
Query Processing
These slides are mostly taken verbatim, or with minor

changes, from those prepared by
Stephen Hegner (http://www.cs.umu.se/ hegner/)

of Ume̊a University

Query Processing 20140525 Slide 1 of 67



Overview

Question: How is a query in SQL processed by the system to produce the
answer?

• The block diagram below identifies the three main steps.

Lexer + Parser + View Resolver: In the first step, the (declarative) SQL
query is translated to an operational query, usually but not always
expressed in the extended relational algebra.

Query Optimizer: In the second step, the algebraic representation is
augmented to be an execution plan, with possible rearrangement of the
algebraic operations as well as implementation-specific information on
how to evaluate in an efficient fashion.

Code Generator and Evaluator: In the final step, the plan of execution is
carried out.

Lexer
Parser

View Resolver

Query
Optimizer

Code Generator
and Evaluator

SQL

Source

Algebraic

Rep.

Execution

Plan

Result

Query Processing 20140525 Slide 2 of 67



Scanning, Parsing, and View Resolution

• Lexical analysis and parsing are carried out using well-known techniques
from translator design.

Lexical analysis: The lexer (or lexical analyzer or tokenzier) breaks the input
stream up into tokens.

Parsing: The parser builds a parse tree for the tokens according to a
grammar for the language.

• These topics will not be considered in this course.

View resolution: corresponds to the generation of an intermediate
representation in programming-language translation.

• In the case of SQL, the extended relational algebra is often but not
always used the the intermediate language.

• The relationship between SQL and the extended relational algebra, as
well as how to translate queries from one to the other, has already been
studied in the introductory course.

• The topic of how to obtain an equivalent expression in the extended
relational algebra from a query in SQL will not be considered further here.

Query Processing 20140525 Slide 3 of 67



Query Optimization

• Query optimization involves at least two distinct processes.

Query rewriting: A given expression in the relational algebra (e.g., the
output of the lexer + parser + view resolver) may be represented by an
equivalent expression which is amenable to more efficient evaluation.

Annotation: An expression in the extended relational algebra may be
annotated with specific information on how to carry out its steps, such as:

• which algorithms to use;

• which indices to use.

• These topics will be examined in these slides.

Lexer
Parser

View Resolver

Query
Optimizer

Code Generator
and Evaluator

SQL

Source

Algebraic

Rep.

Execution

Plan

Result

Query Processing 20140525 Slide 4 of 67



Code Generation and Evaluation

• Executing an execution plan is a relatively straightforward process,
although there are certainly nontrivial details which must be addressed.

• This task will not be examined further in these slides.

• Thus, the focus will be upon query optimization.

Lexer
Parser

View Resolver

Query
Optimizer

Code Generator
and Evaluator

SQL

Source

Algebraic

Rep.

Execution

Plan

Result

Query Processing 20140525 Slide 5 of 67



Code Generation and Evaluation

• Executing an execution plan is a relatively straightforward process,
although there are certainly nontrivial details which must be addressed.

• This task will not be examined further in these slides.

• Thus, the focus will be upon query optimization.

Lexer
Parser

View Resolver

Query
Optimizer

Code Generator
and Evaluator

SQL

Source

Algebraic

Rep.

Execution

Plan

Result

Query Processing 20140525 Slide 5 of 67



Executing Operations in the Extended Relational Algebra

• In these slides, the extended relational algebra will be used as the
intermediate language for (unannotated) execution plans.

• Therefore, it is important to begin with a study of algorithms for the
following, under a variety of conditions for index availability.

projection

selection

join

removal of duplicates

ordering of results

aggregation

Query Processing 20140525 Slide 6 of 67



Basic Measures of Cost for Data Access

• Recall that access to secondary storage (usually hard disks) takes much
longer (thousands of times longer) than access to primary storage (main
memory).

• Minimizing the number of times that secondary storage must be accessed
is therefore paramount in the design of efficient algorithms for query
processing.

• It is useful to begin with some basic parameters for disk access.

tS : The (average) time required to access one block of data (seek time +
rotational latency).

tT : The (average) time required to transfer one block of data from
secondary to primary storage.

• An operation which requires ns seeks to transfer nb blocks thus requires a
total time of ns · tS + nb · tT .

• The relationship between ns and nb depends upon how the required
blocks are arranged on the secondary device (random vs. sequential
neighbors).

Query Processing 20140525 Slide 7 of 67



Cost Measures Associated with Indices

• If an attribute is indexed and a query involves that attribute, then it is
often the case that an optimal evaluation algorithm will involve access via
that attribute.

hi : For an index which is a B+-tree, the depth of the index; i.e., one less
than the length of a path from the root to a leaf.

• As noted previously, it is access to secondary storage which is the prime
consumer of time.

• Therefore, it is appropriate to decompose

hi = hipri + hisec

as follows.

hipri : In a path from the root to a leaf, the (average) number of pointers
whose destination is already in main memory.

hisec : In a path from the root to a leaf, the (average) number of pointers
whose destination is not in main memory.

Disk access rule of thumb: In most cases, access times along hipri may be
ignored, since they will be thousands of times less than for hisec .

Query Processing 20140525 Slide 8 of 67



Cases for Selection

• Selection is the most basic operation of the extended relational algebra
which involves the use of indices.

• It is convenient to decompose access into a number of cases.

Simple cases: A is an attribute and e is a fixed expression which may be
evaluated in constant time.

Equality on a single attribute: σA=e

Inequality on a single attribute: σA6=e

Simple range on a single attribute: σA≤e , σA≥e , σA<e , σA>e

Compound cases: θ and each θi is a simple condition Ai � ei with
� ∈ {=,≤, <,≥, >, 6=}.

Conjunction: σθ1∧θ2∧...∧θk
Disjunction: σθ1∨θ2∨...∨θk
Negation: σ¬θ (Not really needed as a separate case, since, for example

σ¬(A≤e) is the same as σA>e , but care must be taken to handle null
values correctly.)

Query Processing 20140525 Slide 9 of 67



Simple Selection without Index Support

nblk : The number of blocks used for the file containing the relation.

A1: Linear search: The entire relation is searched for tuples which match the
condition A� e, where � ∈ {=,≤, <,≥, >, 6=}.

Total cost (time): nS · tS + nblk · tT .

• nS is the number of distinct seeks required.

• In the best case the data are stored contiguously on disk and
nS = 1, but this cannot be guaranteed in general.

• nS ≤ nblk always holds.

A1: Linear search; equality on a key: The entire relation is searched for
tuples which match the condition A = e.

Worst-case total cost (time): nS · tS + nblk · tT .

Best-case total cost (time): tS + tT .

Average-case total cost (time): (nS · tS + nblk · tT )/2.

• On the average, about half of the file must be searched before the
key is found.

Query Processing 20140525 Slide 10 of 67



Simple Selection with Primary Index Support

A2: Primary B+-tree index on a key; equality search on the index attribute:
This is the best of all possible cases.

All-cases total cost (time): (hisec + 1) · (tS + tT ).

• There is one seek plus disk access for each level of the index which is
not in main memory, plus one more to reach the block containing
the desired record

A3: Primary B+-tree index on a non-key; equality search on index attribute:
This is almost as good, but more than one block may need to be
retrieved.

All-cases total cost (time): (hisec + 1) · tS + (hisec + nrec) · tT .

• The number of seeks is exactly as in the previous case.

• The number of transfers is determined by the number nrec of blocks
which contain records matching the key.

• The times will be even less if the block and/or more of the index is
cached.

Query Processing 20140525 Slide 11 of 67



Simple Selection with Secondary Index Support

A4: Secondary B+-tree index on key; equality search on index attribute:
The analysis is similar to the case for a primary index, since only one
record is retrieved.

All-cases total cost (time): (hisec + 2) · (tS + tT ).

• There is one more seek+access than for a primary index — the
leaves of the B+-tree will contain references, not actual records.

A4: Secondary B+-tree index on non-key; equality search on index attribute:
Here the records to be found need not lie in the same block, or even in
contiguous blocks.

Worst-case total cost (time): (hisec + 1 + nrec) · (tS + tT ).

• nrec is the number of records which are retrieved.

• There is one seek and one access for each such record.

• There is one additional seek+access per record because the leaves of
the B+-tree will contain references and not the actual records.

• The average case is likely not much better.

• The times will be less if the blocks and/or more of the index is cached.

Query Processing 20140525 Slide 12 of 67



Extension to Inequality and Simple Range Queries

A5: Primary B+-tree index; simple range search on the index attribute:
Applies to both key and non-key attributes.

All-cases total cost (time): (hisec + 1) · tS + (hisec + nrec) · tT .

• This time is identical to that of A3, but nrec will of course be larger
in general.

• The retrieved records will be stored contiguously.

Example: σA≥10. Here the retrieval starts at A = 10, and returns all
blocks “to the right” in the sequential ordering.

A6: Secondary B+-tree index; simple range search on the index attribute:
Applies to both key and non-key attributes.

Worst-case total cost (time): (hisec + 1 + nrec) · (tS + tT ).

• This time is identical to that of A4, but nrec will of course be larger
in general.

• The retrieved records will not be stored contiguously.

• The average case is likely not much better.

Query Processing 20140525 Slide 13 of 67



Extension to Conjunctive Selection Conditions

• Considered here are queries of the form σθ1∧θ2∧...∧θk

A7: Conjunctive selection using one B+-tree index:

• This approach requires that (at least) one of the conditions θi
involve an indexed attribute.

• First, evaluate σθi using one of the approaches A2-A6.

• Then, resolve the remaining conditions directly on the result of the
above evaluation.

• If there are alternatives for θi , two heuristics may apply.

• Choose the one which will return the fewest records for σθi .

• Choose the one which is fastest for answering σθi .

A8: Conjunctive selection using a composite B+-tree index:

• Here there is a composite index on two of the attributes, one for θi
and a second for θj .

• The records which satisfy both conditions may be retrieved at once.

• The details are similar to those of A7 and will not be developed in
detail here.

Query Processing 20140525 Slide 14 of 67



Extension to Conjunctive Selection Conditions – 2

• Considered here are queries of the form σθ1∧θ2∧...∧θk

A9: Conjunctive selection by intersection of pointers or identifiers:

• Let J ⊆ {1, 2, . . . , k} with the property that for each j ∈ J, it is
possible to retrieve a set of pointers or identifiers which provides the
solution to σθj .

• Then the intersection of these sets provides pointers or identifiers to
a solution of σ∧

j∈J θj
.

• The resolution of the remaining subqueries of the form σθi with
i 6∈ J is achieved by examining the retrieved records directly, as in
the case of A7.

• The computation of intersection will be considered shortly.

Query Processing 20140525 Slide 15 of 67



Extension to Disjunctive Selection Conditions

• Considered here are queries of the form σθ1∨θ2∨...∨θk

• As is the case with most other problems involving disjunction (e.g.,
satisfiability of logical expressions), there are in general no efficient
algorithms.

• One approach which may provide some improvement is the disjunctive
version of A9.

A10: Disjunctive selection by union of pointers or identifiers:

• The idea here is to retrieve a set of pointers or identifiers, one for
each query σθi ,

• This approach only works is such a retrieval is possible for all indices.

• In the notation of A9, J must equal {1, 2, . . . , k}.
• Then the union of these sets provides pointers or identifiers to the

desired result.

• The computation of union will be considered shortly.

Query Processing 20140525 Slide 16 of 67



Two-Way Sort-Merge

• It is often the case that the set of records to be sorted is too large to fit
into main memory, so a special algorithm is needed.

Sort-merge: The idea behind the sort-merge algorithm is shown below.

• First the unsorted list of records is decomposed into blocks which are
small enough to fit in main memory (one at a time).

• The blocks are next brought into memory and sorted, one at a time.

• The blocks are finally merged repeatedly until a single list is obtained.

35 68 12 19 88 44 98 06 53 13 15 02 Unsorted records

35 68 12 19 88 44 98 06 53 13 15 02 Decompose into blocks

12 35 68 19 44 88 06 53 98 02 13 15 Sort each block

12 19 35 44 68 88 02 06 13 15 53 98 Merge adjacent blocks

02 06 12 13 15 19 35 44 53 68 88 98 Merge adjacent blocks

Query Processing 20140525 Slide 17 of 67



Two-Way Sort-Merge with Limited Primary Memory

• The algorithm just described involves the recursive merger of two
potentially large lists, too large to fit into primary memory.

• The algorithm for execution in limited memory is as follows.

• Only those records shown in coral need be in main memory.

• In general, for efficiency, much larger blocks, as opposed to just one
record, will be brought into memory at once.

• A pointer is kept to the first unused element in each list, and is advanced
as the elements are merged into the new list.

• The complete processing for this tiny example is shown on the next slide.

12 35 68 19 44 88

Query Processing 20140525 Slide 18 of 67



Two-Way Sort-Merge with Limited Primary Memory – Example

• Steps are left to right, then top to bottom.

12 35 68 19 44 88 12 35 68 19 44 88

12

12 35 68 19 44 88

12

12 35 68 19 44 88

12 19

12 35 68 19 44 88

12 19

12 35 68 19 44 88

12 19 35

12 35 68 19 44 88

12 19 35

12 35 68 19 44 88

12 19 35 44

12 35 68 19 44 88

12 19 35 44

12 35 68 19 44 88

12 19 35 44 68

12 35 68 19 44 88

12 19 35 44 68

12 35 68 19 44 88

12 19 35 44 68 88

12 35 68 19 44 88

12 19 35 44 68 88

Query Processing 20140525 Slide 19 of 67



N-Way Sort-Merge

Two-way merging: The examples just shown merge two lists a time; hence
the name.

N-way merging: It is certainly possible to merge more than two lists a time.

• When N lists are merged at a time, it is called N-way merging.

• A simple example of four-way merging is shown below.

• Regardless of the number of ways, the number of blocks which may be
kept in main memory at one time is fixed.

• With N-way merging, the number of blocks need not be a power of two.

12 35 68 19 44 88 06 53 98 02 13 15

02 06 12 13 15 19 35 44 53 68 88 98

Query Processing 20140525 Slide 20 of 67



Complexity of the Algorithm for External Sorting

nblk : Total number of blocks of records.

nbps: Number of blocks transferred between primary and secondary memory
in one operation (requires only one seek).

M: Let M denote the number of blocks which will fit into the assigned
buffer area of main memory (nbps < M).

Order of Complexity (number of seeks): After stripping away constants and
smaller terms, the order of the number of seeks looks like this:

⌈
nblk

nbps

⌉
·
(⌈

logbM/nbpsc

(nblk

M

)⌉)
Observations: The smaller the ratios nblk/nbps, nblk/M, and M/nbps, the

better.

Query Processing 20140525 Slide 21 of 67



The Nested-Loop Algorithm for Join

• Algorithms for computing the join are particularly important since the
number of records to process is the product of the number records in
each of the two relations.

Nested loop: The brute-force nested loop approach simply compares each
tuple in the first relation r1 to each tuple in the second r2.

• In the worst case, this can result in n1 · n2 disk seeks, which is prohibitive
for all but the smallest relations.

Other Attr A

a

r1

n
1

tu
p

le
s

A Other Attr

a

r2

n
2

tu
p

le
s

r2

n1 · n2 possible
join tuples

Query Processing 20140525 Slide 22 of 67



The Block-Oriented Nested-Loop Algorithm for Join

• The basic nested-loop algorithm can be improved by retrieving large
blocks of records from each relation at once.

• While the number of comparisons is not changed, the number of disk
seeks is reduced greatly.

• This will result in (n1/nrpb1) · (n2/nrpb2) disk seeks, which may or may
not be prohibitive, depending upon the number of blocks.

• These algorithms are very basic, and for many cases better ones are
available.

Other Attr A

a

r1

n
1

tu
p

le
s

A Other Attr

a

r2

n
2

tu
p

le
s

r2

(n1/nrpb1) · (n2/nrpb2)

pairs of blocks
to process

nrpb1 records

per block
nrpb2 records

per block
Query Processing 20140525 Slide 23 of 67



Join with an Index on One of the Relations

• Suppose that an index exists on the join attribute(s) of one of the
relations (r2 here).

• The other relation (r1) has no index and the tuples need not be ordered
on the join attribute(s).

• The tuples of r1 may be processed sequentially, looking in the index to
see if a matching tuple exists in r2.

Other Attr A
e
c
a
g
e

r1

n
1

tu
p

le
s

A Other Attr
d
a
f
a
c
d
b

r2

n
2

tu
p

le
s

r2

p1

Index
on A

Query Processing 20140525 Slide 24 of 67



Join with an Index on One of the Relations — Complexity

• The complexity in this case is formally Θ(n1), assuming that an index
lookup in r2 takes constant time.

• If index lookup in r2 takes Θ(log(n2)) time, then the complexity becomes
Θ(n1 · log(n2)).

• However, the constants are likely to be quite large, since disk seeks will
be involved.

• The performance may of course be improved by retrieving large blocks of
tuples from r1 at a a time, and batching identical values for A with a
single index search in r2.

Other Attr A
e
c
a
g
e

r1

n
1

tu
p

le
s

A Other Attr
d
a
f
a
c
d
b

r2

n
2

tu
p

le
s

r2

p1

Index
on A

Query Processing 20140525 Slide 25 of 67



Merge Join

• Merge join is a very effective approach, but applies only when both
relations have primary indices on the join attribute(s).

• The algorithm is similar to that of external merging, although the lists
are not actually merged.

• Pointers are maintained to the sorted lists of tuples for each relation.

• The one pointing to the lesser value is advanced.

• Equal attribute values for the two pointers identifies a joinable pair.

• The complexity is Θ(n1 + n2), but the constant is likely to be much
smaller than for the indexed join described previously.

Other Attr A
a
c
c
e
g

r1

n
1

tu
p

le
s

A Other Attr
b
c
d
e
e
f
h

r2

n
2

tu
p

le
s

r2

p1 p2

Query Processing 20140525 Slide 26 of 67



Hybrid Merge Join

• Here the records of only one relation are sorted, but the other has a
secondary (B+-tree) index.

• The leaves of that B+-tree are pairs of the form (v , p), with v the value
of attribute A and p a pointer to the actual record.

• They are sorted on v only.

• This gives effectively a sorted list of the records of r2, but it is only a list
of pointers, not of physical records.

Other Attr A
a
c
c
e
g

r1

n
1

tu
p

le
s

A Other Attr
d
a
f
a
c
d
b

r2

n
2

tu
p

le
s

r2

p1

Secondary
Index
on A

Records ordered
on attribute A

Secondary B+-tree index
on attribute A

Query Processing 20140525 Slide 27 of 67



Hybrid Merge Join — 2

Recall: The leaves of that B+-tree are pairs of the form (v , p), with v the
value of attribute A and p a pointer to the actual record.

• The records of r1 may be matched with the leaves of the B+-tree of r2
via a merge-like procedure, with sorting on the common attribute values.

• This merged list may be furthermore optimized by doing a secondary sort
on the pointer values p for each group of entries from r2 with the same
value for the key v .

Other Attr A
a
c
c
e
g

r1

n
1

tu
p

le
s

A Other Attr
d
a
f
a
c
d
b

r2

n
2

tu
p

le
s

r2

p1

Secondary
Index
on A

Records ordered
on attribute A

Secondary B+-tree index
on attribute A

Query Processing 20140525 Slide 28 of 67



Double Hybrid Merge Join

• This same approach may be applied in the case that both relations have
secondary B+-tree indices on the attributes to be joined.

• Here the matching is effectively only on pointers to the actual records.

Other Attr A
e
c
a
g
e

r1

n
1

tu
p

le
s

A Other Attr
d
a
f
a
c
d
b

r2

n
2

tu
p

le
s

r2

Secondary
Index
on A

Secondary
Index
on A

Secondary B+-tree index
on attribute A

Secondary B+-tree index
on attribute A

Query Processing 20140525 Slide 29 of 67



GRACE Hash Join
• Hash join is widely used when no indices on join attributes are available.

• In GRACE hash join, for each relation, the values for the join attribute(s)
are hashed into buckets using the same hash function.

• The buckets should be small enough so that each corresponding pair of
buckets fits into main memory, but otherwise, the bigger the better.

• Matches for the join will always be found within the corresponding
buckets for each relation.

• Usually, an index is built for each bucket to facilitate searching.

• Blocks are too large for main memory ⇒ recursive partitioning employed.

Other Attr A
e
c
a
g
e

r1

n
1

tu
p

le
s

A Other Attr
d
a
f
a
c
d
b

r2

n
2

tu
p

le
s

r2a g

c e e

a a f

c

b d d

Hash buckets
for r1

Hash buckets
for r2

Query Processing 20140525 Slide 30 of 67



Details and Analysis of GRACE Hash Join

• GRACE hash join is divided into two main steps.

Step 1: Build the buckets: Copy each tuple in each relation to the
appropriate bucket.

Step 2: Compute the join: Find matching tuples in each bucket pair by
probing the bucket of one relation (the probe relation) for each tuple of
the matching bucket of the other relation (the build relation), and add
those tuples to the resulting join.

Parameters: There are three parameters which will be used throughout the
analysis.

nblki : The number of disk blocks for relation ri .

nbuf: The number of disk blocks which fit into the in-memory buffer.

nhash: The number of hash buckets per relation.

Query Processing 20140525 Slide 31 of 67



GRACE Hash Join — Step 1

Data Structures for Step 1 — Build the buckets: For this step, the
in-memory buffer is divided into two parts:

InBuf: Contains input records from the relation to be processed.

OutBuf: Contains records which will be placed in the hash buckets.

• OutBuf is partitioned into nhash sub-buffers, one for each
bucket.

Algorithm for Step 1:

• Process the relation sequentially, allocating each tuple to the
sub-buffer for its bucket.

• When a sub-buffer becomes full, flush it to the true bucket in
secondary memory.

Number of block transfers for Step 1: Each tuple is transferred twice, once
to placed into InBuf and once to be written from OutBuf to its bucket.

2 · (nblk1 + nblk2)

• May be slightly more due to partially filled blocks.
Query Processing 20140525 Slide 32 of 67



Details and Analysis of GRACE Hash Join — 2

Data Structures for Step 2: As in Step 1, there is InBuf and OutBuf.

InBuf: Contains the matching buckets for a given index.

OutBuf: Contains records which are in the join.

Algorithm for Step 2: The process is very simple:

• In turn, bring each pair of matching buckets into memory.

• Identify joinable tuples and write them to the result.

Number of block transfers for Step 2: Each tuple is transferred once.

nblk1 + nblk2

• If the result must be written to secondary storage, additional transfers
will be required.

Total block transfers for both steps:

3 · (nblk1 + nblk2)

Query Processing 20140525 Slide 33 of 67



Further Aspects of GRACE Hash Join

• Not every block transfer requires a disk seek.

• It is therefore useful to compute the number of disk seeks.

Additional parameters:

nInBuf: The number of disk blocks in InBuf.

nOutBuf: The number of disk blocks in OutBuf.

Disk seeks for Step 1:⌈
nblk1

nInBuf

⌉
+

⌈
nblk2

nInBuf

⌉
+

⌈
nblk1 × nhash

nOutBuf

⌉
+

⌈
nblk2 × nhash

nOutBuf

⌉
Disk seeks for Step 2: ⌈

nblk1

nInBuf

⌉
+

⌈
nblk2

nInBuf

⌉
Total disk seeks for both steps:

2 ·
(⌈

nblk1

nInBuf

⌉
+

⌈
nblk2

nInBuf

⌉)
+

⌈
nblk1 × nhash

nOutBuf

⌉
+

⌈
nblk2 × nhash

nOutBuf

⌉
Query Processing 20140525 Slide 34 of 67



Recursive Partitioning for GRACE Hash Join

• If nhash > nOutBuf, that is, if nhash is larger than the number of blocks
available in the OutBuf, it is not possible to apply the algorithm directly.

• Rather, recursive partitioning is necessary.

• In this case, the maximum number of hash buckets which will fit in
OutBuf is used in the first step.

• Then each such bucket is brought into main memory individually and
further subdivided in a second step.

• This process is repeated until the desired number of buckets is reached.

• Recursive partitioning adds a factor which is log in the number of blocks.

• With the larger memory sizes which are common nowadays, recursive
partitioning is seldom required.

Query Processing 20140525 Slide 35 of 67



Hybrid Hash Join

• There is a simple extension to GRACE hash join which is widely used
when primary memory is plentiful.

• Rather than allocate the entire memory buffer to InBuf and OutBuf, part
is allocated to store some of the buckets of the probe relation.

• The idea is then to construct as much of the join as possible in main
memory, thus avoiding intermediate steps which require disk access.

• Assume that there are k buckets in total for each relation, with
{Bi1,Bi2, . . . ,Bik} denoting the buckets for ri , i ∈ {1, 2}.
• Suppose that there is enough additional memory to store the first `

buckets of the probe relation (assumed to be r1) in main memory.

• Then these buckets are never written to disk. Rather, the members of
{B11, . . . ,B1`} are kept in the main-memory buffer.

• When processing the build relation r2, construct directly the part of the
join corresponding to matches on {B11, . . . ,B1`} as the tuples of r2 are
processed, thus avoiding the construction of {B21, . . . ,B2`} completely.

• This will result in substantial savings on disk I/O.
Query Processing 20140525 Slide 36 of 67



Algorithms for Projection

• There is little of a special nature which can be done for projection.

• Each record must be processed in turn, discarding the undesired
attributes.

• In the case that the retained attributes do not form a key, it may be
necessary to remove duplicates (if the query requires it).

Query Processing 20140525 Slide 37 of 67



Algorithms for Removal of Duplicates

• There are two basic ways to remove duplicates from a list.

Sort and scan: The list is first sorted on a key, and then processed
sequentially, with all but the first occurrence of the key removed.

• The (N-way) merge sort algorithm is used, and governs the
complexity.

On-the-fly index creation: The list is processed sequentially, building an
index of all keys which have occurred.

• If the key which is found in a given step is already present in the
index, the containing tuple is discarded.

• If the index would be too large for main memory, hashing (as in hash
join) can be used, with the duplicate-removal process applied to
each bucket.

• Complexity analysis is similar to that for hash join.

• In general, the removal of duplicates is an expensive operation, and so
must be requested explicitly.

Query Processing 20140525 Slide 38 of 67



Set Operations

• The binary set operations include union (∪), intersection (∩), and
difference (\).

• For intersection and difference, records with identical key values must be
found in order to eliminate tuples which occur in one of the operands but
not in the result.

• Duplicates do not arise for intersection and difference.

• For union, removal of duplicates is not always required, but when it is,
records with identical key values must be found in order to find the tuples
which occur more than once.

• In short, for intersection and difference, as well as for union with
duplicates removed, records with identical key values must be found in
each of the two sets.

• To find these matching values, the main options are sorting and hashing.

• Each of these approaches will be described in turn.

Query Processing 20140525 Slide 39 of 67



Set Operations via Sorting
Set intersection using sorting: The most straightforward approach is to sort

the lists first, and then use an approach similar to that for merge join to
identify the matching elements.

Set union using sorting: The most straightforward approach is to combine
the two sets of records.

• If elimination of duplicates is required, sort the result, discarding
duplicates.

• If the two input sets are already sorted, then a procedure similar to
merge join may be used, but this time an element is kept if it occurs
in either list.

Set difference using sorting: The approach is similar to that for intersection,
except that a tuple from the first list is discarded rather than kept if a
matching tuple is found in the second list.

• Unlike union and intersection, this operation is not symmetric in the
two lists.

• In all cases, the computation of complexity is straightforward, based upon
previous analyses.

Query Processing 20140525 Slide 40 of 67



Set Operations via Hashing
• Suppose that a set operation on relations r1 and r2 is to be performed.

• The first step in each case is to construct matching sets of hash buckets
{ri1, ri2, . . . , rik} for i ∈ {1, 2}, as in the hash join.

• Next, for each j , 1 ≤ j ≤ k , do the following:

• Bring r1j and r2j into main memory.

• Build an index of r1j .

• Complete the step listed below.

Set intersection using hashing: To compute r1j ∩ r2j , for each tuple in r2i ,
probe the index of r1i and delete the tuple from r1 if no match is found.

Set difference using hashing: To compute r1j \ r2j , for each tuple in r2i ,
probe the index of r1i and delete the tuple from r1 if a match is found.

Set union using hashing: To compute r1j ∪ r2j , for each tuple in r2i , probe
the index of r1i and add that tuple to r1 is no match is found.

• The results for each j are then combined.

• In all cases, the computation of complexity is straightforward, based upon
previous analyses.

• A hybrid approach, along the lines of hybrid hash join, is also possible.
Query Processing 20140525 Slide 41 of 67



Aggregation

Example: Average salary by department:
SELECT dept_name , avg(salary) FROM instructor GROUP BY dept_name;

• The difficult part, with respect to computational complexity, is to
partition the tuples into the groups.

• The approach for partitioning is similar to that for join, and involves
sorting and/or hashing.

Two main approaches:

First group, then aggregate: Compute the aggregate group (group by
dept name in the example), and then perform the aggregation (averaging
in the example).

Aggregate on the fly, as groups are computed: As elements are added to
each group, update the aggregation.

• This works directly for operations such as count, sum, min, and max.

• For avg, count and sum are aggregated on the fly, and avg is
computed from them at the end.

Query Processing 20140525 Slide 42 of 67


