
Homework II, Foundations of Cryptography 2016
Before you start:

1. The deadlines in this course are strict. This homework set is due as specified at
https://www.kth.se/social/course/DD2448/subgroup/vt-2016-krypto16/page/deadlines-16.

2. Read the detailed homework rules at
https://www.kth.se/social/files/5686fcd8f276542387729c18/solution_rules.pdf.

3. Read about I and T-points, and how these translate into grades, in the course descrip-
tion at
https://www.kth.se/social/files/5692df7bf2765405aca1825f/course_description.pdf.

4. You may only submit solutions for a nominal value of 50 points in total (summing I
and T points). The total number of points below may be larger and this should be
interpreted as giving you a way to choose problems you like.

The problems are given in no particular order. If something seems wrong, then visit
https://www.kth.se/social/course/DD2448/subgroup/vt-2016-krypto16/page/handouts-10 to
see if any errata was posted. If this does not help, then email dog@kth.se. Don’t forget to
prefix your email subject with Krypto16.

We may publish hints on the homepage as well if a problem appears to be harder than
expected.

1 (3I) Implement modular exponentiation from modular multiplication. A detailed description
is found on Kattis. https://kth.kattis.com/problems/kth:krypto:modexp. Make sure that
your code is commented and well structured. Up to 3I points may be subtracted if this is not
the case. Keep in mind that you must be able to explain your solution during the oral exam.

2 (3I) Implement Chinese remaindering. A detailed description is found on Kattis. https://
kth.kattis.com/problems/kth:krypto:crt. Make sure that your code is commented and well
structured. Up to 3I points may be subtracted if this is not the case. Keep in mind that you
must be able to explain your solution during the oral exam.

3 (5I) Compute the factorization of an RSA modulus from its encryption and decryption exponents.
A detailed description is found on Kattis. https://kth.kattis.com/problems/kth:krypto:
rsafact. Make sure that your code is commented and well structured. Up to 5I points may be
subtracted if this is not the case. Keep in mind that you must be able to explain your solution
during the oral exam.

4 (2I) Determine basic properties of elliptic curves. A detailed description is found on Kattis.
https://kth.kattis.com/problems/kth:krypto:ellipticcurvepoints. Make sure that your
code is commented and well structured. Up to 2I points may be subtracted if this is not the
case. Keep in mind that you must be able to explain your solution during the oral exam.

Page 1 (of 3)

Foundations of cryptography • Spring 2016
Douglas Wikström

https://www.kth.se/social/course/DD2448/subgroup/vt-2016-krypto16/page/deadlines-16
https://www.kth.se/social/files/5686fcd8f276542387729c18/solution_rules.pdf
https://www.kth.se/social/files/5692df7bf2765405aca1825f/course_description.pdf
https://www.kth.se/social/course/DD2448/subgroup/vt-2016-krypto16/page/handouts-10
https://kth.kattis.com/problems/kth:krypto:modexp
https://kth.kattis.com/problems/kth:krypto:crt
https://kth.kattis.com/problems/kth:krypto:crt
https://kth.kattis.com/problems/kth:krypto:rsafact
https://kth.kattis.com/problems/kth:krypto:rsafact
https://kth.kattis.com/problems/kth:krypto:ellipticcurvepoints


5 (2T) In some applications side channel attacks are a concern. Describe what a side channel attack
is. Find as many side channels as possible that as been exploited in the research literature. Cite
each relevant paper properly in your answer with a brief description in a few sentences.

6 The goal of this problem is to study the OpenSSL source code to get feeling for what real world
code for cryptography can look like.

6a (1T) Identify and report the path to the file containing the optimized implementation of
P-256.

6b (1T) Determine if any bugs have been fixed in this code since it was committed to the code
base.

6c (3T) Describe the technique used in the implementation of P-256 to counter side channel
attacks.

7 The generic elliptic curves covered in class uses separate code for doubling, adding, and treatment
of the point at infinity. For some curves this is not necessary, i.e., there is no need for special
code.

7a (3T) Dan Bernstein has published several papers about this. Read enough to be able to
explain the key ideas.

7b (2T) What is the advantages of such curves in practice?

8 Suppose you need to generate an n-bit prime p0 of the form p0 = 2p1 + 1, where p1 = 2p2 + 1
and p2 are primes.

8a (5T) Describe an algorithm and perform a heuristic analysis of its expected running time.
Implement your algorithm and compare your practical results with your theoretical anal-
ysis.

8b (2T) What happens if we relax the problem and replace 2 in each equality by integers
1 < k1, k2 < 2

√
n of your own choice (i.e., you must find any p0, p1, p2 and k1, k2)?

9 (5T) Read the paper by Lenstra et al. http://eprint.iacr.org/2012/064.pdf. Summarize on
roughly a page the findings in this paper in your own words. Make sure that you do not submit
a solution unless you actually read the paper.

Page 2 (of 3)

Foundations of cryptography • Spring 2016
Douglas Wikström

http://eprint.iacr.org/2012/064.pdf


10 Let p = kq+1 and q be primes such that log q = n, log k = n and such that the bit size of every
prime factor of k is bounded by log n. Let g be a generator of the unique subgroup of Z∗p of order
q.

I pick x ∈ Zq randomly and hand you y = gx. Then you may ask me any number of questions
of the form u ∈ Z∗p, which I answer by ux mod p.

10a (2T) Explain how you can compute x efficiently (describe your algorithm and analyze its
running time).

10b (1T) What is the important lesson to learn from this example? (This was mentioned in
class, but you will not find it on any slides.)

10c (1T) How would you address this problem in an implementation of the protocol?

11 The goal of this problem is that you write out the details of a proof in cryptography on your
own. We have already covered this result in class. Let CS = (Gen,Enc,Dec) be a public key
cryptosystem. More precisely:

• Gen is a probabilistic key generation algorithm that on input 1n (security parameter n in
unary representation) outputs a key pair. We denote this by (pk , sk) = Gen(1n).

• Enc is an encryption algorithm that takes a public key pk , a message m ∈ {0, 1}n, and
randomness r ∈ {0, 1}n as input and produces a ciphertext. We denote this by Encpk (m, r).

• Dec is a decryption algorithm that takes a secret key sk and a ciphertext c as input and
outputs the plaintext. We denote this by m = Decsk (c).

Denote by CSk = (Genk,Enck,Deck) the cryptosystem defined as follows:

• Genk is identical to Gen

• Enck takes a public key pk , a message m ∈ {0, 1}n×k, and randomness r ∈ {0, 1}n×k as
input and outputs (Encpk (m1, r1), . . . ,Encpk (mk, rk)).

• Deck takes a secret key sk and a ciphertext c = (c1, . . . , ck) as input and outputs a plaintext
(Decsk (c1), . . . ,Decsk (ck)).

11a (7T) Prove that if CS is secure, then CS2 is secure.

11b (3T) Prove that for every polynomial k(n), if CS is secure, then CSk(n) is secure.

You need to be more rigorous than what we did in class that! Imagine that your life depended
on convincing your worst enemy.

12 (2T) We denote the Legendre/Jacobi symbol of a modulo b by
(
a
b

)
. For each of the following

symbols, (1) state if it is a Legendre or Jacobi symbol, (2) determine if the symbol is defined on
the given inputs, and (3) compute the symbol by hand (I want to see your intermediate results)
if possible:

(
15
28

)
,
(

19
357

)
,
(
39
33

)
,
(
598120457575754

75456831

)
, and

(
57384

53475546935698

)
.

Page 3 (of 3)

Foundations of cryptography • Spring 2016
Douglas Wikström


