

# **Boundary Conditions**

# **Initial conditions**

- Steady-state problem -> completely determined by BC
- Limit-cycle oscillation -> completely determined by BC
- Transient computation of an initial-value problem is dependent on the initial conditions
- Initial conditions may be important for the convergence to steady state
  - Set to constant value
  - Solve simplified equation (potential flow "hybrid")
  - Solve on coarser grids (FMG = full multi-grid)





# **Boundary flow field**

- Supersonic inflow
  - All information from boundary to interior
- Subsonic inflow
  - Most information from boundary to interior
  - pressure related information from interior to boundary.
- Subsonic outflow
  - Only pressure related information from boundary to interior
- Supersonic outflow
  - No information from boundary to interior
- Must be
  - Numerically stable
  - Well posed



# **Boundary influence**

If interaction between the boundary and interior flow fields is a problem:



- typically 10-50 times the size of the object
- Less problem in 3D flows
- Include more of the true inflow/outflow geometries for internal flows
- Make empirical/mathematical corrections on the boundaries
- Warning for recirculation
  - Inflow at outflow boundaries, or
  - Outflow at inflow boundaries
- Be aware of the problem!!!



Example: Cylinder wake (picture, thanks to one of you)

- Real problem: one isolated cylinder in free air
- How to define the domain and boundary conditions?





As symmetry or periodic BCs





As symmetry or periodic BCs

- Corresponds to a row of cylinders
- Distance set by domain size
- Flow accelerates in between
- Higher forces
- OK if distance is large





As pressure BCs (pressure outlet)

- Velocity and pressure not constant at the boundary
- Might be a local inflow numerical instability?
- OK if distance is large





As inlet BCs (velocity inlet)

- Velocity and pressure not constant at the boundary
- Might be a local outflow numerical instability?
- OK if distance is large





As inlet BCs (velocity inlet)

• Inflow everywhere – numerical stable



- Good alternative, if distance is large
- How large distance?
  - 2D wing: 20-100c may be needed
  - 3D: 10-20c
  - Far-field grid can be VERY coarse

Far-field boundary condition (compressible flows only)

- Can handle both inflow and outflow
- Both sub- and supersonic flows
- Good alternative, if distance is large

11





#### Inflow B.C.

- Velocity inlet
  - External and internal flows



- Pressure inlet
  - Sets total (stagnation) condition at inflow
  - Internal flows
- Mass flow inlet
  - Sets mass flow rate over the inflow
  - Internal flows





#### Inflow conditions for turbulence

- At inflow boundaries the turbulence quantities must be prescribed for turbulent computations
- Inflow turbulence levels mostly not fully known
- Solution may be strongly dependent on the inflow turbulence levels, but mostly only minor dependencies
- Important to prescribe realistic values for solution accuracy and numerical stability
- If problems: move the inflow boundary sufficiently far from the region of interest.
- The turbulence levels at the inflow boundary are also applicable as initial conditions.



#### **Turbulence level**

- Turbulence level, Tu
  - Relation between rms of fluctuations and mean velocity

$$u_{rms} = Tu U_{\infty}$$

 Assuming isotropic turbulence, turbulence kinetic energy becomes

$$K = \frac{3}{2} (Tu \ U_{\infty})^2$$

- Must be specified on inlet boundaries and for initial values
- Estimate Tu
  - Tu < 0.3% in external aerodynamic flows
  - $Tu \approx 1\%$  in wind tunnels
  - $Tu \approx 5 10\%$  in internal turbo machinery flows
  - Tu < 2 3% usually do not influence the mean flow field



# **Turbulence length scale**

• Viscosity ratio  $VR = v_T / v$ 

- Often recommended to be 1 10 in external flows
- Results in length scale

$$L_T = \frac{K^{3/2}}{\varepsilon} = \frac{VR \nu}{C_\mu \sqrt{K}}, \qquad \nu_T = C_\mu \frac{K^2}{\varepsilon}, \qquad C_\mu = 0.09$$

- Problem:  $L_T$  should not be Re dependent
- For  $K \omega$  models:  $\omega \equiv \varepsilon / C_{\mu} K$
- Turbulence length scale,  $L_T$ 
  - Easier estimated than viscosity ratio
  - $L_T = 1 10\%$  of geometrical scales
- Turbulence advection length scale,  $L_A$

$$L_A = \frac{KU_{\infty}}{\varepsilon} \approx \frac{L_T}{Tu}$$

- The length scale on which free-stream turbulence reduces
- Should not be much smaller than typical geometrical scales



## **Transition to turbulence**

- The location of the transition point (or region)
  - Depends on surface roughness, free stream turbulence levels, noise, etc.
  - No general method to predict
  - Difficult to measure
  - The flow may be dependent on the transition location
    - Try to get information from experiments
    - Try to estimate (specific empirical relations exist)
    - Compute the growth rate of disturbances (a subject as big as CFD)
    - Assume the flow fully turbulent (if transition is unimportant)
- Transition location prescribed in CFD by setting laminar or turbulent walls
  - Laminar:  $Re < 10^3$
  - Turbulent:  $Re > 10^6$

