TRANSFORMATIONS
A Practical Introduction

Christopher Peters
HPCViz, KTH Royal Institute of Technology, Sweden
chpeters@kth.se
https://www.kth.se/profile/chpeters/
Transformations

Many objects are composed of hierarchies
Transformations enable us to compose hierarchies
Transformations

Positioning geometric objects in the virtual world is an operation fundamental for scene composition and computer animation.

Scenes are composed of:

- Viewer/camera
- Objects and shapes (composed of geometric primitives)
- Other (textures, lighting, …)

In this lecture, we will consider only rotation and translation transformations.

- There are others too: Shear, squash, stretch…
Scene composition

A photorealistic scene (circa 2013)
Scene composition

A photorealistic scene (circa 2013)

Underlying representation (geometry: white)
Geometric primitives
(a brief introduction)

Graphical objects are composed of primitives
• More about geometry in subsequent lectures
Vertices:
$vtx1 (-6.0, -4.0),
vtx2 (5.0, -6.0),
vtx3 (4.0, 5.0),
vtx4 (-4.0, 3.0)$
Vertices:
$vtx1 (-6.0, -4.0)$,
$vtx2 (5.0, -6.0)$,
$vtx3 (4.0, 5.0)$,
$vtx4 (-4.0, 3.0)$

Q: Why this ordering?
Hint: do cross-product on vectors defined by two edges incident to any vertex
Vertices

Vertices:

- vtx1 (-6.0, -4.0),
- vtx2 (5.0, -6.0),
- vtx3 (4.0, 5.0),
- vtx4 (-4.0, 3.0)

Right-hand rule

Winding order of the vertices
Transformations

Recall *translation* from previous lecture:

- Translate a point \(\mathbf{p} \) along a vector \(\mathbf{t} \)
- General case:
 \[
 \mathbf{p}' = \mathbf{p} + \mathbf{t}
 \]
- 2D:
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix}
 = \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 + \begin{bmatrix}
 t_x \\
 t_y
 \end{bmatrix}
 = \begin{bmatrix}
 x + t_x \\
 y + t_y
 \end{bmatrix}
 \]
- 3D:
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z'
 \end{bmatrix}
 = \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 + \begin{bmatrix}
 t_x \\
 t_y \\
 t_z
 \end{bmatrix}
 = \begin{bmatrix}
 x + t_x \\
 y + t_y \\
 z + t_z
 \end{bmatrix}
 \]

Christopher Peters
Hierarchical Transformations
chpeters@kth.se
Translating an object

Translation operation takes place on a point
But a geometric object (*mesh*) is a collection of vertices
How to translate that?
Translating an object

Translation operation takes place on a point
But a geometric object (mesh) is a collection of vertices
How to translate that?
Translate each of its vertices

Christopher Peters
Hierarchical Transformations
chpeters@kth.se
Rotating an object

Rotation operation takes place on a point
How to rotate a object?
The same procedure applies:
Rotate each vertex that comprises the object

(from the previous lecture)
Coordinate spaces

What are the coordinates of an object?
- Answer: It depends on the *coordinate space*
What are the coordinates of an object?
- Answer: It depends on the coordinate space

The vertices of an object are usually specified in its own local coordinate space
- **Object space (OS)**
- Origin often located near the centroid of the object
An instance of an object is positioned in the world using a transformation

- **World space (WS)**
- In this case, the transformation \(\text{Translate}(t_x, t_y) \)
- *Displacement* of \(t_x \) units along the x-axis and \(t_y \) units along the y-axis
World space

Multiple instances of the same object can be positioned in the world via individual transformations
Multiple instances of the same object can be positioned in the world via individual transformations
Multiple instances of the same object can be positioned in the world via individual transformations.
Multiple instances of the same object can be positioned in the world via individual transformations

- Objects positioned according to their respective object space origins
- More on this later
Geometry and transformations

Geometry is usually stored separately from respective transformations

- Objects definitions versus object instances
- Memory savings
Recall: Transformations are represented as 4x4 matrices.

From the last lecture:

\[
T(t_x, t_y, t_z) = \begin{pmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Rotation around x-axis:
\[
R_x(\phi) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos\phi & -\sin\phi & 0 \\
0 & \sin\phi & \cos\phi & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Rotation around y-axis:
\[
R_y(\phi) = \begin{pmatrix}
\cos\phi & 0 & \sin\phi & 0 \\
0 & 1 & 0 & 0 \\
-\sin\phi & 0 & \cos\phi & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Rotation around z-axis:
\[
R_z(\phi) = \begin{pmatrix}
\cos\phi & -\sin\phi & 0 & 0 \\
\sin\phi & \cos\phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
M \cdot x = \begin{pmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix} = \begin{pmatrix}
x' \\
y' \\
z' \\
w'
\end{pmatrix}
\]
Local Coordinate Marker

Nothing is displayed on the screen until you draw an object.
Transformation matrices are stored in memory.
How do we keep track of positioning information?
Local Coordinate Marker

Nothing is displayed on the screen until you draw an object.
Transformation matrices are stored in memory.
How do we keep track of positioning information?

One answer: Local Coordinate Marker (LCM)

- A special coordinate system that we track via pen and graph paper or mentally.
- The LCM represents a transformation matrix.
- But in a manner more intuitive to humans.
Local Coordinate Marker

LCM begins at the worldspace origin
Its basis vectors match those of the WS basis
Local Coordinate Marker

We keep a track of the marker as we conduct various positioning operations.
Local Coordinate Marker

Until we draw the object

• Note: the LCM is not drawn on the screen!
• (unless you decide to add some code to do so…)

Transformation Operations

Initialise()
Translate(5,3)
Draw_Square()
Practical transformations

The LCM represents a special transformation matrix

- *Modelview matrix*
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix

Transformation Operations

Initialise()

Modelview matrix

\[
\begin{pmatrix}
1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0
\end{pmatrix}
\]
Practical transformations

The LCM represents a special transformation matrix

- **Modelview matrix**
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix

![Image of transformation operations and identity matrix]

Transformation Operations

Initialise()

<table>
<thead>
<tr>
<th>Modelview Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>0.0 1.0 0.0 0.0</td>
</tr>
<tr>
<td>0.0 0.0 1.0 0.0</td>
</tr>
<tr>
<td>0.0 0.0 0.0 1.0</td>
</tr>
</tbody>
</table>
Practical transformations

The LCM represents a special transformation matrix

- *Modelview matrix*
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix

![Diagram showing transformation operations and modelview matrix](image-url)
Practical transformations

The LCM represents a special transformation matrix

- **Modelview matrix**
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix

Transformation Operations

```
Initialise()
Translate(5,3)
Draw_Square()
```

Modelview matrix

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
```
Practical transformations

The LCM represents a special transformation matrix

- **Modelview matrix**
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix
- Translations and rotations concatenate into the current state of the Modelview matrix

```
Transformation Operations
Initialise()
Translate(5,3)
Draw_Square()
Translate(-4,-1)
```

```
Modelview matrix
\[
\begin{pmatrix}
1.0 & 0.0 & 0.0 & 1.0 \\
0.0 & 1.0 & 0.0 & 2.0 \\
0.0 & 0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0 \\
\end{pmatrix}
\]
```
Practical transformations

The LCM represents a special transformation matrix

- *Modelview matrix*
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix
- Translations and rotations concatenate into the current state of the Modelview matrix
Practical transformations

The LCM represents a special transformation matrix

- *Modelview matrix*
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix
- Translations and rotations concatenate into the current state of the Modelview matrix

```
Transformation Operations
Initialise()
Translate(5,3)
Draw_Square()
Translate(-4,-1)

Modelview matrix

\[
\begin{pmatrix}
1.0 & 0.0 & 0.0 & 1.0 \\
0.0 & 1.0 & 0.0 & 2.0 \\
0.0 & 0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0 \\
\end{pmatrix}
\]
```

Result
Rotations and translations

Transformation Operations

Initialise()

Let’s add in some rotations to the mix
Rotations and translations

Let’s add in some rotations to the mix
Rotations and translations

Let’s add in some rotations to the mix

Transformation Operations

- Initialise()
- Translate(5,3)
- Rotate(45)
Let’s add in some rotations to the mix

Notice how the final translation of (2,0) takes place with respect to the LCM coordinate system

• Not the WS axes
Order matters

Translation and rotation operations are non-commutative
Order matters

Translation and rotation operations are non-commutative
Order matters

Translation and rotation operations are non-commutative
See matrices from last lecture
Object space revisited

Example 1: Objects are placed in world space according to their corresponding origin in object space
Object space revisited

Example 1: Objects are placed in world space according to their corresponding origin in object space

Transformation Operations
- Initialise()
- Translate(2,2)
Object space revisited

Example 1: Objects are placed in world space according to their corresponding origin in object space
i.e. Object space origin is mapped onto the LCM

Square1 specified in Object space (OS)

Positioning in world space (WS) via transform

Transformation Operations

- Initialise()
- Translate(2,2)
- Draw_Square1()
Example 2: Objects are placed in world space according to their corresponding origin in object space
Object space revisited

Example 2: Objects are placed in world space according to their corresponding origin in object space

Square2 specified in Object space (OS)

Positioning in world space (WS) via transform

Transformation Operations

Initialise()
Translate(2,2)
Example 2: Objects are placed in world space according to their corresponding origin in object space

i.e. Object space origin is mapped onto the LCM

Notice here that the LCM (transformation) is the exact same as in example 1
Object space revisited

Rotations also occur about the origin of the object
• Default *axis of rotation*
Notice that the transformation is the exact same
Object space revisited

Rotations also occur about the origin of the object
• Default *axis of rotation*
Notice that the transformation is the exact same
Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful
When positioning multiple objects, saving and loading transformations can be useful.

Save our transformation details (position and orientation of the LCM)

Transformation Operations

- Initialise()
- PushMatrix()
Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful.

Transformation Operations

- Initialise()
- PushMatrix()
- Translate(2,2)
Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful.
Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful.

Transformation Operations

- Initialise()
- PushMatrix()
- Translate(2, 2)
- Rotate(45)
- Draw_Square()
Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful

Transformation Operations

- Initialise()
- PushMatrix()
- Translate(2,2)
- Rotate(45)
- Draw_Square()
- PopMatrix()

Load our previous transformation details

(another option in this case: re-initialise the Modelview matrix)
Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful.

Transformation Operations

- Initialise()
- PushMatrix()
 - Translate(2,2)
 - Rotate(45)
- Draw_Square()
- PopMatrix()
- PushMatrix()

Save our transformation details (position and orientation of the LCM)
Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful.
Saving and loading transformations

When positioning multiple objects, saving and loading transformations can be useful.

Transformation Operations

- Initialise()
- PushMatrix()
 - Translate(2,2)
 - Rotate(45)
 - Draw_Square()
- PopMatrix()
- PushMatrix()
 - Translate(6,3)
 - Draw_Square()
- PopMatrix()

Load our previous transformation details

(Another option in this case: re-initialise the Modelview matrix)
Adding some animation

Enter a variable angle for the first rotate
Increase it by e.g. 10 degrees at each update

Transformation Operations

x=0
Initialise()
PushMatrix()
 Translate(2,2)
 Rotate(x)
 Draw_Square()
PopMatrix()

PushMatrix()
 Translate(6,3)
 Draw_Square()
PopMatrix()

x=x+10
...(constrain x to sensible value)
The stack

Transformations are saved on and loaded from a stack data structure.

Saving a matrix = push operation
Loading a matrix = pop operation

LIFO (last in, first out)
• Push on to the top of the stack
• Pop off the top of the stack
Operations summary

Initialise()
Initialise an identity transformation

Identity matrix (look for functions with similar names to `LoadIdentity()`)

Translate(t_x,t_y)
Matrix multiplication

Rotate(degrees)
Usually also specify an axis of rotation
In our examples, assume it is (0,0,1)
Rotations around the z axis i.e. in the XY plane

PushMatrix()
- Save the current Modelview matrix state on stack

PopMatrix()
- Load a previous Modelview matrix state from stack
Introducing hierarchies

A tree of separate objects that move relative to each other

- The positions and orientations of objects further down the tree are dependent on those higher up
- Parent and child objects
- Transformations applied to parents are also applied down the hierarchy to their children

Examples:

1. The human arm (and body)
 Hand configuration depends the elbow configuration, depends on shoulder configuration, and so on…

2. The Solar system
 Solar bodies rotate about their own axes as well as orbiting around the Sun (moons around planets, planets around the Sun)
Hierarchies

- You have already learned the basic operations necessary for hierarchical transformations.
- Recall: up to now, the LCM has been moved back to the world-space origin before placing each object.
Hierarchies

It's slightly different in a hierarchy

• Objects depend on others (a parent object) for their configurations (position and orientation)
• These objects need to be placed relative to their parent objects’ coordinates, rather than in world-space

In practice, this involves the use of nested `PushMatrix()` and `PopMatrix()` operations

• Especially when there are multiple branches
• *More on these in a later lecture*
“...a flexible software sketchbook and a language for learning how to code within the context of visual arts”

• Good for a foray into transformations without the complexity of an IDE
• OpenGL-based: similar (but less sophisticated) functionality to the framework that you will use in the course
• Straight forward mapping from operations we covered in this lecture to graphics programming functions