of values: In object-relational models (supported in the
latest SQL standard), it is possible to define fields which take
multisets or arrays as values.

Fields whose size varies greatly: These are typically handled other ways.

• Large objects such as BLOBs and CLOBs are stored separately, with
the record containing only a (fixed-size) pointer to the object.

• It is not common (although possible) to represent VARCHAR fields
using variable-length constructions.
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Implementation of Variable-Length Records

• A variable-length record may be implemented as shown below for three
fixed-length fields and two variable-length fields..

Fixed
Field1

Fixed
Field2

Fixed
Field3

Var
Field
Count

Var
Field1

Loc

Var
Field2

Loc
Var Field Data

Var Field Count: Indicates the number of variable fields.

Var Fieldi Loc: Describes how to find the i th variable field in Var Field Data.

• Start offset + size

• Start offset + end offset

Drawback: It takes more time to retrieve an item which is stored in a
variable-length format than to retrieve the same data in a fixed-length
format.

Principle: Memory (primary and secondary) has become much less
expensive, so it is effective to use variable-length records only when the
amount of space to be saved is substantial.
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Physical Storage of Records

Blocks: Records are stored in units called blocks.

• A block usually corresponds to the sector size for the hard disk, or a
small multiple of that size.

Blocking factor: The number of records which are stored in a block.

• Depends upon the type of record.

• Variable per record type if the records are variable record length.

• Variable if several different types of record are stored in the same
block.

• In these cases, averages are typically used.

Unspanned blocking: Each record is contained entirely in one block.

Spanned blocking: A record may be split over (usually two) blocks.

• Relatively rare in modern systems.
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Organization of Records in Storage

• There are three fundamental ways in which records may be stored.

• These approaches are typically per record type, so distinct record types
may have distinct methods of storage.

Heap: Any record may be stored anywhere.

• Typically, different record types are stored in distinct files.

• Access is entirely via indices.

Ordered: The records are stored in the order defined by the value(s) of one
more more attributes, typically but not always the primary key of the
associated relation.

• Indices may still be used to facilitate both sequential and
non-sequential access.

Hashed: The records are distributed into buckets according to some hashing
function.

• Within each bucket, the records may be further organized according
to one of the above two approaches.
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Sequential Organization

Question: What does it mean for records
on disk to be ordered?

• Here ordering on the ID (first) field of
the Instructor relation is illustrated.

Question: But the records are stored in
blocks. How are the blocks ordered?

• It is true that modern hard drives use
LBA (Logical Block Addressing), so
that it is technically possible to
represent the order via the disk
address of the containing block.

• However this is not feasible in
practice, since insertions and deletions
would result in the need to move
massive amounts of data.

10101 Srinivasan Comp. Sci. 65000

12121 Wu Finance 90000

15151 Mozart Music 40000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

58583 Califieri History 62000

76543 Singh Finance 80000

76766 Crick Biology 72000

83821 Brandt Comp. Sci. 92000

98345 Kim Elec. Eng. 80000
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Sequential Organization 2

• Information on the logical order of the
blocks is maintained by the system,

• Here links are shown, but other ways are
possible.

• As noted, the system tries to keep blocks
which are logical neighbors as physical
neighbors as well.

• Within each block, the entries are ordered
on the selected field.

• Blocks need not be full, but there may be
a requirement on how “empty” they may
be.

10101 Srinivasan Comp. Sci. 65000

12121 Wu Finance 90000

15151 Mozart Music 40000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000
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76543 Singh Finance 80000
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Classification of Indices

Index: An index is an access structure to records.

• The elements of the index are usually ordered for easy searching.

Classification: Indices may be classified along several dimensions.

Primary vs. secondary:

Primary (or clustering): Based upon the attribute(s) used to order the
records.

• Need not be built on the primary key (but often is).
�

Some authors limit the term clustering index to indices on
non-key attributes.

• These authors use the term primary index for clustering indices
on key attributes.

Secondary (or non-clustering): Not primary.

Dense vs. non-dense:

Dense: There is an index entry for each value of the search key which
occurs in the file.

Non-dense (or sparse): Not dense.
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A Sparse Clustering Index on the Primary Key

• The index values need not
be key values of records
which are currently in the
database.

• Each link points to the
first block containing an
entry greater than or
equal to the index value.

• Usually, with such a
non-dense index, if an
index link points to a
block B, then all entries in
B are greater than or
equal to the index value.

00000
20000
33000
60000
76600

10101 Srinivasan Comp. Sci. 65000

12121 Wu Finance 90000

15151 Mozart Music 40000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

58583 Califieri History 62000

76543 Singh Finance 80000

76766 Crick Biology 72000

83821 Brandt Comp. Sci. 92000

98345 Kim Elec. Eng. 80000
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A Dense Clustering Index Not on the Primary Key

• The records are sorted by department
name in this example.

• There is an index entry for
every department name
which occurs in the
database, but not for
every possible department
name.

• Each link points to the first block con-
taining an entry greater than or equal
to the index value.

• It is also possible to require that each
new index value begin a new block.

Biology
Comp. Sci.
Elec. Eng.

Finance
History
Music

Physics

76766 Crick Biology 72000

10101 Srinivasan Comp. Sci. 65000

45565 Katz Comp. Sci. 75000

83821 Brandt Comp. Sci. 92000

98345 Kim Elec. Eng. 80000

12121 Wu Finance 90000

76543 Singh Finance 80000

32343 El Said History 60000

58583 Califieri History 62000

15151 Mozart Music 40000

22222 Einstein Physics 95000

33456 Gold Physics 87000
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A Sparse Clustering Index on a “Near” Key

• There is no requirement that a clus-
tering index be on a key.

• In particular, if the field
on which the records are
sorted is “almost” a key,
then a non-dense
clustering index may be
useful.

• The records to the right are sorted by
instructor name.

• The index points to the first block
containing a record which is greater
than or equal to the index value.

B
H
L
O

83821 Brandt Comp. Sci. 92000

76766 Crick Biology 72000

58583 Califieri History 62000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

98345 Kim Elec. Eng. 80000

00001 Kim Finance 200000

15151 Mozart Music 40000

76543 Singh Finance 80000

10101 Srinivasan Comp. Sci. 65000

12121 Wu Finance 90000
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A Non-Clustering Index

• The example file is sorted on
employee ID.

• The secondary index is on
department.

• The blocks in aqua are sets of
pointers for the given
value of the index
attribute.

• Note that a pointer
from such a set leads
to a block, not an individual
record. (Examples in red).

• This is also called an indirect
index, as opposed to a direct
index, in which the index entries
point directly to the record blocks.

Biology
Comp. Sci.
Elec. Eng.

Finance
History
Music

Physics
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12121 Wu Finance 90000
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98345 Kim Elec. Eng. 80000
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A Multi-Level Index

• The index itself may have several lev-
els, usually in the structure of a tree.

• Illustrated here is
a multi-level non-
dense primary in-
dex on the instruc-
tor ID.

• Such indices are very
common.

• The B+-tree, to be studied
shortly, is an example of such
an index structure.

00000
33000

00000
20000

33000
76600

10101 Srinivasan Comp. Sci. 65000

12121 Wu Finance 90000

15151 Mozart Music 40000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

58583 Califieri History 62000

76543 Singh Finance 80000

76766 Crick Biology 72000

83821 Brandt Comp. Sci. 92000

98345 Kim Elec. Eng. 80000
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B-Trees and B+-Trees

• The most important form of index structure in database systems is the
B+-tree.

• While it is possible to present B+-trees directly (as does the textbook),
the easiest way to understand B+-trees is to understand B-trees first.

• B-trees are a direct extension of the classical and ubiquitous binary
search tree (which everyone in this class should already know.)
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Review of Binary Search Trees
Jan

Feb Jun

Apr Mar Jul Sep

May Aug Dec Oct

Nov

• Shown above the binary tree obtained by inserting, into an initially empty
tree, the three-letter abbreviations for the months, in chronological order.

• The method of search is standard:

• Begin at the root.

• If the element is found, stop.

• Otherwise, go left if the item sought is less than the value of the
current vertex, otherwise go right.

• Repeat until found or an empty pointer is reached.
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Shortcomings of Binary Trees for Database Storage
Jan

Feb Jun

Apr Mar Jul Sep

May Aug Dec Oct

Nov

• Binary search trees have two shortcomings which renders them a poor
choice for database storage.

No guaranteed balance: Binary search trees need not be balanced, and
unless special measures are taken, can grow far out of balance.

• Lack of balance can lead to long searches, with even average case
time O(n) rather than O(log(n)), n = number of vertices.

Much pointer following: One pointer must be followed for each decision in
the search process.

• In the DBMS context, following a pointer often involves a disk read,
rendering the approach unusably slow.
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B-Trees to the Rescue

• B-trees are designed to overcome these shortcomings of the traditional
binary search tree in two ways.

Guaranteed balance: In a B-tree every path from the root to a leaf has
exactly the same length.

• A search is thus guaranteed to run in worst-case time O(log(n)),
with n the number of data items stored in the tree.

Multiple data items per vertex: Instead of storing only one data item per
vertex, in a B-tree many data items may be stored in the same vertex.

• This leads to searches which require far fewer pointers chases, and
consequently far fewer disk accesses.
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The Structure of a Vertex of a B-tree
d1 d2 d3 d4 d5 d6 d7 d8

p0 p1 p2 p3 p4 p5 p6 p7 p8

• A vertex of a B-tree is a generalization of that of a binary search tree.

• A vertex of a B-tree of order n has n pointers and d n − 1 data fields.

• The form for n = 9 is depicted above.

• A B-tree is a rooted tree, just as is a binary search tree.
�

Some authors define the order to be bn/2c relative to the above
definition.

• The definition of order used here coincides with that of Knuth (Vol.
3 of The Art of Computer Programming).

• The other definition leads to ambiguities in maximum size.

• The conditions on a B-tree are more complex than those of a binary
search tree, and are described next.
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Conditions on a B-tree of Order n
d1 d2 d3 d4 d5 d6 d7 d8

p0 p1 p2 p3 p4 p5 p6 p7 p8

• Each pointer and each data field is either used or unused.

• Both pointers and data field are used from left to right:
• There is a k, 1 ≤ k ≤ n, such that pi and di are used iff i ≤ k .

• Every vertex, except the root, must be at least half full: k ≥ b(n− 1)/2c.
• The root must contain at least one data value: k ≥ 1.

• The data elements in a given vertex are in sort order, from left to right.

• All used pointer fields of a leaf vertex are null.

• For an internal vertex, each used pointer pj must point to another vertex
of the tree, with all used data fields d in the subtree satisfying
dj < d < dj+1.
• To make this work, take the fictitious data fields d0 and dn+1 to

contain the largest and smallest possible values, respectively.

• The tree is balanced; all paths from the root to a leaf are the same length.
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A Simple Example of Repeated Insertion into a B-tree

• The operations on a B-tree are best learned by example.

• In this example, the three-letter abbreviations for the months of the year
will be inserted, in chronological order, into a B-tree of order four.

• Formally, there is no such thing as an empty B-tree, so begin with the
tree containing just Jan:

Jan

• The insertions of Feb, Mar, and Apr are straightforward, with the inserted
element shaded in aqua:

Feb Jan Feb Jan Mar Apr Feb Jan Mar
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An Simple Example of Repeated Insertion into a B-tree — 2

• Insertion of May using this method would require a B-tree vertex of order
five, which lies outside of the model being used.

Apr Feb Jan Mar May

• The solution is to split this fictitious vertex, retaining the middle element
as the sole value of the new root, with two half-full children:

Jan

Apr Feb Mar May

• The values marked in yellow are moved to a different vertex in the
process.
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An Simple Example of Repeated Insertion into a B-tree — 3

• The insertions of Jun, Jul, and Aug are simple leaf insertions.

Jan

Apr Feb Jun Mar May

Jan

Apr Feb Jul Jun Mar May

Jan

Apr Aug Feb Jul Jun Mar May

Physical Database Design 20150419 Slide 25 of 99



An Simple Example of Repeated Insertion into a B-tree — 4

Jan

Apr Aug Feb Jul Jun Mar May

• There are two possibilities for the insertion of Sep.

• The first is to do a split of the full vertex, moving the middle element to
the parent.

Jan Mar

Apr Aug Feb Jul Jun May Sep

• The second performs a rotation of values, through the parent to the left
sibling.

Jul

Apr Aug Feb Jan Jun Mar May Sep
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An Simple Example of Repeated Insertion into a B-tree — 5

• The insertions of Oct, Nov, and Dec are simple leaf insertions to the first
alternative on the previous slide.

Jan Mar

Apr Aug Feb Jul Jun May Oct Sep

Jan Mar

Apr Aug Feb Jul Jun May Nov Oct Sep

Jan Mar

Apr Aug Dec Feb Jul Jun May Nov Oct Sep
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Insertions on B-Trees Involving Root Splitting

• Insertion of 14 into the following B-tree implies a split of the second child
from the left.

10 20 30 40

3 6 7 8 13 15 18 19 21 23 25 33 36 38 42 44 46

• This in turn forces a split of the root.

20

10 15 30 40

3 5 7 8 13 14 18 19

21 23 25 33 36 38 42 44 46

• Such splits of the root are the only way in which a B-tree can grow in
depth, and guarantee that it remains balanced.
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Insertions on B-Trees Realized via Redistribution

• Insertion of 14 into the following B-tree implies a split of the second child
from the left.

10 20 30 40

3 6 7 8 13 15 18 19 21 23 25 33 36 38 42 44 46

• In this case, insertion of 14 could also be realized by a redistribution of
values, without splitting any vertices.

10 19 30 40

3 6 7 8 13 14 15 18 20 21 23 25 33 36 38 42 44 46

• The choice of strategy is more of a heuristic than a hard-and-fast rule.
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Simple Deletions on B-trees

• Consider the deletion of 33 from the following B-tree:
20

10 15

30 40 503 5 7 8 13 14 18 19

21 23 25 33 36 38 42 44 46 53 56 58

• It is a simple matter, since there is no underfill.
20

10 15

30 40 503 5 7 8 13 14 18 19

21 23 25 36 38 42 44 46 53 56 58
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Deletions on B-trees — Underfill Solved via Redistribution

• The subsequent deletion of 36 results in an vertex with too few values:
20

10 15

30 40 503 5 7 8 13 14 18 19

21 23 25 36 38 42 44 46 53 56 58

• which may be remedied via a redistribution:
20

10 15

30 42 503 5 7 8 13 14 18 19

21 23 25 38 40 44 46 53 56 58
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Deletions on B-trees with a Choice of Solutions

• Sometimes, there is a choice between a redistribution and a combination
of vertices.

• Continue with the result of the previous deletion, this time with the
further deletion of 44.

20

10 15

30 42 503 5 7 8 13 14 18 19

21 23 25 38 40 44 46 53 56 58

• There are two ways to support this update, as shown on the following
two slides.
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Deletions on B-trees with a Choice of Solutions — 2
20

10 15

30 42 503 5 7 8 13 14 18 19

21 23 25 38 40 44 46 53 56 58

• The first solution involves a redistribution, much as in the previous
example.

20

10 15

30 42 533 5 7 8 13 14 18 19

21 23 25 38 40 46 50 56 58
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Deletions on B-trees with a Choice of Solutions — 3
20

10 15

30 42 503 5 7 8 13 14 18 19

21 23 25 38 40 44 46 53 56 58

• The second solution involves a combination of the underfull vertex with
its sibling, together with the movement one data field down from the
parent.

20

10 15

30 503 5 7 8 13 14 18 19

21 23 25 38 40 42 46 53 56 58
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Deletions on B-trees Involving Redistribution through the Root

• Consider deleting 18 from the following B-tree:

20

10 15

30 40 503 5 7 8 13 14 18 19

21 23 25 33 36 38 42 44 46 53 56 58

• This may be realized via redistribution up through the root.

30

10 20

40 503 5 7 8 13 14 15 19 21 23 25

33 36 38 42 44 46 53 56 58

• Notice the movement of the 21-23-25 vertex.
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Deletions on B-trees Requiring Depth Reduction

• Deletion of 18 from the following B-tree requires a height adjustment
(unless very long-range moves are permitted).

20

10 15

30 403 5 7 8 13 14 18 19

21 23 25 33 36 38 42 44 46

• Here is the result of the deletion.

10 20 30 40

3 6 7 8 13 14 15 19 21 23 25 33 36 38 42 44 46

• This is the only way that a B-tree may shrink in depth.
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Deletions of Non-Leaf Fields on B-trees

• It is sometimes possible to realize deletions within non-leaf vertices via
redistribution.

20

10 15

30 403 5 7 8 13 14 18 19

21 23 25 33 36 38 42 44 46

• Deletion of 10 may be achieved as follows:

20

8 15

30 403 5 7 13 14 18 19

21 23 25 33 36 38 42 44 46
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Deletions on B-trees with Alternative Solutions

20

10 15

30 403 5 7 8 13 14 18 19

21 23 25 33 36 38 42 44 46

• Deletion of 19 appears to require adjustment at the second level, and
then combination with the root.

10 20 30 40

3 5 7 8 13 14 15 18 21 23 25 33 36 38 42 44 46
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Deletions on B-trees with Alternative Solutions — 2

20

10 15

30 403 5 7 8 13 14 18 19

21 23 25 33 36 38 42 44 46

• However, it is possible in this case to do a long-range, multiple
readjustment.

20

8 14

30 403 5 7 10 13 15 18

21 23 25 33 36 38 42 44 46

Physical Database Design 20150419 Slide 39 of 99



Heuristics for B-Trees

If possible, avoid operations which involve cascaded splitting or combining
of vertices: Such operations are generally very expensive.

• Choose them (if avoidable) only if it is imminent that they will be
needed soon anyway.

• For example, if the operations are dominated by insertions, then
allowing cascading splitting is reasonable.

• However, if future operations are expected to be dominated by
deletions, then splitting should be avoided if possible.

Redistribute evenly: When redistributing elements to accommodate an
insertion or a deletion, redistribute so that the number of elements in
each sibling is about the same.

• This happens automatically in the simple examples here in which the
order of the vertices is only four.

• However, it is far from automatic when the order is much larger.
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Depth of a B-Tree

• It is very useful to be able to estimate the depth of a B-tree, given
configuration parameters and the number of records.

• Such an estimate will help provide key information on expected access
time.

Example setting: Page size: 2 KBytes

Record size: 128 Bytes

Pointer size: 4 Bytes (4 GBytes address space)

Total records 106

• Maximum order n of the B-tree:

(n × PtrSize) + ((n − 1)× RecSize) ≤ PageSize

n =

⌊
PageSize + RecSize

PtrSize + RecSize

⌋
=

⌊
2048 + 128

4 + 128

⌋
= 16
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Maximum-Depth B-Trees – Example Computation

Minimum density: A B-tree will have maximum depth when it has minimum
density — as few records per vertex as possible.

• All vertices except the root will contain b(n − 1)/2c = 7 records.

• The root will contain one record.

• First, to see how to approach the problem, compute the necessary sizes
by brute force.

Level Vertices at the level Records at the level Total records

root 1 1 1

1 2 2× 7 = 14 15

2 2× 8 = 16 16× 7 = 112 127

3 16× 8 = 128 128× 7 = 896 1023

4 128× 8 = 1024 1024× 7 = 7168 8191

5 1024× 8 = 8192 8192× 7 = 57344 65535

6 8192× 8 = 65536 65536× 7 = 458752 524287

7 65536× 8 = 524288 524288× 7 = 3670016 4194303
• The maximum depth is thus 6, since a depth of 7 would require at least

4194303 records.
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Parameters of B-Trees

• The brute force approach becomes tedious, particularly when the depth
becomes substantial.

• It is instructive to develop more general, closed formulas.

• The general parameters are as follows:

Parameter Meaning

d depth of the B-tree

m number of records in the root vertex

r number of records in all other vertices

• It is very rare that all non-root vertices will contain exactly the same
number of records.

• These parameters are therefore used in approximation.

• A B-tree which satisfies these conditions will be called (m, r , d)-uniform.
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Maximum-Depth B-Trees — Formulas

• Here is a computation of the number of vertices at each level.
Level Vertices Records

root 1 m

1 m + 1 (m + 1) · r
2 (m + 1) · (r + 1) (m + 1) · (r + 1) · r
3 (m + 1) · (r + 1)2 (m + 1) · (r + 1)2 · r
4 (m + 1) · (r + 1)3 (m + 1) · (r + 1)3 · r
· · · · · · · · ·
d (m + 1) · (r + 1)d−1 (m + 1) · (r + 1)d−1 · r

• Thus, the total number of records R(m, r , d) in an (m,r,d)-uniform
B-tree is given by

R(m, r , d) = m + (m + 1) · r ·
d−1∑
i=0

(r + 1)i
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Maximum-Depth B-Trees — Formulas 2

• Continuing with

R(m, r , d) = m + (m + 1) · r ·
d−1∑
i=0

(r + 1)i

• The general law

d∑
j=0

k j =
kd+1 − 1

k − 1

which may be derived from

(1 + k + k2 + . . . + kn) · (1− k) = (1− kn+1)

leads to

R(m, r , d) = m + (m + 1) · ((r + 1)d − 1)

which simplifies to

R(m, r , d) = (m + 1) · (r + 1)d − 1
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Maximum-Depth B-Trees — Formulas 3

• Continuing with

R(m, r , d) = (m + 1) · (r + 1)d − 1

• To find the value for d with minimum density, with N the total number
of records to be stored, begin as follows:

(m + 1) · (r + 1)d − 1 ≤ N

(r + 1)d ≤ N + 1

m + 1

• To solve for d , take the log for base r + 1 of each side:

d ≤ logr+1

(
N + 1

m + 1

)
=

loge

(
N+1
m+1

)
loge(r + 1)

Physical Database Design 20150419 Slide 46 of 99



Maximum-Depth B-Trees — Using the Formulas on the Example

• Continuing with:

d ≤ logr+1

(
N + 1

m + 1

)
=

loge

(
N+1
m+1

)
loge(r + 1)

• In the example, r = 7, N = 1000000, and m = 1, so

d ≤ =
loge

(
1000000+1

1+1

)
loge(7 + 1)

=
loge(500000.5)

loge(8)
= 6.31

• Since the depth of a B-tree must be an integer, it follows that it cannot
be greater than 6, in agreement with the brute-force approach.
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Minimum-Depth B-Trees – Example Computation

Maximum density: A B-tree will have minimum depth when it has maximum
density — as many records per vertex as possible.

• All vertices, including the root, will contain n − 1 = 15 records.

• First, to see how to approach the problem, compute the necessary sizes
by brute force.

Level Vertices at the level Records at the level Total records

root 1 15 15

1 16 16× 15 = 240 255

2 162 = 256 256× 15 = 3840 4095

3 163 = 4096 4096× 15 = 61440 65535

4 164 = 65536 65536× 15 = 983040 1048575

• The minimum depth is thus 4, since a depth of 3 would hold at most
65535 records, while a depth of 4 can hold more than 106.
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Minimum-Depth B-Trees — Formulas

• Recall:

R(m, r , d) = (m + 1) · (r + 1)d − 1

• To solve for the value for r with maximum density, with N the total
number of records to be stored, this time:

(m + 1) · (r + 1)d − 1 ≥ N

(r + 1)d ≥ N + 1

m + 1

• Since m = r ,

(r + 1)d+1 ≥ N + 1

so, taking the log base r + 1 of each side:

d + 1 ≥ logr+1(N + 1) =
loge(N + 1)

loge(r + 1)

d ≥ logr+1(N + 1)− 1 =
loge(N + 1)

loge(r + 1)
− 1
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Minimum-Depth B-Trees — Using the Formulas on the Example

• Continuing with:

d ≥ logr+1(N + 1)− 1 =
loge(N + 1)

loge(r + 1)
− 1

• In the example, r = 15, N = 1000000, so

d ≥ =
loge(1000000 + 1)

loge(15 + 1)
− 1 =

loge(1000001)

loge(16)
− 1 = 3.9828

• Since the depth of a B-tree must be an integer, it follows that it must be
at least 4, in agreement with the brute-force approach.

• The fact that d is very close to 4 suggests that by adding just a few more
vertices to N, a tree of depth five would be required. The ”brute-force”
chart confirms this; the largest (15, 15, 4)-uniform B-tree has 1048575
vertices, only 48575 more than 100000.
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Computing the Total Number of Records — Formula

• The basic formula below is useful in other ways.

R(m, r , d) = (m + 1) · (r + 1)d − 1

• For example, if the total number of records, as well as depth d and root
record count m of a (m, r , d)-uniform B-tree is known, then the record
density r can be computed as well:

(r + 1)d =
R(m, r , d) + 1

m + 1

• To solve for r , take the d th root of both sides, and subtract 1:

r =
d

√
R(m, r , d) + 1

m + 1
− 1
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Computing the Total Number of Records — Examples

• Consider again the example of maximum depth with 106 records.

• The known parameters are m = 1 (given) and d = 6 (computed
previously).

• To find the value r which identifies the number of records in each vertex:

r =
d

√
R(m, r , d) + 1

m + 1
− 1 =

6

√
106 + 1

1 + 1
− 1 =

6

√
1000001

2
− 1 = 7.90

• This means that a (1, r , 6)-uniform B-tree would have 7.90 records in
each of its non-root vertices.

• Of course, it is impossible to have a tree with 7.90 records per vertex.

• This result is thus just an estimate.

• A real B-tree, as balanced as possible, would have between 7 and 8
records per vertex.
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Computing the Total Number of Records — Examples 2

• Continue with this example, and suppose that two records are now in the
root vertex.

• To find the value r which identifies the number of records in each vertex:

r =
d

√
R(m, r , d) + 1

m + 1
− 1 =

6

√
106 + 1

2 + 1
− 1 =

6

√
1000001

3
− 1 = 7.32

• By creating slightly more fan-out at the root vertex, the lower vertices
are much less densely populated.

• In fact, the density is just barely adequate, since the minimum is 7.

• Now suppose that the root contains three records.

r =
d

√
R(m, r , d) + 1

m + 1
− 1 =

6

√
106 + 1

3 + 1
− 1 =

6

√
1000001

4
− 1 = 6.93

• This value does not define a valid situation; the minimum depth is 7.

Observation: Not any mix of parameters will result in a valid approximation
to a real B-tree.
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Computing the Total Number of Records — Examples 3
• Consider again the example of minimum depth with 106 records.

• The known parameters are m = 15 (given) and d = 4 (computed
previously).

• To find the value r which identifies the number of records in each vertex:

r =
d

√
R(m, r , d) + 1

m + 1
− 1 =

4

√
106 + 1

15 + 1
− 1 =

4

√
1000001

16
− 1 = 14.81

• The average record density of the vertex is extremely high, as is expected,
since a (15, r , 4)-uniform tree can have a maximum of 1048481 records.

• If the fan-out at the root is reduced by just one, to m = 14:

r =
d

√
R(m, r , d) + 1

m + 1
− 1 =

4

√
106 + 1

14 + 1
− 1 =

4

√
1000001

15
− 1 = 15.06

• This value does not define a valid situation; max records/vertex = 15.

• Indeed, a uniform (14,15,4) B-tree has
(m + 1) · (r + 1)d − 1 = 15 · 164 − 1 = 983041 as the maximum number
of records, which is only slightly less than 106.
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Average Path Length in a B-Tree

Question: What is the average path length from the root to a vertex in a
B-tree.

• This question is readily examined in the context of (m, r , d)-uniform
B-trees.

• From previous computations:

Number of records at level d = (m + 1) · (r + 1)d−1 · r
Total number of records = (m + 1) · (r + 1)d − 1

• Thus, the percentage of records which are situated in leaf vertices is
approximately:

(m + 1) · (r + 1)d−1 · r
(m + 1) · (r + 1)d − 1

≈ (m + 1) · (r + 1)d−1 · r
(m + 1) · (r + 1)d

=
r

r + 1
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Average Path Length in a B-Tree — 2

• Continuing with:

(m + 1) · (r + 1)d−1 · r
(m + 1) · (r + 1)d − 1

≈ (m + 1) · (r + 1)d−1 · r
(m + 1) · (r + 1)d

=
r

r + 1

• If r is reasonably large, most of the records will reside in the leaf vertices.

r r
r+1

1 0.500

4 0.800

7 0.875

15 0.938

32 0.970

100 0.990

• Thus, even for the simple examples considered here, it can be expected
that close to 90% of the records will reside in the leaf vertices.
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Implications of Most Records Residing in Leaves

Observation: If there is one disk request per access to a B-tree vertex, then
the average access time will be the time for a single access times the
depth of the tree.

• With four or five disk accesses per fetch, this is unacceptable.

Solutions: There are several ways to reduce the number of disk accesses.

Keep the top few levels in main memory: By keeping (copies of) the
first k levels of the B-tree in main memory, the number of disk
accesses is reduced by k .

Build an index into the B-tree: This is possible, but there are better
solutions (such as the B+-tree).

Store pointers rather than records in the B-tree: This solution will be
discussed in more detail.
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B-Trees of Keys and Pointers

• Instead of storing an entire record in the B-tree, an alternative is to store
only the key value and a pointer to the full record.

• This is the approach described in the textbook.

• A (non-leaf) vertex appears as follows:

k1 r1 k2 r2 k3 r3 k4 r4

p0 p1 p2 p3 p4

• Each ri is a pointer to the record whose key is ki .

• Typically, k1 + ri is much smaller than an entire record.

• Thus, the number of items per vertex will be much greater, and so the
tree will be much less deep.

• A drawback to this approach is that the storage of neighboring records
can become very fragmented.

• For example, distinct disk accesses may be necessary to retrieve r1 and r2.

• The B+-tree typically offers a better solution in this regard.
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The B+-Tree

• The B+-tree differs from the B-tree in the following fundamental way.

• All records are stored in the leaves.

• The internal vertices contain the index only.

Advantages:

• Since index fields are typically much smaller than record fields, many
index values may be stored in a single internal vertex.

• This implies that the fanout in the non-leaf vertices will be very high.

• This implies, in turn, that the index will be relatively small and not
very deep.

• The leaf vertices (left to right) form an ordered sequential
representation, thus facilitating sequential processing.
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Visualization of a B+-Tree
35

7 13 20 24 39 43 47 55 59

3 6 7

8 10 13

14 15 18 19

21 23

25 30 33

36 38

40 42

44 46

50 53

56 58

60 65

• Shown above is a B+-tree of order (9,4).

• The order of a non-leaf vertex is defined exactly as in a B-tree.

• The order of a leaf vertex is defined to be the maximum number of
records which can be stored in it.

• Note that leaf vertices do not have any pointer fields (none are needed).

• The values which are stored in the non-leaf vertices are just possible keys,
and do not need to be key values of records stored in the leaves.

• A key value does not occur more than once in the index.
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Convention for Index Paths in a B+-Tree

35

7 13 20 24 39 43 47 55 59

3 6 7

8 10 13

14 15 18 19

21 23

25 30 33

36 38

40 42

44 46

50 53

56 58

60 65

Convention for pointers of index vertices:

Pointer to the left of key k : All further indices and records with keys
which are ≤ k .

Pointer to the right of key k : All further indices and records with keys
which are > k .

• In other words, for a search value which is equal to the index value, go
left, not right.
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Fullness Conditions on the Vertices of a B+-Tree
35

7 13 20 24 39 43 47 55 59

3 6 7

8 10 13

14 15 18 19

21 23

25 30 33

36 38

40 42

44 46

50 53

56 58

60 65

• As in the case of a B-tree, all vertices except the root must be at least
“half full”.

Internal (index) vertices: The condition for internal (index vertices) is exactly
the same as for B-trees:

• Each vertex except the root must contain at least b(nint − 1)/2c
vertices, where nint is the order (number of pointers) in such a
vertex.

Leaf vertices: The condition for leaf vertices stipulates that if the maximum
number of records is odd, then half full is defined by “round up”.

• Each leaf must contain at least d(next)/2e vertices, where next is the
order (number of possible records) in such a vertex.
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Insertion into a B+-Tree
35

7 13 20 24 39 43 47 55 59

3 6 7

8 10 13

14 15 18 19

21 23

25 30 33

36 38

40 42

44 46

50 53

56 58

60 65

• Consider insertion of a record with key 20 into the above tree.

• The index value 20 must be changed to 19 (changes shown in orange ).

• Alternatively, a straightforward rotation may be used.

35

7 13 19 24 39 43 47 55 59

3 6 7

8 10 13

14 15 18 19

20 21 23

25 30 33

36 38

40 42

44 46

50 53

56 58

60 65
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Insertion into a B+-Tree — 2

35

7 13 20 24 39 43 47 55 59

3 6 7

8 10 13

14 15 18 19

21 23

25 30 33

36 38

40 42

44 46

50 53

56 58

60 65

• It is possible to solve this same insertion of 20 via a split of the leaf
vertex together with the insertion of a new index value.

35

7 13 18 20 24 39 43 47 55 59

3 6 7

8 10 13

14 15 18

19 20

21 23

25 30 33 36 38

40 42

44 46

50 53

56 58

60 65
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Insertion into a B+-Tree — 3

7 13 20 35 43 47 55 59

3 6 7

8 10 13

14 15 16 18

23 25 30 32

39 40 41 42

44 46

50 53

56 58

60 65

• Insertion of a record with key 28 into the above tree requires a split of
the vertex at the second level as well as the root.

• The inserted internal key (not record) 28 could be either of 28 or 29.

• This is the only way which the depth of a B+-tree may increase.

35

7 13 20 28 43 47 55 59

3 6 7

8 10 13

14 15 16 18

23 25 28

30 32

39 40 41 42

44 46

50 53

56 58

60 65
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Deletion from a B+-Tree

35

7 13 20 24 39 43 47 55 59

3 6 7

8 10 13

14 15 18 19

21 23

25 30 33

36 38

40 42

44 46

50 53

56 58

60 65

• Deletion of 21 from the above tree is realized as shown below.

• A simple rotation and change of key value is required.

35

7 13 18 24 39 43 47 55 59

3 6 7

8 10 13

14 15 18

19 23

25 30 33

36 38

40 42

44 46

50 53

56 58

60 65
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Deletion from a B+-Tree — 2

39

7 13 20 31 43 47 55 59

3 6 7

8 10 13

14 15

23 25 30

36 38

40 42

44 46

50 53

56 58

60 65

• Deletion of 36 from the above tree is realized as shown below.

• A simple rotation and change of key value is required.

39

7 13 20 25 43 47 55 59

3 6 7

8 10 13

14 15

23 25

30 38

40 42

44 46

50 53

56 58

60 65
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Deletion from a B+-Tree — 3

39

7 13 20 25 43 47 55 59

3 6 7

8 10 13

14 15

23 25

30 38

40 42

44 46

50 53

56 58

60 65

• Continuing with the previous result, deletion of 38 requires a combination
of both vertices and keys, together with shrinking of the depth.

• The new value for the key obtained by combining 20 and 39 ( 35 ) could
be any value 30-39.

• This is the only way which the depth of a B+-tree may become smaller.

7 13 20 35 43 47 55 59

3 6 7

8 10 13

14 15

23 25 30

40 42

44 46

50 53

56 58

60 65
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Sequential Access in B+-Trees

• Sequential access may be obtained by linking the leaves together.

• Usually, links are provided in both directions, so that reverse as well as
forward sequential access is possible.

• This also provides efficient access to neighboring data vertices.

• For best performance, adjacent leaf vertices should be sequential
neighbors on the disk as well, insofar as possible.

35

7 13 20 28 43 47 55 59

3 6 7

8 10 13

14 15 16 18

23 25 28

30 32

39 40 41 42

44 46

50 53

56 58

60 65

Physical Database Design 20150419 Slide 69 of 99



Sequential Access in B+-Trees

• Sequential access may be obtained by linking the leaves together.

• Usually, links are provided in both directions, so that reverse as well as
forward sequential access is possible.

• This also provides efficient access to neighboring data vertices.

• For best performance, adjacent leaf vertices should be sequential
neighbors on the disk as well, insofar as possible.

35

7 13 20 28 43 47 55 59

3 6 7

8 10 13

14 15 16 18

23 25 28

30 32

39 40 41 42

44 46

50 53

56 58

60 65
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Depth of B+-Tree
Example setting: Page size: 2 KBytes

Record size: 128 Bytes

Pointer size: 4 Bytes

Bytes per internal key 16

Total records 106

Total bytes for sequential
pointers in leaves

8

• Maximum order n for the internal vertices:

(n × PtrSize) + ((n − 1)× KeySize) ≤ PageSize

n =

⌊
PageSize + KeySize

PtrSize + KeySize

⌋
=

⌊
2048 + 16

4 + 16

⌋
= 103

• Maximum number of records rmax per leaf vertex:

(rmax × RecSize) + SeqPtrsSize ≤ PageSize

rmax =

⌊
PageSize− SeqPtrsSize

RecSize

⌋
=

⌊
2048− 8

128

⌋
= 15
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Maximum-Depth B+-Trees – Example Computation

Minimum density: A B+-tree will have maximum depth when it has
minimum density — as few keys per internal vertex and as few records
per leaf as possible.

• Internal vertices other than the root will contain
b(n − 1)/2c = b102/2c = 51 keys.

• The root will contain one key.

• Record vertices will contain drmax/2e = d15/2e = 8 records.

• Brute force:
Level Vertices at level Keys at the level Min Leaf Records

root 1 1 2 · 8 = 16

1 2 2× 51 = 102 2× 52× 8 = 832

2 2× 52 = 104 104× 51 = 5304 104× 52× 8 = 58240

3 104× 52 = 5408 5408× 51 = 275808 5408× 52× 8 = 2249728

• The maximum depth of the index is thus 2, since a depth of 3 would
require at least 2249728 records.

• The tree itself, including leaves, has a maximum depth of 3.
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Parameters of B+-Trees

• The brute-force approach becomes tedious, particularly when the depth
becomes substantial.

• It is instructive to develop more general formulas.

• The general parameters are as follows:

Parameter Meaning

m number of keys in the root vertex

q number of keys in other internal vertices

r number of records in a leaf vertex

d depth, from root to leaf

• It is very rare that all non-root vertices will contain exactly the same
number of records.

• These parameters are therefore used in approximation.

• In the above example, m = 1, q = 51, r = 8, and d is to be computed.

• A B+-tree which satisfies these conditions will be called
(m, q, r , d)-uniform.
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Maximum-Depth B+-Trees — Formulas

• Here is a computation of the number of vertices at each level.
Level Index Vertices Keys Total Rec Next Level
root 1 m (m + 1) · r
1 m + 1 (m + 1) · q (m + 1) · (q + 1) · r
2 (m + 1) · (q + 1) (m + 1) · (q + 1) · q (m + 1) · (q + 1)2 · r
3 (m + 1) · (q + 1)2 (m + 1) · (q + 1)2 · q (m + 1) · (q + 1)3 · r
· · · · · · · · · · · ·
d − 1 (m + 1) · (q + 1)d−2 (m + 1) · (q + 1)d−2 · q (m + 1) · (q + 1)d−1 · r
d (m + 1) · (q + 1)d−1 (m + 1) · (q + 1)d−1 · q (m + 1) · (q + 1)d · r

• The total number of records R(m, q, r , d) in an (m,q,r,d)-uniform
B+-tree is given by choosing the value for level d − 1 (the last level of
indices) in the table:

R(m, q, r , d) = (m + 1) · (q + 1)d−1 · r
• Solving for d :

d = logq+1

(
R(m, q, r , d)

(m + 1) · r

)
+ 1 =

loge

(
R(m,q,r ,d)

(m+1)·r

)
loge(q + 1)

+ 1
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Maximum-Depth B+-Trees — the Formulas on the Example

• Continuing with:

d = logq+1

(
R(m, q, r , d)

(m + 1) · r

)
+ 1 =

loge

(
R(m,q,r ,d)

(m+1)·r

)
loge(q + 1)

+ 1

• In the example, r = 8, N = 1000000, m = 1 and q = 51, so

d =
loge

(
1000000+1

(1+1)·8

)
loge(51 + 1)

+ 1 =
loge(62500)

loge(52)
+ 1 = 3.79

• Since the depth of a B+-tree must be an integer, it follows that it cannot
be greater than b3.79c = 3, in agreement with the brute-force approach.

Physical Database Design 20150419 Slide 74 of 99



Minimum-Depth B+-Trees – Example Computation

Maximum density: A B+-tree will have minimum depth when it has
maximum density — as many keys per internal vertex and as many
records per leaf as possible.

• Internal vertices, including the root, will contain n − 1 = 102 records.

• Record vertices will contain rmax = 15 records.

• Brute force:
Level Vertices at level Keys at the level Leaf Records

root 1 102 103 · 15 = 1545

1 103 103× 102 = 10506 1032 × 15 = 159135

2 1032 1032 × 102 = 1082116 1033 × 15 = 16390905

• The minimum depth of the index is thus 2, since a depth of 1 would
support at most 159135 records.

• The tree itself, including leaves, thus has a maximum depth of 3.

• The minimum and maximum depths are the same for this example!
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Minimum-Depth B+-Trees — Applying the Formula

• Recall:

d = logq+1

(
R(m, q, r , d)

(m + 1) · r

)
+ 1 =

loge

(
R(m,q,r ,d)

(m+1)·r

)
loge(q + 1)

+ 1

• In the example, r = 15, N = 1000000, m = q = 102, so

d =
loge

(
1000000+1
(102+1)·15

)
loge(102 + 1)

+ 1 =
loge(647.24)

loge(103)
+ 1 = 2.39

• Since the depth of a B+-tree must be an integer, it follows that it cannot
be less than d2.39e = 3, in agreement with the brute-force approach.
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Maximum-Depth B+-Trees — Adjustment Example

• It is not always possible to find a maximum-depth B+-tree with only one
key in the root.

• Consider a (1, ?, 8, 3)-uniform B+-tree with exactly 2249728 data records.

q = d−1

√
R(m, r , d) + 1

(m + 1) · r
− 1 = 2

√
2249728 + 1

(1 + 1) · 8
− 1 = 373.98

• This value is larger than the maximum value qmax = 102, so no such
B+-tree is possible.

• To find the minimum value for m which will work:

mmin ≥
R(m, r , d)

(qmax + 1)d−1 · r
− 1 =

2249728 + 1

(102 + 1)2 · 8
− 1 = 26.04

• Thus, mmin = 27 and so

q = d−1

√
R(m, r , d) + 1

mmin + 1
· r − 1 = 2

√
2249728 + 1

(27 + 1) · 8
− 1 = 100.21.

• Similar examples for minimum-depth B+-trees, and even for B-trees, are
handled analogously.Physical Database Design 20150419 Slide 77 of 99



The Number of Index Vertices in a B+-Tree

• Using the table on a previous slide, it is easy to see that the total number
of index (interior) vertices in an (m, q, r , d)-uniform B+-tree is

1 + (m + 1) ·
d−2∑
i=0

(q + 1)i = 1 +
(m + 1) · ((q + 1)d−1 − 1)

q

• Consider a (1, 51, 8, 4)-uniform B+-tree, ⇒ 2249728 data records ⇒
5515 index vertices.

• Consider a (102, 102, 15, 3)-uniform B+-tree, ⇒ 16390905 data records
⇒ 10713 index vertices.

• This is a small example; even much larger ones have small indices, which
may often be kept in main memory.
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Bulk Loading of B+-Trees

Problem: Given a large collection of records, build a B+-tree index for it.

Observation: Insertion of records into an initially empty tree, one by one, will
be very slow.

Bulk loading is the process of creating an entire index for a collection of
records.

• The first step is to sort the records, and then place them into leaf
vertices.

• Shown below is a small sorted collection of 70 records in 14 vertices.

• They need not be full, but they must all be half full.

• The idea is to build an index on top of this sequence of leaf vertices,
from left to right.

1 · · · 5 6 · · · 10 11 · · · 15 16 · · · 20 21 · · · 25 26 · · · 30 31 · · · 35 36 · · · 40 41 · · · 45 46 · · · 50 51 · · · 55 56 · · · 60 61 · · · 65 66 · · · 70
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Bulk Loading of B+-Trees — 2

• The first step is to create a top level index for as many leaf vertices as a
single index vertex will support.

• Leaf vertices are always added left to right.

1 · · · 5 6 · · · 10 11 · · · 15 16 · · · 20 21 · · · 25 26 · · · 30 31 · · · 35 36 · · · 40 41 · · · 45 46 · · · 50 51 · · · 55 56 · · · 60 61 · · · 65 66 · · · 70

5 10 15 20

• Adding the next leaf vertex forces a split of the root.

1 · · · 5 6 · · · 10 11 · · · 15 16 · · · 20 21 · · · 25 26 · · · 30 31 · · · 35 36 · · · 40 41 · · · 45 46 · · · 50 51 · · · 55 56 · · · 60 61 · · · 65 66 · · · 70

15

5 10 20 25
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Bulk Loading of B+-Trees — 2

• Now add leaf vertices until the rightmost index vertex is full.

1 · · · 5 6 · · · 10 11 · · · 15 16 · · · 20 21 · · · 25 26 · · · 30 31 · · · 35 36 · · · 40 41 · · · 45 46 · · · 50 51 · · · 55 56 · · · 60 61 · · · 65 66 · · · 70

15

5 10 20 25 30 35

• Adding the next leaf vertex forces a split of the rightmost leaf vertex.

1 · · · 5 6 · · · 10 11 · · · 15 16 · · · 20 21 · · · 25 26 · · · 30 31 · · · 35 36 · · · 40 41 · · · 45 46 · · · 50 51 · · · 55 56 · · · 60 61 · · · 65 66 · · · 70

15 30

5 10 16 21 35 40
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Bulk Loading of B+-Trees — 3

• Again add leaf vertices until the rightmost index vertex is full.

1 · · · 5 6 · · · 10 11 · · · 15 16 · · · 20 21 · · · 25 26 · · · 30 31 · · · 35 36 · · · 40 41 · · · 45 46 · · · 50 51 · · · 55 56 · · · 60 61 · · · 65 66 · · · 70

15 30

5 10 20 25 35 40 45 50

• Adding the next leaf vertex again forces a split of the rightmost leaf
vertex.

1 · · · 5 6 · · · 10 11 · · · 15 16 · · · 20 21 · · · 25 26 · · · 30 31 · · · 35 36 · · · 40 41 · · · 45 46 · · · 50 51 · · · 55 56 · · · 60 61 · · · 65 66 · · · 70

15 30 45

5 10 20 25 35 40 50 55
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Bulk Loading of B+-Trees — 4

• Keep going until all leaf records are incorporated into the tree.

1 · · · 5 6 · · · 10 11 · · · 15 16 · · · 20 21 · · · 25 26 · · · 30 31 · · · 35 36 · · · 40 41 · · · 45 46 · · · 50 51 · · · 55 56 · · · 60 61 · · · 65 66 · · · 70

15 30 45

5 10 20 25 35 40 50 55 60 65

• The tree always grows by adding new vertices from the right, just below
the leaves.

• Keys are added directly only to the rightmost index vertex which points
to leaves.

• Eventually, the parent of the rightmost index vertex will fill up and must
be split.

• Note that all index vertices, save for those which are on the rightmost
path from the root, remain only half full.

Physical Database Design 20150419 Slide 83 of 99



Bulk Loading vs. Bulk Insertion

Bulk loading: Build a new index on top of a sorted list of leaf vertices.

Bulk insertion: Insert a large set of new records into an existing B+-tree.

• Bulk insertion is much more difficult to do efficiently than bulk loading.

• There are no clear-cut winners, but there are some heuristics which can
be followed.

Insert in order: The most important heuristic to follow when doing bulk
insertion is to insert the records in order.

• This will minimize the number of writes to leaf vertices.

• This will allow several elements to be inserted at once, provided there is
room in the leaf vertex.
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Prefix Compression

• The length of a full key can be quite long.

• For example, in the instructor relation of the university schema, the name
field is VARCHAR(20).

• An index for that key would require index vertices with 20 bytes reserved
for each key value.

• This would result in relatively few keys per index, and a consequently
deep tree.

• One way around this would be to use only a fixed-length prefix of the full
string.

• An example for a prefix length of four is shown below.

Silb

P Q R Silb SilbA SilbB SilbC SilbD
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Prefix Compression — 2

Problem: If too many records begin with the same prefix, a problem occurs.

• Consider inserting SilbE into the tree on the previous slide, as shown
below.

Silb SilbD

P Q R Silb SilbA SilbB SilbC SilbD SilbE

• Now the key in the index must be increased in length from four to five.

• This implies that for such a prefix compression scheme to work,
variable-length key fields in the index must be allowed.

• It is possible to do this by varying the number of keys in an index vertex.
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Prefix Compression — 3

• To allow a variable-length key field in a vertex of fixed size, the number
of key fields must be variable.

• This, however, creates a slowdown in accessing the kth index in an index
vertex, because the offset is not fixed.

• The performance degradation can be minimized by having as single bit in
the vertex which indicates whether any of the indices are over the fixed
length.

• If the bit is not set, access can proceed following the fixed-length model
of a key.
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Prefix Compression and Multi-Attribute Keys

• In the case of multi-attribute, variable-length keys, the compression
problem is even more severe.

Example: Suppose that both (instructor) name (VARCHAR(20)) and and
dept name (VARCHAR(20)) are used as a combined index.

• If the two are to be concatenated to form a single string for the key, then
at least the first string must be padded out with spaces, which wastes
space.

• The solution is to use a clever encoding which actually produces two
strings, one for comparison for greater than, and a second for less than.

• The details are not presented here.
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Non-Unique Search Keys for B+-Trees

• It is possible to use a B+-tree index even if the index field is not a
(candidate) key.

• In this case, without further measures, an index value may identify
several records.

• This can cause inefficiencies in both searching and in update operations.

• The usual solution is to append a key to the search index.

• This is illustrated below for an index by department on the student

relation, with the student ID appended.

• The keys in fuchsia identify Computer Science students, while those in
cyan identify Electrical Engineering students.

Biology:98988 Comp. Sci.:12345 Comp. Sci.:76543 Elec. Eng.:98765

98988 00128 12345 54321 76543 76653 9876523121
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Secondary Search Keys for B+-Trees

• The records of a B+-tree can only be ordered on one attribute.

• If a second index is created, the leaf vertices contain either a key or else a
pointer identifying the actual record.

• If a key is kept, a second search using an index based upon that key will
be required.

• If a pointer to the record is kept, that pointer must be updated if the
record is moved (due to operations on the B+-tree for the index using the
key.)

• It is a performance decision to choose which is best for a given situation.

Biology:98988 Comp. Sci.:12345 Comp. Sci.:76543 Elec. Eng.:98765

98988 00128 12345 54321 76543 76653 9876523121
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B∗-Trees

• A B∗-tree is structurally identical to a B-tree; however, the insertion and
deletion algorithms are designed to ensure that every non-root vertex is
two-thirds full, not just half full.

• B∗-trees thus make better use of storage space.

• In a B-tree, when it is necessary to insert into a full vertex, there are
often two possibilities:

Split: Split the vertex into two; move the middle element to the parent.

Rotate through the parent: If a sibling has some room, rotate through
the parent in order to make room for the insertion.

• Similarly, when it is necessary to delete from a half-full vertex, there are
often two possibilities:

Combine: Combine the vertex with one of its neighbors, moving the
common parent element down as well.

Rotate through the parent: If a sibling is more than half full, rotate
through the parent in order to leave the vertex full enough after the
deletion.

• In a B∗-tree, such rotation is mandatory whenever possible.
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B∗-Trees — 2

Deletion in B∗-trees: Deletion for B∗-trees is more complex than for B-trees
in that to preserve two-thirds fullness, it may be necessary to combine
three siblings into two rather than two into one.

• However, the idea of the algorithm is straightforward.

• In short, B∗-trees are structurally identical to B-trees; they just make use
of insertion and deletion algorithms which ensure a higher level of fullness.

Extension to B+-trees: These ideas extend to B+-trees as well.

• The ideas are similar and will not be elaborated here.

Higher levels of fullness: In principle, it is possible to guarantee an even
higher level of fullness by working with a greater number of siblings at
once.

• However, the complexity of the algorithm outweighs the benefits and
so the idea is seldom seen in practice.
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Bitmap Indices

• Suppose that some survey data are given.

• Suppose further that range queries on Age and Gender are to be
supported, for example:
SELECT * FROM Survey WHERE (SEX=’F’) AND (60 <= AGE) AND (AGE < 79);

• It may then be useful to have a bitmap index which allows such retrieval
based upon matching of bits.

• The bitmap may be represented compactly as a single string.

• Standard hardware instructions for bit manipulation may then be used for
rapid processing.

• The bitmap is represented as a relation, but is in fact an index on ID and
may be implemented in a number of ways.

ID Sex Age Amount City
11111111 F 46 5321 Stockholm
22222222 F 63 5000 Göteborg
33333333 M 62 7125 Trelleborg
44444444 F 23 9100 Tillberga
55555555 M 28 1200 Tillberga
66666666 F 68 5500 Malmö
77777777 F 42 5500 Simrishamn

Survey
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Bitmap Indices

• Suppose that some survey data are given.

• Suppose further that range queries on Age and Gender are to be
supported, for example:
SELECT * FROM Survey WHERE (SEX=’F’) AND (60 <= AGE) AND (AGE < 79);

• It may then be useful to have a bitmap index which allows such retrieval
based upon matching of bits.

• The bitmap may be represented compactly as a single string.

• Standard hardware instructions for bit manipulation may then be used for
rapid processing.

• The bitmap is represented as a relation, but is in fact an index on ID and
may be implemented in a number of ways.

ID Sex Age Amount City
11111111 F 46 5321 Stockholm
22222222 F 63 5000 Göteborg
33333333 M 62 7125 Trelleborg
44444444 F 23 9100 Tillberga
55555555 M 28 1200 Tillberga
66666666 F 68 5500 Malmö
77777777 F 42 5500 Simrishamn

Survey
ID Sex 0-19 20-39 40-59 60-79 80-

11111111 1 0 0 1 0 0
22222222 1 0 0 0 1 0
33333333 0 0 0 0 1 0
44444444 1 0 1 0 0 0
55555555 0 0 1 0 0 0
66666666 1 0 0 0 1 0
77777777 1 0 0 1 0 0

Bitmap
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Bitmap Indices

• Suppose that some survey data are given.

• Suppose further that range queries on Age and Gender are to be
supported, for example:
SELECT * FROM Survey WHERE (SEX=’F’) AND (60 <= AGE) AND (AGE < 79);

• It may then be useful to have a bitmap index which allows such retrieval
based upon matching of bits.

• The bitmap may be represented compactly as a single string.

• Standard hardware instructions for bit manipulation may then be used for
rapid processing.

• The bitmap is represented as a relation, but is in fact an index on ID and
may be implemented in a number of ways.

ID Sex Age Amount City
11111111 F 46 5321 Stockholm
22222222 F 63 5000 Göteborg
33333333 M 62 7125 Trelleborg
44444444 F 23 9100 Tillberga
55555555 M 28 1200 Tillberga
66666666 F 68 5500 Malmö
77777777 F 42 5500 Simrishamn

Survey
ID Sex 0-19 20-39 40-59 60-79 80-

11111111 1 0 0 1 0 0
22222222 1 0 0 0 1 0
33333333 0 0 0 0 1 0
44444444 1 0 1 0 0 0
55555555 0 0 1 0 0 0
66666666 1 0 0 0 1 0
77777777 1 0 0 1 0 0

Bitmap
ID BitMap

11111111 100100
22222222 100010
33333333 000010
44444444 101000
55555555 001000
66666666 100010
77777777 100100

Compact Bitmap

Physical Database Design 20150419 Slide 93 of 99



Bitmap Indices — Additional Compactification

• To represent n conditions, only dlog(n)e bits are required.

• This suggests the compact representation given below, using the
following table.

Age Range Encoding A1A2A3

0-20 000
21-39 001
40-59 010
60-79 011

80- 100

ID Sex A1 A2 A3

11111111 1 0 1 0
22222222 1 0 1 1
33333333 0 0 1 1
44444444 1 0 0 1
55555555 0 0 0 1
66666666 1 0 1 1
77777777 1 0 1 0

Bitmap
ID Sex A1 A2 A3

11111111 1 0 1 0
22222222 1 0 1 1
33333333 0 0 1 1
44444444 1 0 0 1
55555555 0 0 0 1
66666666 1 0 1 1
77777777 1 0 1 0

Bitmap
ID BitMap

11111111 1010
22222222 1011
33333333 0011
44444444 1001
55555555 0001
66666666 1011
77777777 1010

Compact Bitmap
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Extendible Hashing
• The goal of extendible hashing is to realize the advantage of hashing

within the context of data on secondary storage:

• Fast (constant-time) random access

Idea: The hashing function h : keys→ hash values is
broken into two pieces:
(Directory address, Leaf address).

Toy example: Suppose that a two-byte hash address
is used:

Directory address size: 3 bits

Hash address size: 13 bits

• Suppose that k is a key with the property that
h(k) = 1010111010110001.

• Then, Directory address = 101,
Leaf address = 0111010110001.

• This assumes that the first three bits are used as
the directory address.

000

001

010

011

100

101

110

111

depth=3

Index

depth=2

depth=3

depth=3

depth=1

Leaf pages
(buckets)
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Extendible Hashing — 2

• The depth of an index is the number of bits of the hash value which is
used as the index value.

• The depth of a leaf page is:

Index depth− log2(number of index entries which point to that bucket)

• The approach supports insertions
quite well.

• It is less efficient at handling
deletions.

• Some examples will be used to
illustrate the idea.

000

001

010

011

100

101

110

111

depth=3

Index

depth=2

depth=3

depth=3

depth=1

Leaf pages
(buckets)
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Extendible Hashing — Bucket Expansion

• Suppose that the bucket which is
shared by 000 and 001 becomes
full.

• To allow further insertions for
keys beginning with 00, a split of
this bucket is necessary.

• Notice that 000 and 001 now
each have their own buckets.

• The entries of the old 000+001
bucket are divided appropriately
between these two.

000

001

010

011

100

101

110

111

depth=3

Index

depth=2

depth=3

depth=3

depth=1

Leaf pages
(buckets)
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Extendible Hashing — Bucket Expansion

• Suppose that the bucket which is
shared by 000 and 001 becomes
full.

• To allow further insertions for
keys beginning with 00, a split of
this bucket is necessary.

• Notice that 000 and 001 now
each have their own buckets.

• The entries of the old 000+001
bucket are divided appropriately
between these two.

000

001

010

011

100

101

110

111

depth=3

Index

depth=3

depth=3

depth=3

depth=3

depth=1

Leaf Pages

After
split

Physical Database Design 20150419 Slide 97 of 99



Extendible Hashing — Index Expansion

• Suppose that the bucket for 001 becomes
full.

• To allow further insertions for keys
beginning with 001, the index itself must
be split.

• The depth of the index becomes four, and
the number of index entries doubles.

• The entries of the old 001 bucket are are
divided appropriately between the 0010
bucket and the 0011 bucket.

000

001

010

011

100

101

110

111

depth=3

Index

depth=3

depth=3

depth=3

depth=3

depth=1

Leaf Pages
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Extendible Hashing — Index Expansion

• Suppose that the bucket for 001 becomes
full.

• To allow further insertions for keys
beginning with 001, the index itself must
be split.

• The depth of the index becomes four, and
the number of index entries doubles.

• The entries of the old 001 bucket are are
divided appropriately between the 0010
bucket and the 0011 bucket.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

depth=4

Index

depth=3

depth=4

depth=4

depth=3

depth=3

depth=1

Leaf Pages

After
split
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Remarks Regarding Extensible Hashing
• Extendible hashing works best when insertions and modifications are the

dominant forms of update.

• Random-access time may be somewhat superior to that for B+-trees,
particularly when memory is limited.

• The index for extendible hashing may be much smaller than the
index for a corresponding B+-tree.

• No searching is required; just computation of a key-to-address
transformation and an array access.

• Relative advantages diminish as memory size increases.

• With a typical hashing strategy: Sequential processing becomes very slow.

• Batch processing is still feasible.

• In some cases, it may be possible to arrange things so that sequential
processing is still feasible:

• Use a trivial KAT: the first k bits of the key become the directory
address, and the rest the leaf address.

• This may or may not result in very poor record distribution, depending
upon the application.
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