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0 Jupyter-FEniCS web PDE solver environment

The address of the web Jupyter-FEniCS environment, described more in detail below, is provided via
email with the ip of the cloud virtual machine and Jupyter login. To run a program in Jupyter-FEniCS,
open the Python 2 notebook and select the Run command under the Cell menu. Do not forget to save
your notebook regularly to your own computer, by using Download as > IPython Notebook (.ipynb)
under File in your notebook.

You can also set up the environment at your own computer by using the command:

sudo docker run -t -i -p 80:8000 sputnikcem/fenics-jpy

and using the login name and passwords listed on the terminal window by accessing localhost from
a web browser.

1 Introduction

In this lab session you will use the FEniCS [1] framework for automated solution of partial differential
equations (PDE) to formulate and solve finite element methods (FEM) for PDE.

Specifically you will investigate FEM for fluid flow modeled by the incompressible Navier-Stokes
equations.

The goal of this session is to:

1. Learn different time stepping methods for Navier-Stokes equations.

2. Simulate chemical reactions in a flow field computed from the Navier-Stokes equations.

In this session we will work with the Python interface to FEniCS. We will use FEniCS version
1.6 which is installed in the Jupyter notebook (http://jupyter.org) Python web environment pro-
vided at the link at the top of the instructions. On the FEniCS home page [1] there is extensive
documentation of the interface at both overview and detail level.

2 Exercises

2.1 Timestepping the incompressible Navier-Stokes equations

Now we will study two different timestepping methods for Navier-Stokes equations: implicit Euler
(first order accurate) and the Midpoint method (second-order accurate, in principle the same method
as the Trapezoid method). The timestepping method is separated from the spatial discretization,
which is done by a finite element discretisation.
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We would like to solve the system of incompressible Navier-Stokes equations, which in weak form,
with weak residual r can be stated as:

r(û, v̂) = (u̇+ (u · ∇)u+∇p, v) + (ν∇u,∇v) + (∇ · u, q) = 0, (1)

û ∈ [Vh]2 ×Qh, ∀v̂ ∈ [Vh]2 ×Qh

û = (u, p) (Solution: velocity and pressure)

v̂ = (v, q) (Test function)

with ν a diffusion parameter.
In FEniCS notation this can be written:

r = ( i n n e r ( ( u − u0 )/ k + g r a d ( p ) + g r a d ( um )∗ um , v ) + nu∗ i n n e r ( g r a d ( um ) , g r a d ( v ) ) + div ( um )∗ q )∗ dx

with k the time step, u0 the velocity from the previous time step, and um = u+u0
2 . Here we have

applied the Midpoint timestepping method, which is why we evaluate the solution at the mean value
in the timestep u+u0

2 .
To fully specify the solution, we need to add known data on the boundary ∂Ω of the domain Ω,

in the form of boundary conditions. We want to specify a known inflow velocity uin profile at the left
edge of the domain (the inlet), zero pressure at the right edge (the outlet), and zero velocity on the
rest of the boundary (a “no-slip” condition).

We will apply these boundary conditions weakly which means that we will add penatly terms to
the weak residual, active only on the boundary, which will force the solution to the desired values
if a penatly parameter is chosen large enough. We choose the penalty parameter γ = 104. For the
inflow velocity for example, we add the term γ(u− uin, v). If γ goes to infinity, solving the equation
r(û, v̂) = 0, ∀v ∈ Vh means that u = uin.

We define boundary markers which are 1 on the part of the boundary we are interested in, and
zero elsewhere, here im is the inlet marker, om is the outlet marker and nm is the no-slip marker:

r = ( i n n e r ( ( u − u0 )/ k + g r a d ( p ) + g r a d ( um )∗ um , v ) + nu∗ i n n e r ( g r a d ( um ) , g r a d ( v ) )
+ div ( um )∗ q )∗ dx + g a m m a ∗( om∗p∗q + im∗ i n n e r ( u − uin , v ) + nm∗ i n n e r ( u , v ) )∗ ds

To be able to guarantee stability of the solution, i.e. that the solution and its derivatives are
bounded by the given data, we use a stabilized method, which adds stabilization terms with a stabi-
lization parameter d:

r = ( i n n e r ( ( u − u0 )/ k + g r a d ( p ) + g r a d ( um )∗ um , v ) + nu∗ i n n e r ( g r a d ( um ) , g r a d ( v ) )
+ div ( um )∗ q )∗ dx + g a m m a ∗( om∗p∗q + im∗ i n n e r ( u − uin , v ) + nm∗ i n n e r ( u , v ) )∗ ds

+ d ∗( i n n e r ( g r a d ( p ) + g r a d ( um )∗ um , g r a d ( q ) + g r a d ( um )∗ v )
+ i n n e r ( div ( um ) , div ( v ) ) )∗ dx # St ab i l i z a t i o n

again in FEniCS we can solve the equation for one timestep simply by:

s o l v e ( r==0, c )

Finally we carry out all the timesteps in the time interval I = [0, T ] with a timestepping loop:

t , T = 0 . , 10 . # Time i n t e r v a l
w h i l e t < T : # Time−s tepp ing loop

. . . # Solve the Navier−Stokes PDE ( one t imestep )

t += k ; u0 = p r o j e c t ( u , V ) ; # Sh i f t to next t imestep

Plotting is implemented in the plot compact() utility function, using the Matplotlib interface.

def p l o t _ c o m p a c t ( u , t , s t e p c o u n t e r ) : # Compact p lo t u t i l i t y func t i on
if s t e p c o u n t e r % 5 == 0 :

u E u c l i d n o r m = p r o j e c t ( s q r t ( i n n e r ( u , u ) ) , Q ) ; ax . cla ( ) ; fig = plt . gcf ( ) ; fig . s e t _ s i z e _ i n c h e s (16 , 2)
plt . s u b p l o t (1 , 2 , 1 ) ; m p l o t _ f u n c t i o n ( u E u c l i d n o r m ) ; plt . t i t l e ( " V e l o c i t y " ) # Plot norm of v e l o c i t y
if t == 0 . : plt . c o l o r b a r ( ) ; plt . a x i s ( G )
plt . s u b p l o t (1 , 2 , 2 ) ;
if t == 0 . : plt . t r i p l o t ( m e s h 2 t r i a n g ( m e s h ) ) ; plt . t i t l e ( " M e s h " ) # Plot mesh
plt . s u p t i t l e ( " Lab 4 I C N S - t : % f " % ( t ) ) ; plt . t i g h t _ l a y o u t ( ) ; c l e a r _ o u t p u t ( w a i t=T r u e ) ; d i s p l a y ( pl )
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The geometry and domain is constructed using the generate mesh() function, via the Mshr in-
terface. It provides a Constructive Solid Geometry interface for geometry, and a mesh resolution
parameter as the last argument. The mesh can be then locally refined using the mesh refinement
interface in FEniCS.

2.1.1 Questions

a) Set up a model problem where a parabolic inlet with 1m/s max flow is given for a rectangular
domain of dimension 1m× 4m with a circular obstacle of radius .1m placed with center at the
coordinates x1 = x2 = 0.5.

b) Compare the Midpoint and implicit Euler methods for Navier-Stokes (the PDE defined by the
weak residual ”r”) with the stabilization parameter d = 0.2h3/2 what do you see? How is it
related to the analytical properties of the methods?

a) Create different meshes and experiment with different refinement levels in order to observe flow
characteristics.

2.2 Convection-reaction equations

We will now use the velocity field computed from solving the fluid model to transport some quantity,
here the concentrations of two chemicals c0 and c1, that is we would now like to solve a system of
convection-reaction equations with Nc = 2 components (species) where Zh = [Vh]Nc :

rC(c, z) = (ċ+ (u · ∇)c, z) + κ((c0c1, z0) + (c0c1, z1)) = 0, ∀z ∈ Zh (2)

c (Solution: concentration (vector-valued with Nc components)

z (Test function (vector valued with Nc components))

This system models the convection (or transport) of c with the convective time derivative: ċ+(u·∇)c
which arises from an Eulerian choice of coordinates (fixed in space, observing the quantity flowing
past with velocity u). The chemical reaction c0 + c1 → c2, meaning that c0 reacts with c1 to form c2,
is modeled by the terms κ((c0c1, z0)+(c0c1, z1)) with the reaction constant κ determining the reaction
rate. We do not represent c2 in the template model that you are given, so here c0 and c1 are simply
removed from the system when they react.

In FEniCS notation the model can be written:

r_C = ( i n n e r ( c − c0 , z )/ k + i n n e r ( dot ( g r a d ( c ) , u ) , z ) )∗ dx + k a p p a ∗( c [ 0 ] ∗ c [ 1 ] ∗ z [ 0 ] + c [ 0 ] ∗ c [ 1 ] ∗ z [ 1 ] ) ∗ dx

again we add boundary conditions and stabilization:

r_C = (( i n n e r ( c − c0 , z )/ k + i n n e r ( dot ( g r a d ( c ) , u ) , z ) )∗ dx + k a p p a ∗( c [ 0 ] ∗ c [ 1 ] ∗ z [ 0 ] + c [ 0 ] ∗ c [ 1 ] ∗ z [ 1 ] ) ∗ dx +
g a m m a ∗( im∗ cm∗ i n n e r ( c [ 0 ] − 1 . , z [ 0 ] ) + im ∗ ( 1 . − cm )∗ i n n e r ( c [ 1 ] − 1 . , z [ 1 ] ) ) ∗ ds + # Weak boundary cond .
d e l t a ∗ i n n e r ( g r a d ( c )∗ u , g r a d ( z )∗ u )∗ dx + d e l t a ∗ i n n e r ( g r a d ( c ) , g r a d ( z ) )∗ dx ) # S t a b i l i z a t i o n

again in FEniCS we can solve the equation for one timestep simply by:

s o l v e ( r_C==0, w )

and again we have a very similar timestepping loop:

t , T = 0 . , 10 . # Time i n t e r v a l
w h i l e t < T : # Time−s tepp ing loop

. . . # Solve the Navier−Stokes and convect ion−r e a c t i on PDEs ( one t imestep )

t += k ; u0 = p r o j e c t ( u , V ) ; c0 = p r o j e c t ( c , Z ) # Sh i f t to next t imestep

By studying the plots we can get an approximate overview of the reaction process. However, to get
a quantitative measure of the reaction, we compute a scalar functional of the solution (an integrated

quantity). In this case we integrate the sum of the concentrations Mc =
∫ T

0

∫
∂Ωo

∑Nc
0 cidsdt over the

outlet boundary, with the FEniCS notation:
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Mc = k∗ om ∗( c [ 0 ] + c [ 1 ] ) ∗ ds ; c t o t += a s s e m b l e ( Mc ) # Compute t o t a l concent ra t i on f l ow ing out

which is inside the timestepping loop, resulting in an integral over the time interval.

2.2.1 Questions

a) Extend your Navier-Stokes solver to include the convection-reaction PDEs described above.

b) Study how much and how little you can make the chemicals react by modifying the mixing of
the fluid. For example, how does the viscosity ν in the fluid model influence the mixing? Can
you modify the geometry or other model parameters so that the species fully react (one of them
is completely consumed before reaching the outlet)?

c) Add the third species c2 to the model, by adding reaction terms, and to the plotting, by adding
plotting commands to the plot compact() function. The NC variable specifies the size of the
convection-reaction system (how many species and how many equations that are allocated).

d) Try to invent your own chemical reactions and implement them in the model.
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