

Quality and sources of error

Convergence

- Steady state problem
 - Residual vanishes
 - Forces levels out
 - Flow field does not change
- If oscillations
 - Problem <u>might be</u> unsteady
 - Do time accurate computation
- Time dependent computations
 - Estimate time scales (~L/U)
 - Implicit or explicit in time subiterations
 - Might become steady

Grid

• Grid convergence studies

Compare solutions on different grid levels (3 grids needed)

- Manually generated e.g. with $\Delta \sim 1.5$, 1, 0.7
- Grid adaption
- y^+ in first grid points

Check requirements depending on

- turbulence model and
- boundary conditions

Verify by plotting $y^{\scriptscriptstyle +}$

- Resolution of gradients
 - Look carefully at the solution
 - identify the different gradients

Geometry

- Resolution of details
 - Wing trailing edge
 - Junctions
 - Small holes, screws et.c.
- wind tunnel effects
 - Blockage
 - 3D effects
 - wall effects
 - "free stream" conditions

Physical model

- Flow assumptions:
 - Viscous inviscid
 - Compressibility
 - Turbulence & transition
 - Other flow physics
- Turbulence model
 - Critical if flow contain
 - boundary layer separation from smooth surfaces
 - rotation and swirl
 - Check sensitivity by computing with other models

Numerical scheme

- Check influence of scheme
 - at least 2nd order scheme
- Sensitivity of scheme decreases on finer grids
 - A 1st order scheme might need more than 10 times the number of grid points compared to a 2nd order scheme.
- Check convergence rate:
 - 3 decade reduction is default in Fluent must be changed !!!
 - Residuals reduced at least 5 decades (not universal)
 - Monitor quantities of interest (lift, drag, heat transfer, ...)
 - Do more iterations and compare solution.

