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Homework I11, Foundations of Cryptography 2016

Before you start:

1. The deadlines in this course are strict. This homework set is due as specified at
https://www.kth.se/social/course/DD2448/subgroup/vt-2016-kryptol6/page/deadlines-16.

2. Read the detailed homework rules at
https://www.kth.se/social/files/5686fcd8f276542387729c18/solution_rules.pdf.

3. Read about I and T-points, and how these translate into grades, in the course descrip-
tion at
https://www.kth.se/social/files/5692df7bf2765405acal1825f/course_description.pdf.

4. You may only submit solutions for a nominal value of 50 points in total (summing I
and T points). The total number of points below may be larger and this should be
interpreted as giving you a way to choose problems you like.

The problems are given in no particular order. If something seems wrong, then visit
https://www.kth.se/social/course/DD2448/subgroup/vt-2016-kryptol6/page/handouts-10 to
see if any errata was posted. If this does not help, then email dog@kth.se. Don’t forget to
prefix your email subject with Krypto16.

We may publish hints on the homepage as well if a problem appears to be harder than
expected.

Definition 1 The RSA assumption states that if N = pq, where p and q are randomly chosen
primes with the same number of bits, e € Z;(N), and g is randomly chosen in Z%;, then for every
polynomial time algorithm A, Pr[A(N,e,g) = B A B¢ = g mod N| is negligible.

Definition 2 The Strong RSA assumption states that if N = pq, where p and q are randomly
chosen primes with the same number of bits and g is randomly chosen in Z%;, then for every
polynomial time algorithm A, Pr[A(N,g) = (e,8) A B¢ = g mod N A e > 1] is negligible.

This is probably a difficult problem, so for this particular problem (not for the rest of the home-
work) you may cooperate in any way within your study group (of three people) and you can simply
copy the BTEXsource from your joint solution your submitted solution.

In class we considered the RSA signature scheme, i.e., RSA with full domain hash. In this
problem we develop a different scheme based on the strong RSA assumption. Our construction
is similar to some efficient provably secure signature schemes, but we only consider a simplified
scheme and analyze its security in the random oracle model.

The private key of our scheme consists of two random n/2-bit safeﬂ primes p and ¢q. The
public key consists of the modulus N = pg and a random element g from the subgroup QRy of
quadratic residues in Zy. Suppose that H : {0,1}* — P N{0,1}"3 is a random oracle, where P
denotes the set of odd primes. A signature s of a message m is computed as s = ¢g/#(™) mod N,
where 1/H (m) should be understood as H(m)~! mod 1(p — 1)(q — 1). To verify a signature s,

one simply checks that s#(™) mod N = g.

LA prime p is safe if (p — 1)/2 is prime as well.
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(2T) For a standard RSA modulus we do not require that p and ¢ are safe. Prove that
this does not change the hardness of factoring N in any essential way. Hint: Use the prime
number theorem to estimate heuristically the probability that a randomly chosen prime is
safe by chance.

(IT) Prove that if the strong RSA assumption holds, then the standard RSA assumption
holds. (The opposite direction is unknown.)

(1T) Prove that the signature scheme is correct, i.e., that (¢*/#(™ mod N)#(™) mod N = g
for every message m.

(2T) Let p1,...,px € PN{0,1}"*/3 be primes and let ¢’ € QRy be randomly chosen. Prove

that if we define g = (g’)Hf:lpi mod N, then g is randomly distributed in QRy. Thus,
given a random element ¢’ we can construct another random element g of which we can
take any p;th root modulo N efficiently.

(1IT) Suppose that there exists a polynomial time algorithm A such that for random keys
(pk, sk) = ((N,g), (p,q)) and random H,

Pr[ASEn s HO) (pk) = (m, s) A Verify,,(m,s) = LAVi:m; #m] > 6 ,

where m; is the ith query to the signature oracle Signg(-) and § is non-negligible, i.e., A
breaks the signature scheme. (In the literature the random oracle is often implicit. Here
we make it explicit.)

Prove that without loss of generality we may assume that A never asks the same query
twice and that it always evaluates the random oracle H on the message m of its output.

(3T) Use the above to prove that given a random RSA modulus N and a random element
¢ € QRy you can generate a public key pk = (N, g) such that you can simulate (without
the secret key sk) a signature oracle Sign’(-) and a random oracle H(-) such that

Pr[ASig”/(')’H(')(pk) = (m,s) A Verify , (m,s) = 1AVi:m; #m] >6 —e€ ,

where m; is the ith query to the “signature oracle” Sign’(+) and e is exponentially small.

(1T) Prove that if A has polynomial running time 7'(n) and j is randomly chosen in
{1,2,...,T(n)}, then

Pr[ASignl(’)’H(')(pk:) = (m, s) A Verify, . (m, s) = 1 AVi:m; #m Am=mj
>6/T(n)—¢

where m; is the ¢th query to the signature oracle and m; is the ¢th query to the random
oracle, and € is exponentially small. Hint: Exploit that the distribution of j is independent
of everything else.
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1h  (3T) Let N be an RSA modulus, let ¢ € QRy, and define g = (¢/)!1i#P mod N. Prove
that if (m, s) satisfies Verify,;(m,s) = 1 and H(m) = p;, then we can find integers a and
b such that ap; + bHi# p; = 1 and construct (3, p) such that 8 mod N = ¢’ and p > 2.

1i  (2T) Use the above observatations to describe an algorithm A’ that runs A as a subroutine
and breaks the strong RSA assumption, i.e., A’ takes an RSA modulus N and a random
element ¢’ € QR as input and must use A to output (8, p) such that 8 mod N = ¢’ and
p > 2.

1j  (2T) Suppose that we only wish to sign a polynomial h(n) number of distinct messages

known in advance (we can think of the messages as the integers 1,...,h(n)). Can you
modify the signature scheme for this setting and prove its security without the random
oracle?

(2T) Let p and ¢ be distinct odd primes greater than five such that (p — 1)/2 and (¢ — 1)/2 are
prime and define N = pq. What is the order of the largest cyclic non-trivial proper subgroup of
757

We consider variations of signature schemes to illustrate the diversity of even simple notions as
signatures. For each subproblem below, describe the notion in terms of the algorithms involved,
what they do, the security definition, and the motivation for introducing the notion. Do not
simply copy a definition from the literature, instead explain it in your own words, i.e., this
problem is about concepts and not mathematics. Good questions include, but are not limited to:
Who holds which secret keys? Do we need a trusted party to help the signers and verifiers? What
extra features are provided? What, if anything, remains private? What repudiation properties
do we get?

3a (27T) Blind signatures.

3b (2T) Ring signatures.

3c  (2T) Group signatures. (How do they differ from ring signatures?)

Hint: Do not get stuck in the technical details of any single paper. Browse multiple papers to
understand the key ideas.

Consider the hash function defined as follows. Let N = pg where p and ¢ are randomly chosen
safe primes of the same bit-size, and let g be randomly chosen in Z}, with order (p—1)(¢—1)/4.
Then define hy 4(z) = g* mod N.

4a  (2T) Prove that a multiple of (p —1)(¢ —1)/4 can be computed from a collision.

4b  (2T) Use this fact to prove that the hash function is collision-resistant under the strong
RSA assumption.
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(2T) Read about Lamport’s one-time signatures and explain why you can not use a Lamport
signature key pair more than once in general.

(10I) Implement the arithmetic of an elliptic curve. A detailed description is found on Kattis.
https://kth.kattis.scrool.se/problems/ellipticcurvearithm. Make sure that your code
is commented and well structured. Up to 10I points may be subtracted if this is not the case.
Keep in mind that you must be able to explain your solution during the oral exam.

(5I) Implement the recovery phase of Feldman’s verifiable secret sharing scheme. A detailed
description is found on Kattis. https://kth.kattis.scrool.se/problems/feldman. Make
sure that your code is commented and well structured. Up to 51 points may be subtracted if this
is not the case. Keep in mind that you must be able to explain your solution during the oral
exam.

(10I) Implement the SHA-256 hash function. A detailed description is found on Kattis. https:
//kth.kattis.scrool.se/problems/sha256. Feel free to read from different sources on how
to make an efficient implementation, but any borrowed ideas should be explained briefly in the
solutions submitted on paper. You must also be prepared to explain in detail what you did and
why at the oral exam. Make sure that your code is commented and well structured. Up to 101
points may be subtracted if this is not the case.

Page 4 (of 4)

Foundations of cryptography e Spring 2016
Douglas Wikstrém


https://kth.kattis.scrool.se/problems/ellipticcurvearithm
https://kth.kattis.scrool.se/problems/feldman
https://kth.kattis.scrool.se/problems/sha256
https://kth.kattis.scrool.se/problems/sha256

