IE1206 Embedded Electronics

William Sandqvist william@kth.se

Two terminal circuits - Black box

black box

?

The power supply

The power supply

CURRENT

 knob to set the current limit. Coarse and fine adjustments.C.C. Continuous Current. Led indicating that the unit operates as a current generator.

To set the current limit you show
"Amps" and then
short voltage poles.
The set current then
becomes the
maximum current
that can occur.

William Sandqvist william@kth.se

Voltage and Current generator

(Ex. 8.1) What value will the U get in these idealized and usually unrealistic circuits?

William Sandqvist william@kth.se

Voltage and Current generator

(Ex. 8.1) What value will the U get in these idealized and usually unrealistic circuits?

William Sandqvist william@kth.se

Voltage and Current generator

(Ex. 8.1) What value will the U get in these idealized and usually unrealistic circuits?

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Simplify ... (8.2)

William Sandqvist william@kth.se

Sinn (ify

$7-10=-3$
$\frac{3 \cdot 6}{3+6}=2$

William Sandqvist william@kth.se

Sinn (ify

$7-10=-3$
$\frac{3 \cdot 6}{3+6}=2$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Equivalents step by step ...

(8.4) Electronics prefix [V] [k Ω] [mA]

Equivalents step by step ...

(8.4) Electronics prefix [V] [k Ω] [mA]

William Sandqvist william@kth.se

Equivalents step by step ...

(8.4) Electronics prefix [V] [k Ω] [mA]

William Sandqvist william@kth.se

Equivalents step by step ...

(8.4) Electronics prefix [V] $[\mathrm{k} \Omega][\mathrm{mA}]$

William Sandqvist william@kth.se

At last ...

Voltage divider:

$$
U=6,67 \cdot \frac{0,5}{0,5+1,73}=1,49 \mathrm{~V}
$$

- Step by step the circuit gets simpler while the numerical values becomes more complicated!

You will need a calculator. Even with adapted numbers in the exercises you can come to select a computation path that generates unwieldy decimal numbers towards the intended simple answer.

William Sandqvist william@kth.se

(Wheatstone bridge equivalent)

Determine the Wheatstone bridge Thevenin equivalent.

(Determine R_{I})

(Determine E_{0})

$$
\begin{aligned}
& U_{1}=72 \cdot \frac{6}{6+3}=48 \\
& U_{2}=72 \cdot \frac{12}{12+4}=54 \\
& E_{0}=54-48=6 \mathrm{~V}
\end{aligned}
$$

William Sandqvist william@kth.se

(Determine $R_{1} E_{0}$)

$$
\begin{gathered}
U_{1}=72 \cdot \frac{6}{6+3}=48 \\
U_{2}=72 \cdot \frac{12}{12+4}=54 \\
E_{0}=54-48=6 \mathrm{~V} \\
\text { Done! }
\end{gathered}
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Equivalent circuits (instead of mesh analysis)!

William Sandqvist william@kth.se

Equivalent circuits (instead of mesh analysis)!

William Sandqvist william@kth.se

Equivalent circuits (instead of mesh analysis)!

William Sandqvist william@kth.se

Equivalent circuits (instead of mesh analysis)!

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Example (8.10)

What value has the voltage U_{AB} ?

- Use Thevenine equivalent to at "same time" get value of U_{AB} !

Example (8.10)

a) Derive a Thevenin's equivalent, $E_{0} R_{\mathrm{I}}$, to the circuit with the two voltage sources and the three resistors.
b) How big is the voltage drop U_{AB} over $1 \mathrm{k} \Omega$ resistor in the original circuit?

Example (8.10)

Let's calculate the voltage drop U_{AB} over the $1 \mathrm{k} \Omega$ resistor in the circuit, from the Thevenin's equivalent, as then U_{AB} will be the same as the E_{0} !

- R_{I} is the equivalent resistance when the both voltage sources are turned down to zero:

$$
R_{I}=\frac{1}{\frac{1}{1 \mathrm{k} \Omega}+\frac{1}{1 \mathrm{k} \Omega}+\frac{1}{1 \mathrm{k} \Omega}}=\frac{1}{3} \mathrm{k} \Omega
$$

Example (8.10)

- I_{K} short circuit current.

Suppose A and B are directly connected to each other. The third $1 \mathrm{k} \Omega$ resistor will be short circuit and get no current and can therefore be ignored. The short circuit current will come from the two voltage sources through their $1 \mathrm{k} \Omega$ resistors:

$$
I_{K}=\frac{12 \mathrm{~V}}{1 \mathrm{k} \Omega}+\frac{6 \mathrm{~V}}{1 \mathrm{k} \Omega}=18 \mathrm{~mA}
$$

Example (8.10)

The Thevenin equivalent will have the same short circuit current $I_{\mathrm{K}}=18 \mathrm{~mA}$. This makes it easy to calculate E_{0} :

$$
I_{K}=\frac{E_{0}}{R_{I}} \Rightarrow E_{0}=I_{K} \cdot R_{I}=18 \cdot \frac{1}{3}=6 \mathrm{~V}
$$

And the voltage drop U_{AB} is the same E_{0}.

$$
U_{\mathrm{AB}}=6 \mathrm{~V} .
$$

Example (8.10)

- What would happen if one removed the 6 V battery?

Example (8.10)

- What would happen if one removed the 6 V battery?

This is now another two terminal circuit.
U_{AB} is unchanged $U_{\mathrm{AB}}=\mathbf{6 V}$, but R_{I} increases to $R_{\mathrm{I}}=\mathbf{0 , 5} \mathbf{~ k} \boldsymbol{\Omega}$.
($I_{\mathrm{K}}=6 / 0,5=\mathbf{1 2} \mathbf{~ m A}$).
William Sandqvist william@kth.se

William Sandqvist william@kth.se

Tips \& Tricks

Tips \& Tricks

- U, I Parallel connected

Transform to current source!

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Example (8.9)

a) Derive a Thevenin's equivalent, $E_{0} R_{\mathrm{I}}$, to the circuit with the two current sources.
b) Calculate how big the current I would be if you connected a resistor R_{4} $=2 \mathrm{k} \Omega$ to the circuit (or it's equivalent).

Example (8.9)

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Example (8.11)

a) Derive a Thevenin's equivalent, $E_{0} R_{\mathrm{I}}$, to the circuit with the voltage source and the current source and the three resistors. (The $6 \mathrm{k} \Omega$ resistor is not includes in the circuit).
b) Calculate how big current I would flow in a resistor $R=6 \mathrm{k} \Omega$ connected to A-B? What direction will the current have?

The current source with the $1 \mathrm{k} \Omega$ resistor can be transformed to a voltage source. The circuit then becomes a 1 V voltage source with a voltage divider.

$$
E_{0}=1 \frac{2}{3+2}=0,4 \mathrm{~V} \quad R_{I}=\frac{3 \cdot 2}{3+2}=1,2 \mathrm{k} \Omega
$$

The open circuit voltage is $0,4 \mathrm{~V}$, and the internal resistance $3 \mathrm{k} \Omega \| 2 \mathrm{k} \Omega=1,2 \mathrm{k} \Omega$. Note. The voltage source $0,4 \mathrm{~V}$ is opposite to the definition of the figure $(-0,4 \mathrm{~V})$.

William Sandqvist william@kth.se

(Dependent sources)

Electronics semiconductor components must be described by dependent sources. Such source has an entity E or I that is decided by some other current or voltage in the circuit.

(Eg. Transistor).

Ethis example could be an transistor, and the calculation of its operating point ...

(Eg. Transistor).

- Derive the value of resistor R_{B} so the voltage drop over resistor R_{C} will be the half of E ?

The current source I_{C} is depending on current I_{B} by the equation: $I_{\mathrm{C}}=\boldsymbol{\beta} \cdot I_{\mathrm{B}}$.

We do not introduce any new special symbols dependent sources.

(Eg. Transistor).

Derive the value of R_{B} so the voltage drop over R_{C} will be the half of E ?

$$
E=10 \mathrm{~V} \quad U_{\mathrm{BE}}=0,5 \mathrm{~V} \quad \beta=40 \quad R_{\mathrm{C}}=10 \mathrm{k} \Omega
$$

$$
U_{\mathrm{RC}}=R_{\mathrm{C}} \cdot I_{\mathrm{RC}}=\frac{E}{2} \Rightarrow I_{\mathrm{RC}}=\frac{5}{10 \cdot 10^{3}}=0,5 \cdot 10^{-3}
$$

$$
I_{\mathrm{RC}}=\beta \cdot I_{\mathrm{B}}+\frac{E}{2 R_{\mathrm{O}}} \Rightarrow I_{\mathrm{B}}=\frac{0,5 \cdot 10^{-3}-0,1 \cdot 10^{-3}}{40}=10 \cdot 10^{-6}
$$

$$
I_{\mathrm{B}}=\frac{E-U_{\mathrm{BE}}}{R_{\mathrm{B}}} \Rightarrow R_{\mathrm{B}}=\frac{10-0,5}{10 \cdot 10^{-6}}=950 \mathrm{k} \Omega
$$

Calculations with depending sources can thus take place in a similar way as with independent sources, but beware ...

Avoid ...

Do not use the superposition principle whith dependent generators. To reset a source can break the dependence with the the rest of the circuit.

Do not reset dependent sources to find the internal resistance of a two terminal circuit. To reset a source can break the dependence with the the rest of the circuit.

However, it will always work to use calculations on open and shorted two terminal circuits.

Eg. current depending voltage source ...

Suppose we got an emf E that in some way is dependent of its own current I, eg. $E=5 \cdot I$. It will then act as an resistor with the value 5Ω !

If you reset all sources in such a circuit, you will no longer se all resistors that exists in the circuit.

A Spice-simulation

It is possible to simulate circuits with dependent generators.

William Sandqvist william@kth.se

7.4 Depending source

7.4 Depending source

Kirchhoff current law: $I_{1}+I_{2}+I_{3}=0$
Kirchhoffs voltage law (the mesh with the not depending emf):

$$
-2 I_{1}-3+1 I_{1}=0 \Leftrightarrow-2 I_{1}+0 I_{2}+1 I_{3}=3
$$

Kirchhoffs voltage law (the mesh with the depending emf):

$$
-1 I_{3}-\left(-10 I_{3}\right)+3 I_{2}=0 \Leftrightarrow 0 I_{1}+3 I_{2}+9 I_{3}=0
$$

7.4 Depending source

$$
\begin{array}{r}
I_{1}+I_{2}+I_{3}=0 \\
-2 I_{1}+0 I_{2}+1 I_{3}=3 \\
0 I_{1}+3 I_{2}+9 I_{3}=0
\end{array}
$$

The values are the same as used throughout the course example.

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 0 & 1 \\
0 & 3 & 9
\end{array}\right) \cdot\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right) \quad I_{1}=-2 \quad I_{2}=3 \quad I_{3}=-1
$$

It is possible to calculate circuits with dependent generators.

William Sandqvist william@kth.se

Node analysis

William Sandqvist william@kth.se

Node analysis

OHM's law

(Current source at node analysis)

$$
I=\text { ? }
$$

(Current source at node analysis)

$$
I=? \quad I=1 \mathrm{~A}
$$

(Current source at node analysis)

$$
-I_{1}-I_{2}+1=0 \quad I_{1}+I_{2}=1
$$

(Current source at node analysis)

$$
\begin{aligned}
& -I_{1}-I_{2}+1=0 \quad I_{1}+I_{2}=1 \\
& I_{2}=\frac{U-0}{R_{2}}=\frac{U}{12}
\end{aligned}
$$

William Sandqvist william@kth.se

(Current source at node analysis)

$$
\begin{aligned}
& -I_{1}-I_{2}+1=0 \quad I_{1}+I_{2}=1 \\
& I_{2}=\frac{U-0}{R_{2}}=\frac{U}{12} \\
& I_{1}=\frac{U-E}{R_{1}}=\frac{U-24}{6}
\end{aligned}
$$

William Sandqvist william@kth.se

(Current source at node analysis)

$-I_{1}-I_{2}+1=0 \quad I_{1}+I_{2}=1$
$I_{2}=\frac{U-0}{R_{2}}=\frac{U}{12}$
$I_{1}=\frac{U-E}{R_{1}}=\frac{U-24}{6}$
$1=\frac{U}{12}+\frac{U-24}{6}=\frac{2 \cdot U-48+U}{12} \Leftrightarrow 12=3 \cdot U-48$

$$
U=20 \mathrm{~V}
$$

(Node analyses - currents)

$$
\begin{aligned}
& I_{2}=\frac{20}{12}=1,67 \\
& I_{1}=\frac{20-24}{6}=-0,67
\end{aligned}
$$

Check: $I_{1}+I_{2}=1 \Rightarrow-0,67+1,67=1$

William Sandqvist william@kth.se

