Complex numbers refresher

How many solutions have a quadratic equation?

$$
y=x^{2}-1=0
$$

Two solutions!

Do you remember the difference of two squares?

$$
\begin{aligned}
& y=(x+1)(x-1)=x^{2}+\not x-\not x-1^{2}=x^{2}-1 \\
& y=0 \Leftrightarrow(x+1)(x-1)=0 \\
& x_{1}=-1 \quad x_{2}=+1
\end{aligned}
$$

The answer might as well be written:
$x_{1}=-\sqrt{1} \quad x_{2}=+\sqrt{1}$

William Sandqvist william@kth.se

How many solutions has this?

Two solutions!

If it were the case that the number "root of minus one" would exist!

$$
\begin{aligned}
& y=(x+\sqrt{-1})(x-\sqrt{-1})=x^{2}+\sqrt{2} x-\sqrt{-1} x \underbrace{-\sqrt{-1}^{2}}_{+1}=x^{2}+1 \\
& y=0 \Leftrightarrow(x+\sqrt{-1})(x-\sqrt{-1})=0 \\
& x_{1}=-\sqrt{-1} \quad x_{2}=+\sqrt{-1}
\end{aligned}
$$

Imaginary numbers

In mathematics you want there to be as many solutions to an equation as the equation degrees.

This will be the case if we introduce "the square root of minus one" as a number. This number is usually referred to as \mathbf{i} (imaginary unit), or \mathbf{j} because the main use of imaginary numbers are in electricity, where the letter " i " is already taken to denote current.

In addition to our usual real dimension with $\mathbf{1}(\sqrt{1}=1)$ as unit we introduce an extra imaginary dimension with \mathbf{j} ($\sqrt{-1}$) as the unit.

Number line

Would you like to "rehearse" Your knowledge of complex numbers, so go ahead and continue reading here ... number line

A common, real numbers is usually illustrated as a point on the so-called number line. The number amount is represented by the distance from the point in question to the number line zero.

The complex plane $z=a \cdot \sqrt{1}+b \cdot \sqrt{-1}=a+\mathrm{j} b$

A complex number z contains two components. It can be written $a+\mathbf{j} b$. Here a and b are real numbers. \mathbf{j} is " $\sqrt{-1} "$ and is called the imaginary unit. imaginary
a is the complex number real part, $\operatorname{Re}(z)$.
b is it's imaginary part, $\operatorname{Im}(z)$.

Every complex number can be represented as a point in a twodimensional coordinate system, the complex plane.

Amount and Argument

A complex number "coordinates" can alternatively be expressed polar, as the number amount $|\mathrm{z}|$, the distance from the origin, and the argument α, the angle to the real axis.

The amount is calculated by using the Pythagorean theorem.

To calculate the argument you need to use trigonometric functions.

Amount and Argument

$$
\begin{aligned}
& a=|z| \cos (\alpha) \quad b=|z| \sin (\alpha) \\
& z=|z|(\cos (\alpha)+\mathrm{j} \cdot \sin (\alpha)) \\
& |z|=\sqrt{[\operatorname{Re}(z)]^{2}+[\operatorname{lm}(z)]^{2}} \\
& \arg (z)=\alpha=\arctan \left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)+n \cdot 2 \pi \\
& \arg (z)=\alpha=\arctan \left(\frac{\operatorname{lm}(z)}{\operatorname{Re}(z)}\right)+\pi+n \cdot 2 \pi \quad a<0
\end{aligned}
$$

Addition of complex numbers

$$
\begin{aligned}
& z=z_{1}+z_{2}=\operatorname{Re}\left(z_{1}\right)+\operatorname{Re}\left(z_{2}\right)+\mathrm{j}\left(\operatorname{Im}\left(z_{1}\right)+\operatorname{Im}\left(z_{2}\right)\right) \\
& z_{1}=a_{1}+\mathrm{j} b_{1} \quad z_{2}=a_{2}+\mathrm{j} b_{2} \\
& z=z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+\mathrm{j}\left(b_{1}+b_{2}\right)=\operatorname{Re}(z)+\mathrm{j} \cdot \operatorname{Im}(z)
\end{aligned}
$$

The figure shows what the addition means in the complex plane. The pointer z becomes equal to the geometrical sum of the pointers for z_{1} and z_{2}.

Subtraction

$z=z_{1}-z_{2}=\operatorname{Re}\left(z_{1}\right)-\operatorname{Re}\left(z_{2}\right)+\mathrm{j}\left(\operatorname{Im}\left(z_{1}\right)-\operatorname{Im}\left(z_{2}\right)\right)$

In plane becomes pointer for z equal to the geometric difference between the pointers for z_{1} and z_{2}.

Multiplication

Multiplication rule is most easily demonstrated with an example.

$$
\begin{aligned}
& z_{1}=a_{1}+\mathrm{j} b_{1} \quad z_{2}=a_{2}+\mathrm{j} b_{2} \quad(\mathrm{j})^{2}=-1 \\
& z=z_{1} \cdot z_{2}=\left(a_{1}+\mathrm{j} b_{1}\right)\left(a_{2}+\mathrm{j} b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+\mathrm{j}\left(a_{1} b_{2}+a_{2} b_{1}\right)
\end{aligned}
$$

Multiplication in polar form

Multiplicate the amounts and add the arguments!

$$
\begin{aligned}
& z=z_{1} \cdot z_{2} \\
& =\left|z_{1}\right|\left(\cos \left(\alpha_{1}\right)+\mathrm{j} \sin \left(\alpha_{1}\right)\right) \cdot\left|z_{2}\right|\left(\cos \left(\alpha_{2}\right)+\mathrm{j} \sin \left(\alpha_{2}\right)\right) \\
& =\left|z_{1}\right| \cdot\left|z_{1}\right|\left(\cos \left(\alpha_{1}+\alpha_{2}\right)+\mathrm{j} \sin \left(\alpha_{1}+\alpha_{2}\right)\right)
\end{aligned}
$$

Which means that

$$
|z|=\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right| \quad \arg (z)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)
$$

Division

$$
\begin{aligned}
& z_{1}=a_{1}+\mathrm{j} b_{1} \quad z_{2}=a_{2}+\mathrm{j} b_{2} \\
& z=\frac{z_{1}}{z_{2}}=\frac{a_{1}+\mathrm{j} b_{1}}{a_{2}+\mathrm{j} b_{2}}
\end{aligned}
$$

Now you often want to have the results in the form $a+\mathrm{j} b$ and if so, we extends the denominator with "conjugates quantity" $a_{2}-\mathrm{j} b_{2}$.

$$
z=\frac{\left(a_{1}+\mathrm{j} b_{1}\right)\left(a_{2}-\mathrm{j} b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}=\frac{a_{1} a_{2}+b_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}+\mathrm{j} \frac{a_{2} b_{1}-a_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}
$$

Division in polar form

If the numbers are in polar form, the division rule looks like this:

$$
\begin{aligned}
& z=\frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\left(\cos \left(\alpha_{1}-\alpha_{2}\right)-\mathrm{j} \sin \left(\alpha_{1}-\alpha_{2}\right)\right) \\
& |z|=\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \quad \arg (z)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
\end{aligned}
$$

Divide amounts and subtract arguments!

Summary

$$
\begin{aligned}
& \left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right| \\
& \left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \\
& \arg \left(z_{1} \cdot z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \\
& \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
\end{aligned}
$$

Exercises

Question

In which direction are the pointer pointing $z=-2+\mathrm{j} 2$?

Exercises

Question

How long is the pointer $z=3+\mathrm{j} 4$?

$$
\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=5
$$

Exercises

$$
z=z_{1} \cdot z_{2}
$$

Question

$z_{1}=\mathrm{j}$ and $z_{2}=-1-\mathrm{j}$
Derive $|z|$ and $\arg (z)$ for $z=z_{1} \cdot z_{2}$? Algebraically:

$$
\begin{aligned}
& z=z_{1} \cdot z_{2}=\mathrm{j} \cdot(-1-\mathrm{j})=-\mathrm{j} \cdot \mathrm{j}^{2}=1-\mathrm{j} \\
& |z|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
& \arg (z)=\alpha=\arctan \left(\frac{-1}{1}\right)=\arctan (-1)= \\
& -\frac{\pi}{4}+2 \pi=\frac{7 \pi}{4}
\end{aligned}
$$

Exercises

Question

$z_{1}=\mathrm{j}$ and $z_{2}=-1-\mathrm{j}$
Derive $|z|$ and $\arg (z)$ for $z=z_{1} \cdot z_{2}$? Polar:

$$
\begin{array}{ll}
\left|z_{1}\right|=1 & \left|z_{2}\right|=\sqrt{2} \\
z_{1}=1\left(\cos \frac{\pi}{2}+j \sin \frac{\pi}{2}\right) \quad z_{2}=\sqrt{2}\left(\cos \frac{5 \pi}{4}+j \sin \frac{5 \pi}{4}\right) \\
z=z_{1} \cdot z_{2}=1 \cdot \sqrt{2}\left(\cos \left(\frac{\pi}{2}+\frac{5 \pi}{4}\right)+\sin \left(\frac{\pi}{2}+\frac{5 \pi}{4}\right)\right) \\
|z|=\sqrt{2} \quad \arg (z)=\frac{7 \pi}{4}
\end{array}
$$

Multiplication with \mathbf{j} apparently means turning 90° !

Exercises
 $$
z=\frac{z_{1}}{z_{2}}
$$

Question

$z_{1}=2+3 \mathrm{j}$ and $z_{2}=1+\mathrm{j}$
Derive $z=z_{1} / z_{2}$? Algebraically:

$$
\begin{aligned}
& z=\frac{z_{1}}{z_{2}}=\frac{2+\mathrm{j} 3}{1+\mathrm{j}}=\frac{(2+\mathrm{j} 3)}{(1+\mathrm{j})} \cdot \frac{(1-\mathrm{j})}{(1-\mathrm{j})}= \\
& =\frac{2+\mathrm{j}-3 \mathrm{j}^{2}}{1+1}=\frac{5+\mathrm{j}}{2}=2,5+0,5 \mathrm{j}
\end{aligned}
$$

Are complex numbers used?

Complex numbers can be used for CAD and imaging and gaming applications.
A picture drawn of points in the complex plane looks the same as one that was designed in our usual twodimensional coordinate system.

Mathematics will be easier. No complicated math functions are needed. For "twisting" and "rescaling"
 the image, one only has to multiply all points with a appropriate "complex" number!

The Mandelbrot set

See here a remarkable image composed of complex numbers ...

Mandelbrot set

iterate for every point $\mathbf{a , b}$

$z_{n+1}=z_{n}^{2}$
as long as
$\left\|z_{n+1}\right\|<2$

The number of turns becomes the point color $n=$ color

Mandelbrot color zoom.gif

William Sandqvist william@kth.se

