DH2323 DGI16

INTRODUCTION TO
COMPUTER GRAPHICS AND
INTERACTION

GLOBAL ILLUMINATION

Christopher Peters
CST, KTH Royal Institute of Technology,
Sweden
chpeters@kth.se
http://kth.academia.edu/ChristopherEdwardPeters

Based on DGI12 notes by Carl Henrik Ek
Image Synthesis

In computer graphics, create images based on a *model*

Recall:
- An underlying process generates observations
- Can control generation through parameters
Nice Results

"Christmas Baubles" by Jaime Vives Piqueres

"Still with Bolts" by Jaime Vives Piqueres

"Distant Shores" by Christoph Gerber

Christopher Peters

DH2323 Global Illumination

chpeters@kth.se
Some Classifications

- **Local Illumination**
 - Consider lighting effects only directly from the light sources and ignore effects of other objects in the scene (e.g. reflection off other objects)

- **Global Illumination**
 - Account for all modes of light transport
Why Go Local?

- Usually easy to control and express
 - Director's chair: important when you want a scene to look a certain way

- Fast
 - Easier to obtain real-time performance (or just tractable calculations)

- Do not require knowledge of the entire scene

But …

- Not as accurate or compelling as global models
How Can It Be Modelled?

- Use a *lighting model* as inspiration
- But real light extremely complicated to simulate
 - Light bounces around the environment
 - Heavy processing required even for coarse approximations
 - Simplifications allow real-time performance

- Lighting models:
 - Lambertian – we will consider this first
 - Phong – not to be confused with *Phong shading*
 - Blinn-Phong and others...
Gouraud Shading

Gouraud Shading

Gouraud

Wikimedia Commons
Phong Shading

- Phong shading can reproduce highlights in the center of a polygon that Gouraud Shading may miss
Phong Illumination Model

NOT the same as Phong Shading
Lambertian Vs Phong

Lambertian Surface

Phong Illuminated Specular Surface
Overall

- Ambient
- Diffuse
- Specular
- Per light source or scene
Some Classifications

- **Local Illumination**
 - Consider lighting effects only directly from the light sources and ignore effects of other objects in the scene (e.g. reflection off other objects)

- **Global Illumination**
 - Account for all modes of light transport
Global Illumination

- Account not only for light coming directly from light sources
- Also reflected light bouncing around the scene
- Appear more photo-realistic
- But computationally more expensive than local illumination approaches
 - Slower
- Speed-up techniques are always important
Global Illumination

- Example techniques:
 - Ray tracing (sound familiar?)
 - Radiosity
 - Path tracing
 - Metropolis light transport
 - Ambient occlusion
 - Photon mapping
 - Image based lighting
The Rendering Equation

\[L_0(x, \omega_o, \lambda, t) = L_e(x, \omega_o, \lambda, t) + \int_{\Omega} f_r(x, \omega_i, \omega_o, \lambda, t) L_i(x, \omega_i, \lambda, t) (\omega_i \cdot n) \, d\omega_i \]

Describes:
Total amount of light emitted from a point x along a specific viewing direction

Given:
-Incoming light function
-BRDF

Basis:
-Law of conservation of energy

BRDF
Account for angle w.r.t. light

Hemisphere containing all \(w_i \)

Incoming radiance
BRDF

Schwartz et al., Measurement Devices Focusing on the Developments at the University of Bonn, 2014
The Rendering Equation

\[L_o(x, \omega_o, \lambda, t) = L_e(x, \omega_o, \lambda, t) + \int_{\Omega} \rho(x, \omega_i, \omega_o, \lambda, t) L_i(x, \omega_i, \lambda, t) (\omega_i \cdot n) \, d\omega_i \]

Describes:
Total amount of light emitted from a point \(x \) along a specific viewing direction

Given:
- Incoming light function
- BRDF

Account for angle w.r.t. light

Hemisphere containing all \(\omega_i \)

Integral over unit hemisphere containing all possible \(\omega_i \)
Raytracing

- Few bounces (relatively)
- Light rays striking surface from
 - Light source
 - Specular/refractive direction
- Easy to implement
- Ignore diffuse objects inter-object relationships
Radiosity

- Conservation of light energy
- Integrate radiance leaving the surface in all directions
- Thermal engineering; FEM for solving rendering eq.
 - Illumination as heat transfer
- View independent
Radiosity

- Surfaces divided up into *patches*
- Do operations between patches
 - Form factors (how well patches are oriented w.r.t. each other, occlusions, distance)
 - Calculate brightness of each patch
Radiosity

- Diffuse bouncing of light
Radiosity

- Recursive/iterative technique
Radiosity

- View independent
- Can calculate solution for an entire scene off-line
- View scene from any view point in real-time

Video: https://www.youtube.com/watch?v=8i2M255Zw9I
Global Illumination

Ray tracing:
– Good for specular
– Bad for diffuse

Radiosity:
– Good for diffuse
– Bad for specular

Hybrid techniques
Photon Mapping

- Superset/hybrid of ray tracing and radiosity
- View dependent
- Handles diffuse and specular well
- Rays from light source and camera traced separately until termination criteria met
- Connected to produce luminance value
- Realistically simulate interaction of light with different objects
Photon Mapping

- **Pass 1: Construct photon map**
 - Light packets sent into scene from light sources
 - When photon intersects object, details stored in a photon map
 - Photon may be reflected (BRDF), absorbed or refracted depending on surface

- **Pass 2: Rendering**
 - Estimate radiance of every pixel of image based on photon map
 - Ray trace scene
Caustics

- Curved regions of bright reflected or refracted light
Sub-surface scattering

- Light bouncing around inside material before exiting

https://vimeo.com/36048029

Realistic Human Face Rendering for “The Matrix Reloaded”, Siggraph 2003
Links

http://www.cc.gatech.edu/~phlosoft/photon/
Great ray tracing and photon mapping applet

http://graphics.ucsd.edu/~henrik/papers/photon_map/
The photon mapping paper (Henrik Jensen)
Miscellany

• Bilda opening soon
 – Please only submit archive of all **final** labs + documentation

• You should be working on Lab 2
 – Any problems? Let me know!
 – Another lab help session will be organised soon

– User perception studies
Next lecture

- Rasterised Rendering I
- Wednesday 27th April
- 13:00 – 15:00 B2