DT2118
Speech and Speaker Recognition
Basic Search Algorithms

Giampiero Salvi

KTH/CSC/TMH giampi@kth.se

VT 2015
Components of ASR System

Speech Signal → Spectral Analysis → Feature Extraction

Constraints - Knowledge

Acoustic Models → Lexical Models → Language Models

Search and Match

Recognised Words

Decoder
Outline

Search Space in ASR
 Combining Acoustic and Language Models
 Search Space with N-grams

State-Based Search Algorithms
 Blind Graph Search
 Heuristic Graph Search
 Beam Search

Search Algorithms in ASR
Outline

Search Space in ASR
Combining Acoustic and Language Models
Search Space with N-grams

State-Based Search Algorithms
Blind Graph Search
Heuristic Graph Search
Beam Search

Search Algorithms in ASR
Combining Acoustic and Language Models

\[
P(\text{words} | \text{sounds}) = \frac{P(\text{sounds} | \text{words}) P(\text{words})}{P(\text{sounds})}
\]

- \(P(\text{sounds} | \text{words}) \) Acoustic Models
- \(P(\text{words}) \): Language Models
- \(P(\text{sounds}) \): constant
Search Objective

- Objective: find word sequence with maximum posterior probability

\[\hat{W} = \arg \max_W P(W|X) \]

\[= \arg \max_W \frac{P(W)P(X|W)}{P(X)} \]

\[= \arg \max_W P(W)P(X|W) \]

For short

words = W

sounds = X
Combining Acoustic and Language Models

- The acoustic models are observed at a higher rate than the language models
- The acoustic observations are correlated
- Gives the acoustic model higher weight than the language model
Solution: Language Model Weight

Instead of

\[P(W)P(X|W) \]

Use

\[P(W)^{LW}P(X|W) \]

Where LW is the language model weight
penalty for many words in the utterance:

- Every new word lowers $P(W)$ ($LW > 0$)
- encourage few (long) words
- discourage many (short) words
Solution: Insertion Penalty

Work around: instead of

\[P(W)^{LW} P(X|W) \]

use

\[P(W)^{LW} IP^N P(X|W) \]

Where IP is an Insertion Penalty. In log domain:

\[LW \log[P(W)] + N \log[IP] + \log[P(X|W)] \]
Solution: Insertion Penalty

Work around: instead of

\[P(W)^{LW} P(X|W) \]

use

\[P(W)^{LW} IP^N P(X|W) \]

Where IP is an Insertion Penalty. In log domain:

\[LW \log[P(W)] + N \log[IP] + \log[P(X|W)] \]

LW and IP need to be optimised for the application
Search in Isolated Word Recognition

- Boundaries known
- Calculate $P(X|W)$ using forward algorithm or Viterbi
- Choose W with highest probability
- When sub-word models (monophones, triphones, ...) are used HMMs may be easily concatenated
Search in Continuous Speech Recognition

- Added complexity from isolated word rec
- unknown word boundaries
- each word can theoretically start at any time frame
- the search space becomes huge for large vocabularies
Simple Continuous Speech Recognition Task

HMM of W_1

HMM of W_2

S

C
HMM trellis for 2 word cont. rec.
Language Model Kinds

- **FSM, Finite State Machine**
 - word network expanded into phoneme network (HMMs)

- **CFG, Context-Free Grammar**
 - set of production rules expanding non-terminals into sequence of terminals (words) and non-terminals (e.g. dates, names)

- **N-gram models**
Finite-State Machine (FSM)

- Word network expanded into phoneme network (HMMs)
- Search using time-synchronous Viterbi
- Sufficient for simple tasks (small vocabularies)
- Similar to CFG when using sub-grammars and word classes
Finite-State Machine (FSM)

What is Seattle's weather?

Boston's population

Denver's latitude

Show (optional)

weather population latitude

Seattle's

Boston's

Denver's

What is

is

Show
FSMs vs Markov Models

A1

A2

A3

A4
FSMs vs Markov Models

FSM

MM

S

A1
A2
A3
A4
FSMs vs Markov Models

FSM

MM
Set of production rules expanding non-terminals into sequence of terminals (words) and non-terminals (e.g. `<date>` and `<name>`)
There are three types of arcs in an RTN: CAT(x), PUSH (x) and POP(x).

The CAT(x) arc indicates that x is a terminal node (which is equivalent to a word arc).
Search with CFG (Recursive Transition Network)

\[
\begin{align*}
 S & \rightarrow \text{NP VP} \\
 \text{NP} & \rightarrow \text{sam} \mid \text{sam davis} \\
 \text{VP} & \rightarrow \text{VERB tom} \\
 \text{VERB} & \rightarrow \text{likes} \mid \text{hates}
\end{align*}
\]
CFGs and FSGs? vs N-grams

- finite state or context-free grammars: the number of states increases enormously when it is applied to more complex grammars.
- questionable if FSG or CFG are adequate to describe natural languages
- Use n-grams instead
Finite State Transducers (FST)

- An FST is a finite state machine with an input and an output. The input is translated (transduced) into one or more outputs with probabilities assigned.
- FSTs at different representation layers (e.g. syntax, lexicon, phoneme) are combined into a single FST.
 - The combined FST can be minimized efficiently.
 - Simplifies the search algorithm, which lowers the recognition time.
- Popular for large vocabulary recognition.
Finite State Transducers (FST)
Recognition Cascade (simplified)

I : input feature vectors
H : HMM
C : context-dependency model
L : lexicon
G : grammars

Search Transducer:

$I \circ H \circ C \circ L \circ G$
Search Space with Unigrams

\[
P(W) = \prod_{i=1}^{n} P(w_i)
\]
Search Space with Bigrams

N states

N^2 word transitions

$$P(W) = P(w_1 | < s >) \prod_{i=2}^{n} P(w_i | w_{i-1})$$
Backoff Paths

For an unseen bigram $P(w_j|w_i) = \alpha(w_i)P(w_j)$ where $\alpha(w_i)$ is the backoff weight for word w_i.
Search Space with Trigrams

N^2 states

N^3 word transitions
How to handle silence between words

Insert optional silence between words

\[W_i \xrightarrow{\text{sil}} W_j \]
Viterbi Approximation

When HMMs are used for acoustic models, the acoustic model score (likelihood) used in search is by definition a summation of the scores of all possible state sequences (forward probability).

- Computationally very costly

The Viterbi Approximation:

- instead of most likely word sequence
- find most likely state sequence
Outline

Search Space in ASR
Combining Acoustic and Language Models
Search Space with N-grams

State-Based Search Algorithms
 Blind Graph Search
 Heuristic Graph Search
 Beam Search

Search Algorithms in ASR
State-based search paradigm

Triplet S, O, G (or quadruple S, O, G, N)

S : set of initial states

O : set of operators applied on a state to generate a transition to another state with corresponding cost

G : set of goal states

N : set of intermediate states. Can be preset or generated by O.

$O=1\text{km}$

S

$O=3\text{km}$

G
General Graph Searching Procedures

Dynamic Programming is powerful but cannot handle all search problems, e.g. NP-hard problems
NP-hard problems

- Definition: The complexity class of decision problems that are intrinsically harder than those that can be solved by a Non-deterministic Turing machine in Polynomial time.
- E.g. exponential time
NP-Hard Problem Examples

The 8 Queen problem
 - Place 8 queens on a chessboard so no-one can capture any of the other

The traveling salesman problem
 - Leave home, Visit all cities once, Return home
 - Find shortest distance

Use heuristics to avoid combinatorial explosion
The 8 queen problem

1 of 12 solutions
Simplified Salesman Problem

- Will illustrate different search algorithms
- Find shortest path from S to G
- Not required to visit all cities
Expand paths

- We can expand the graph to an explicit tree with all paths specified
- The successor (move) operator
 - generates all successors of a node and computes all costs associated with an arc
- Branching factor
 - average number of successors for each node
- Inhibit cyclic paths
 - No path progress
Fully expanded search tree (graph)
Explicit search impractical for large problems

- Use Graph Search Algorithm
 - Dynamic Programming principle
 - Only keep the shortest path to a node
- Forward direction (reasoning) normal
- Backward reasoning may be more effective if
 - more initial states than goal states
 - backward branching factor smaller than the forward one
- Bi-directional search
 - start from both ends simultaneously
A good case for bi-directional search

The increase of the number of hypotheses in one search direction can be limited by the hypotheses of the opposite direction.
A bad case for bi-directional search
Blind Graph Search Algorithms

- Find an acceptable path — need not be the best one
- Blindly expand nodes without using domain knowledge
- Also called Uniform search or Exhaustive search
- Depth-First and Breadth-First
- Can find optimal solution after all solutions have been found
 - Brute-force search or British Museum Search
Depth-first search

- Deepest nodes are expanded first
- Nodes of equal depth are expanded arbitrarily
- Backtracking
 - If a dead-end is reached go back to last node and proceed with another one
- If Goal reached, exit
- Dangerous if infinite dead-end!
 - Introduce bound on depth
Depth-first search
Breadth-first search

- Same level nodes are expanded before going to the next level
- Stop when goal is reached
- Guaranteed to find a solution if one exists
Breadth-first search
Heuristic Graph Search Motivation
Heuristic Graph Search Motivation

destination
(Chrysler Building)
Heuristic Graph Search Motivation

(Chrysler Building)
Heuristic Graph Search Motivation

Destination: Chrysler Building (no map)
Heuristic graph search

Goal: avoid searching in hopeless directions

- Use domain-specific (heuristic) knowledge to guide the search

\[g(N) \] The distance of the partial path from root \(S \) to node \(N \)

\[h(N) \] Heuristic estimate of remaining distance from node \(N \) to \(G \)

\[f(N) = g(N) + h(N) \] Estimate of the total distance from \(S \) to \(N \)
Best-first (A* search)

- A search is said to be admissible if it can guarantee to find an optimal solution if one exists.
- If $h(N)$ is an underestimate of the remaining distance to G, the best-first search is admissible. This is called A* search.
City travel problem

Use straight-line distance to goal as heuristic
City travel problem with heuristics
Different variants

- If \(h(N) = 0, \forall N \), then uninformed (uniform-cost) search
- If \(h(N) = 0 \) and \(g(N) \) is the depth, then breadth-first search
- \(h_2 \) is a more informed heuristic than \(h_1 \) iff:
 1. \(h_2(N) \geq h_1(N), \forall N \)
 2. \(h_2 \) is still admissible
Example Heuristics: 8-Puzzle

- h_1: how many misplaced numbers
- h_2: sum of row and column distances from solution
Best-first (A* search)

- Can also be used to find the n-best solutions
- Not suited for real-time incremental speech recognition
 - Incremental recognition: the initial part of the sentence is recognised before the utterance is complete
 - The estimate of $h(N)$ requires information on the remainder of the utterance
Beam Search

- Breadth-first type of search but only expand paths likely to succeed at each level
- Only these nodes are kept in the beam and the rest are ignored, pruned
- In general a fixed number of paths, w, are kept at each level (beam width)
Beam Search (width=2)
Unlike A* search, beam search is an approximate heuristic search method that is not admissible.

...but, it is very simple

most popular for complicated speech recognition problems.

HVite in HTK implements it
Outline

Search Space in ASR
Combining Acoustic and Language Models
Search Space with N-grams

State-Based Search Algorithms
Blind Graph Search
Heuristic Graph Search
Beam Search

Search Algorithms in ASR
Time-Synchronous Viterbi Search

- breadth first + dynamic programming
- For time t each state is updated by the best score of time t-1
- The best-scoring state sequence can be found by back-tracking
- We want word sequence: only save back-pointer at language nodes
- we need only 2 successive time slices for the Viterbi computations
- Dynamic construction of the search space during the search
Viterbi Beam Search

- The search space for Viterbi search is $O(NT)$ and the complexity $O(N^2T)$ where
 - N is the total number of HMM states
 - T is the length of the utterance
- For large vocabulary tasks these numbers are astronomically large even with the help of dynamic programming
- Prune search space by beam search
- Calculate lowest cost D_{min} at time t
- Discard all states with cost larger than $D_{\text{min}} + T$ before moving on to the next time sample $t + 1$
Viterbi Beam Search

- Empirically, a beam size of between 5% and 10% of the total search space is enough for large-vocabulary speech recognition.
- This means that 90% to 95% can be pruned off at each time t.
- The most powerful search strategy for large vocabulary speech recognition
Stack Decoding A* Search

- Variety of the A* algorithm based on the forward algorithm
 - Gives the probability of each word or subword not just an approximation as Viterbi search
- Consistent with the forward-backward training algorithm
- Can search for the optimal word string rather than the optimal state sequence
- Can, in principle, accommodate long-range language models
Admissible Heuristics for Remaining Path

\[f(t) = g(t) + h(T - t) \]

- Calculate the expected cost per frame \(\Psi \) from the training set by using forced alignment

\[f(t) = g(t) + (T - t)\Psi \]