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Music	analysis:	why?	

•  Digital	music	+	Internet	=	explosion	of	
music	availability	(songs	on	Spo.fy	>	30	
m)	

•  Prac.cal	problems	
–  Categorize	(user	labels	too	subjec.ve)	
–  Search	(even	without	metadata)	
–  Enforce	copyrights	

•  More	scien.fic	reasons	
– Understand	musical	communica.on	and	
percep.on	

Music	Informa.on	Retrieval	(MIR)	

•  Interdisciplinary	subject	(engineering,	
psychoacous.cs,	music,	social	sciences,	...)	

•  Rapidly	growing	community	around	the	Int.	
Conf.	on	Music	Informa.on	Retrieval	
(ISMIR,	www.ismir.net	)	

•  Strong	interest	from	informa.on	and	
entertainment	industries	
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MIR	applica.ons	

•  MIR	systems	
– Classifica.on	(genre/style/mood)	
– Recommenda.on/Playlist	genera.on	
– Content-based	querying	
– Summariza.on/Fingerprin.ng	
– Transcrip.on/Score	following	
–  ...	and	many	more!	

MIR	meta-data	

– All	auxiliary	informa.on:		
– Lyrics	
– Publica.on	data	(ar.st	,	recording	date,	
genre,	etc)	

– Expert	labels		
– User	tags	(“sounds	like	…,	“groovy”,	…”)	
– Collected	listening	habits	



2016-05-18	

4	

MIR	content	analysis	(focus	here)	

– Melody	and	harmony	
– Rhythm,	beat,	tempo	and	form	
– Timbre,	instrumenta.on	and	voice	
– Genre,	style,	mood	
– Performance	

General	analysis	model	

Data Reduction/	
Change of representation	

Low level feature 
extraction	

Mid level feature 
extraction / induction	

High level	
Classification/Regression	

Input signal	 Examples:	
•  Resampling	
•  Filtering	
•  Transformation (STFT, 
Wavelets, Vocoder, ...)	
•  Use of auditory models	
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General	analysis	model	

Data Reduction/	
Change of representation	

Low level feature 
extraction	

Mid level feature 
extraction / induction	

High level	
Classification/Regression	

Input signal	

Examples:	
•  Note onset/offset	
•  Sound Level	
•  Pitch (F0)	
•  Spectral properties 
(centroid, skewness)	
•  Attack slope	
•  Vibrato frequency and 
extent	

General	analysis	model	

Data Reduction/	
Change of representation	

Low level feature 
extraction	

Mid level feature 
extraction / induction	

High level	
Classification/Regression	

Input signal	

Examples:	
•  Beat and tempo	
•  Melody/Accompaniment	
•  Phrasing	
•  Mode	
•  Source separation	
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General	analysis	model	

Data Reduction/	
Change of representation	

Low level feature 
extraction	

Mid level feature 
extraction / induction	

High level	
Classification/Regression	

Input signal	

Examples:	
•  Mood	
•  Genre	
•  Emotion	
•  Artist recognition	

Case	study:	
Genre	classifica.on	from	audio	

•  Useful	for	categoriza.on	and	playlist	
genera.on	

•  A classic MIR problem	
•  Oden	some	ground	truth	already	available	
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Genres	from	audio	

1. Choose	relevant	features	
2. Create	a	ground-truth	data	set	
3. Extract	acous.cal	features	
4. Train	the	system	
5. Test	the	system	

Procedure	

Salamon, J., Rocha, B. & Gomez, E. (2012) Musical Genre Classification Using Melody Features Extracted 
From Polyphonic Music Signals, ICASSP 2012. 	

Dataset 1	
Own 

collection	
Feature set 1	

Melodic 	

Support Vector 
Machine (SMO)	

Feature extraction	

Timbre	
	

Melodic	

Ground truth 
data	

Feature set 2	
MFCC	

Classification �
(using WEKA package)	

Dataset 2	
GTZAN	

Random Forrest 
(RF)	

K-Nearest 
Neighbors (K*)	

Bayesian 
Network(BNet)	

Evaluation	
(Comparison with ground truth)	
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Melodic	features	extracted	from	the	
dominant	melody:	

not segmented into notes nor quantized into semitones. This means
a pitch contour may span a single note in the shortest case or a short
phrase in the longest. It also means the contours allow us to capture
aspects of the pitch evolution that are important for genre charac-
terisation such as vibrato. An example of contours extracted from
excerpts of different genres is provided in Figure 1. Melody con-
tours are highlighted in bold.
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Fig. 1. Pitch contours extracted from excerpts of different genres:
vocal jazz (a), opera (b), pop (c) and instrumental jazz (d).

2.2. Melody Features

For each contour, a set of melodic features is automatically com-
puted. We divide the features into three categories, detailed in sec-
tions 2.2.1, 2.2.2 and 2.2.3. Then in section 2.2.4 we explain how
the contour features are used to compute global per-excerpt features
for use in the classification.

2.2.1. Pitch and duration features

The following features are related directly to contour pitch or length:
• Duration t = N · H

fS
(in seconds). (1)

• Mean pitch height µp = 1
N

PN
n=1 c(n). (2)

• Pitch deviation ⇤p =
q

1
N

PN
n=1(c(n)� µp)2. (3)

• Pitch range rp = max(c(n))�min(c(n)). (4)

2.2.2. Vibrato features

Vibrato is a periodic variation of pitch that is characterised by its rate
and extent (depth) [10]. Apart from being a distinctive element of the
singing voice, the way in which it is applied varies between different
singing styles [5], and thus we expect features related to vibrato to be
important for genre classification. As a first step the system detects
whether a contour has vibrato or not. This is done by applying the
STFT to the pitch contour c(n) as in [11] and checking for a promi-
nent peak in the magnitude spectrum |C(k)| at the expected range
for vibrato in human voice (5-8Hz). If vibrato is detected, the rate
and extent can be computed from the peak’s frequency and magni-
tude respectively. We use a frame size of 120 samples (350ms) to

ensure we capture at least 2 cycles of the lowest period expected for
vibrato, and a hop size of 1 sample.

In addition to these features, we wanted to capture the amount
of vibrato applied throughout a contour. That is, the proportion of
the contour in which vibrato is applied. We refer to this as vibrato
coverage, and we expect it to vary between genres where vibrato is
used a lot (e.g. opera) and genres where it might be applied just at the
end of a phrase (e.g. vocal jazz). A summary of the vibrato features
is:

• Vibrato rate vr: frequency of prominent peak of |C(k)| in
expected vibrato range (in Hz).

• Vibrato extent ve: magnitude of said peak (in cents).

• Vibrato coverage vc: ratio of samples with vibrato to total
number of samples in the contour (value between 0-1).

2.2.3. Contour typology

In [12] Adams proposes to categorise melodic segments based on
the “distinctive relationship among their minimal boundaries”. By
categorising the possible relationship between a segment’s initial (I),
final (F), highest (H) and lowest (L) pitch, 15 “contour types” are
defined. An example of three different contour types is provided in
Figure 2.
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Fig. 2. Different types of melodic contour.

We adopt Adam’s melodic contour typology and compute the
type of each contour. Before the type is computed the contour pitch
is quantized into a quarter-tone resolution, to avoid smaller pitch
variations affecting the contour type. To summarise:

• Contour type �i: one of 15 melodic contour types (i =
1 . . . 15).

2.2.4. Global features

The contour features are used to compute global excerpt features
which are used for the classification. For the pitch, duration and
vibrato features we compute the mean, standard deviation, skewness
and kurtosis of each feature over all contours. The contour typology
is used to compute a type distribution describing the proportion of
each contour type out of all the pitch contours forming the melody.
In addition to these features several global features are added:

• Global highest pitch ph: The highest pitch in the melody.

• Global lowest pitch pl: The lowest pitch in the melody.

• Global pitch range rg = ph � pl. (5)

• Global vibrato presence: the ratio between contours with
vibrato to all contours in the melody (between 0-1).

• Interval features: we compute the interval between each pair
of consecutive contours as the difference between their mean
pitch height. We then compute the mean, standard deviation,
skewness and kurtosis of all intervals in the melody.

Results	own	dataset	
opera,	pop,	flamenco,	vocal	jazz	and	instrumental	jazz		

	

This gives us a total of 51 features. Initial experiments revealed
that some features resulted in better classification if they were com-
puted using only the longer contours in the melody. This is probably
because long contours are less likely to be an error of the melody
extraction algorithm, and also there is a greater chance to detect vi-
brato features in longer contours. For this reason we computed for
each feature (except for the interval features) a second value com-
puted using only the top third of the melody contours when ordered
by duration. This gives us a total of 98 features for the next stage.

2.3. Classification

To classify the excerpts we compare several classification algorithms
from the Weka data mining software [13]. We start by performing
attribute selection using the CfsSubsetEval attribute evaluator and
BestFirst search method [14] with a 10-fold cross validation, only
keeping features that were used in all folds. Each attribute is nor-
malised feature-wise between 0 and 1. For each classification algo-
rithm we use a 10-fold cross validation and repeat the experiment 10
times, reporting the average accuracy. The algorithms compared are
Support Vector Machines (SMO; radial basis function kernel), Ran-
dom Forest (RF), K-Nearest Neighbours (K*) and Bayesian Network
(BNet).

3. EVALUATION

3.1. Data-sets

For evaluation we constructed a data-set of five musical genres in
which the melody plays an important role: opera, pop, flamenco,
vocal jazz and instrumental jazz (where the melody is played by a
saxophone or trumpet rather than sung). For initial experiments the
data-set consisted of fifty 30-second excerpts per genre (250 excerpts
in total). The set was later expanded to include 100 excerpts per
genre (500 excerpts in total). To cover variations within a genre the
the excerpts for each genre were selected from a wide set of artists.
All excerpts were taken from a section of the song where the melodic
line is clearly present.

As a final experiment we evaluated our method on the GTZAN
[1] collection, consisting of 10 genres with one hundred 30-second
excerpts per genre (1000 excerpts in total). Note that in this col-
lection some excerpts might not have a melody at all, and for some
genres (e.g. metal) the melody extraction may not perform very well.
Still, we wanted to see what could be achieved for this collection
without any modification to the method or excerpts.

3.2. Baseline and combined feature sets

To compare our results we computed a baseline set of low-level tim-
bral features which are commonly used in genre classification. For
each excerpt we computed the first 20 Mel-frequency cepstral coef-
ficients (MFCCs) as in [15], using a 23ms window size with 50%
overlap, taking 40 mel-frequency bands up to 16kHz. We compute
the mean and variance of each coefficient, resulting in a total of 40
descriptors. We also wanted to see whether results could be im-
proved by combining low-level and high-level information. To do
this we created a third feature set which combines our melodic fea-
tures with the MFCC features, giving a total of 138 descriptors.

3.3. Results

We start by presenting the results for the initial 250 excerpt data-
set. A total of 10 attributes were selected out of the initial 98 (a

* indicates the feature was computed from long contours only):
rp:mean, µp:mean, vr:mean*, vr:skewness*, ve:mean*, vc:mean*,
vc:stddev*, �9*, �10*, �14*. We see that most descriptors are com-
puted from the longer contours of the melody. We also note a strong
presence of vibrato related features. In Figure 3 we present the
classification results comparing the melodic, MFCC and combined
feature sets. The number of features selected for each set is indicated
in brackets.
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Fig. 3. Classification results for the initial 250 excerpt data-set.

We see that with all classifiers we obtain a classification accu-
racy of over 90% using the melodic features. In all cases the melodic
feature set outperforms the baseline approach. Next, we note that for
most classifiers we can increase the classification accuracy by com-
bining the MFCC features with our high-level melodic features.

To see whether any descriptors were especially discriminative
we also classified the data using a decision tree. It turned out that two
important features are the mean vibrato coverage and mean vibrato
rate. In Figure 4 we see that the genres can be fairly well separated
using just these two descriptors. Furthermore, both descriptors are
musically meaningful (the former expressing the degree to which
vibrato is applied and the latter the average rate of the vibrato).
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Fig. 4. Mean vibrato coverage vs mean vibrato rate.

Next we examine the results for the extended data-set (500 ex-
cerpts), provided in Figure 5. Note that this time only 7 descriptors
were selected for the melodic feature set.
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Fig. 5. Classification results for the extended 500 excerpt data-set.

We see that for all classifiers the melodic feature set maintains
classification accuracies above 90%. We also note that for RF and
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Results	external	dataset	
10	genres	

BNet the melodic set still outperforms the baseline approach even
though it uses less than half the amount of descriptors. This time
results for all classifiers are improved when combining the two dif-
ferent sets of descriptors. To ensure the results were not biased by
the different size of each feature set, we ran two further experiments
imposing a fixed number of descriptors for all three sets (21 and 10).
In both cases the results were consistent with those of Figure 5, with
the combined set outperforming the other two. Examining the con-
fusion matrices of the classification results, we found that for the
melodic feature set the confusion occurs primarily between pop and
vocal jazz. This is understandable as these singing styles have com-
mon characteristics, making them hard to distinguish even for hu-
mans [5]. Combining the melodic features with the MFCC features
reduces this confusion, leading to an overall increase in accuracy.

Finally, we examine the results obtained for the GTZAN collec-
tion, provided in Figure 6. As expected, the classification results are
not as high as those obtained for the collections where we ensured
that there is a melody in each excerpt. Still, with the SMO classifier
and the combined feature set we obtain an accuracy of 82%, improv-
ing significantly on both the melodic and MFCC feature sets. Whilst
this does not surpass the highest accuracy reported for this collection
to date [4], the results provide an important proof of concept – that
combining low-level features with high-level melodic features is a
promising approach for improving genre classification.
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Fig. 6. Classification results for the GTZAN data-set.

4. CONCLUSIONS

We presented a genre classification method based on a novel set of
melodic features. By using an automatic melody extraction system
we were able to compute these features directly from the audio sig-
nal of polyphonic music, without the need to obtain the monophonic
melody track beforehand. A set of melodic features was proposed,
based on pitch, duration and vibrato characteristics, and on contour
typology. The melodic feature set was evaluated on three different
data-sets and was shown to outperform a baseline low-level timbral
feature set based on MFCCs. Most importantly, we demonstrated
that the classification accuracy can be improved by combining the
two feature sets. This suggests that adding high-level melodic fea-
tures to traditional low-level feature sets is a promising approach for
genre classification. It is worth noting that the current performance
of state-of-the-art melody extraction systems, including the one used
in this paper, is around 75%1. The positive results obtained in this
study demonstrate that an automatically extracted mid-level repre-
sentation of the melody, though not 100% accurate, can still be used
successfully to address related MIR challenges. Finally, another im-
portant aspect of the approach presented in this paper is the fact that
most of the melodic features proposed can be easily understood by

1Music Information Retrieval Evaluation eXchange [Online]. Available:
http://www.music-ir.org/mirex/wiki/Audio Melody Extraction (Jan. 2012).

humans. This means that the classification results can be interpreted
more easily, allowing us to make straight forward links between mu-
sical genres and melodic characteristics.
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Conclusions	
•  A	large	number	of	features	has	been	used	and	is	
available	in	toolboxes	

•  Similarly	with	predic.on	methods	
•  Results	very	good	for	selected	datasets	(>90%	
correct	predic.on)	

•  However,	for	large	music	collec.ons	the	methods	
s.ll	don’t	have	a	accuracy	required	for	successful	
commercial	applica.ons	(≈50-70%)	
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Future	improvements	–	two	
alterna.ve	paths:	

•  Alterna.ve	1:	Develop	and	use	more	advanced	
machine	learning	and	let	the	system	learn	also	
intermediate	levels	from	data	

•  Alterna.ve	2:	Develop	features	that	corresponds	
beCer	to	human	percep.on	

Current research project at KTH: 
Using perceptually derived features 
in music information retrieval 

Semantic description 
Genre, emotion, motional qualities … 

Audio input 

Low-level Audio features 
sound level, MFCC, event rate … 

Perceptual features 
mode, harmonic complexity, speed, 

rhythmic clarity… 
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Perceptually determined features 

•  Our long-term aim: Try to understand 
which features we use when we listen 
to music in a casual way. 

•  Current method: Derive features 
perceptually in listening tests and then 
try to model them 

Friberg, A., Schoonderwaldt, E., Hedblad, A., Fabiani, M., & Elowsson, A. (2014). Using listener-based perceptual 
features as intermediate representations in music information retrieval. Journal of the Acoustical Society of 
America, 136(4), 1951-1963. 

Specific research 
questions 

 
•  Can we reliably estimate 

perceptual features in listening 
experiments? 

•  Can semantic descriptions 
(emotions) be modelled from 
perceptual features? 

•  Can we make computational 
models of perceptual features? 

Semantic description 
Genre, emotion, motional qualities … 

Audio input 

Low-level Audio features 
sound level, MFCC, event rate … 

Perceptual features 
mode, harmonic complexity, speed, rhythmic 

clarity… 
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Selected Perceptual features 

•  Speed (slow-fast) The general speed of the music disregarding any 
musical analysis such as the tempo.  

•  Rhythmic clarity (flowing-firm) Indication of how well the rhythm is 
accentuated (c.f. Lartillot et al., 2008).  

•  Rhythmic complexity (simple-complex) A companion to rhythmic 
clarity.  

•  Articulation (staccato-legato) The duration of tones. 

•  Modality (minor-major) Modality as a continuous scale. 

•  Overall Pitch (low-high) The overall pitch height of the music.  

•  Harmonic complexity (simple-complex) A measure of how complex 
the harmonic progression is.  

•  Dissonance (consonant-dissonant) (exp.3) 

•  Dynamics (soft-loud) The played dynamic level.  

•  Brightness (dark-bright) (exp. 1). Timbre (exp. 2) 

Method 

•  All features rated on semi-continuous scales in 3 
experiments with about 20 subjects each: 

•  Experiment 1 - Ringtones. 100 ringtones selected from 
pilot experiment regarding spread in features, both audio and 
MIDI.  

•  Experiment 2 – Film music clips. 110 film clips provided 
by U. Jyväskylä selected from pilot experiment regarding 
emotional expression, only audio. 

•  Experiment 3 – K-pop. 98 examples of different Korean 
pop genres provided by U. Illinois, only audio. 

•  Prediction methods: Linear regression, Partial Least-Square 
regression (PLS), Support Vector Regression (SVR) 

Slow	 Fast	

Speed	

✗	
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Accuracy of the mean estimation: 
Cronbach’s alpha 

Predicting emotion ratings from 
perceptual features using linear 

regression 

! Experiment!1! Experiment!2!
! Energy! Valence! Energy! Valence! Tension! Anger! Fear! Happiness! Sadness! Tenderness!
R2! 0.94% 0.90% 0.92% 0.80% 0.80% 0.74% 0.67% 0.83% 0.77% 0.65%
Adjusted!R2! 0.93% 0.88% 0.91% 0.78% 0.79% 0.72% 0.64% 0.81% 0.75% 0.62%
Feature! sr2! sr2! sr2! sr2! sr2! sr2% sr2% sr2% sr2% sr2%
Speed% 0.36***% 0.09*% 0.14***% 0.10*% % % % 0.10*% % %
Rhy.comp.% % % % % % % % % % %
Rhy.clarity% 0.08**% % % 0.10*% % % (>)0.13*% % % %
Articulation% % 0.07*% 0.11***% (>)0.10*% 0.15**% % 0.17**% % 0.18***% (>)0.18**%
Dynamics% 0.20***% (>)0.13***% 0.39***% (>)0.27***% 0.37***% 0.50***% 0.25***% % (>)0.18***% (>)0.37***%
Modality% 0.10**% 0.49***% 0.13***% 0.27***% (>)0.18***% % % 0.37***% (>)0.44***% 0.17**%
Harm.comp.% % % % (>)0.21***% 0.21***% 0.17**% 0.30***% 0.10*% (>)0.22***% %
Pitch% % % 0.07*% % % % % % % %
Brightness%
Timbre%

% 0.10**% %
(>)0.12***% 0.15**% (>)0.16***% (>)0.15**% (>)0.23***%

% %
0.11*%

%

%

Adjusted R2 – overall explained variation �
sr2 - semipartial correlation coefficient - the independent contribution of each feature	
p-values: * < 0.05; ** < 0.01, ***<0.001. 	

Semantic description 
Genre, emotion, motional 

qualities … 

Perceptual features 
mode, harmonic complexity, 

speed, rythmic clarity… 
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Overall prediction power 
Semantic description 

Genre, emotion, motional 
qualities … 

Perceptual features 
mode, harmonic complexity, 

speed, rythmic clarity… 

Adjusted R2 – overall explained variation �
sr2 - semipartial correlation coefficient - the independent contribution of each feature	
p-values: * < 0.05; ** < 0.01, ***<0.001. 	

! Experiment!1! Experiment!2!
! Energy! Valence! Energy! Valence! Tension! Anger! Fear! Happiness! Sadness! Tenderness!
R2! 0.94% 0.90% 0.92% 0.80% 0.80% 0.74% 0.67% 0.83% 0.77% 0.65%
Adjusted!R2! 0.93% 0.88% 0.91% 0.78% 0.79% 0.72% 0.64% 0.81% 0.75% 0.62%
Feature! sr2! sr2! sr2! sr2! sr2! sr2% sr2% sr2% sr2% sr2%
Speed% 0.36***% 0.09*% 0.14***% 0.10*% % % % 0.10*% % %
Rhy.comp.% % % % % % % % % % %
Rhy.clarity% 0.08**% % % 0.10*% % % (>)0.13*% % % %
Articulation% % 0.07*% 0.11***% (>)0.10*% 0.15**% % 0.17**% % 0.18***% (>)0.18**%
Dynamics% 0.20***% (>)0.13***% 0.39***% (>)0.27***% 0.37***% 0.50***% 0.25***% % (>)0.18***% (>)0.37***%
Modality% 0.10**% 0.49***% 0.13***% 0.27***% (>)0.18***% % % 0.37***% (>)0.44***% 0.17**%
Harm.comp.% % % % (>)0.21***% 0.21***% 0.17**% 0.30***% 0.10*% (>)0.22***% %
Pitch% % % 0.07*% % % % % % % %
Brightness%
Timbre%

% 0.10**% %
(>)0.12***% 0.15**% (>)0.16***% (>)0.15**% (>)0.23***%

% %
0.11*%

%

%

Energy 
! Exp!1!Ring!tones! Exp.!2!Film!clips!
! Energy! Valence! Energy! Valence!
R2! 0.94% 0.90% 0.92% 0.80%
Adjusted!R2! 0.93% 0.88% 0.91% 0.78%
Feature! sr2! sr2! sr2! sr2!
Speed% 0.36***% 0.09*% 0.14***% 0.10*%
Rhy.comp.% % % % %
Rhy.clarity% 0.08**% % % 0.10*%
Articulation% % 0.07*% 0.11***% (@)0.10*%
Dynamics% 0.20***% (@)0.13***% 0.39***% (@)0.27***%
Modality% 0.10**% 0.49***% 0.13***% 0.27***%
Harm.comp.% % % % (@)0.21***%
Pitch% % % 0.07*% %
Brightness%
Timbre% % 0.10**% %

(@)0.12***% 0.15**%
%

Semantic description 
Genre, emotion, motional 

qualities … 

Perceptual features 
mode, harmonic complexity, 

speed, rythmic clarity… 

Adjusted R2 – overall explained variation �
sr2 - semipartial correlation coefficient - the independent contribution of each feature	
p-values: * < 0.05; ** < 0.01, ***<0.001. 	
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Valence 

Semantic description 
Genre, emotion, motional 

qualities … 

Perceptual features 
mode, harmonic complexity, 

speed, rythmic clarity… 

Adjusted R2 – overall explained variation �
sr2 - semipartial correlation coefficient - the independent contribution of each feature	
p-values: * < 0.05; ** < 0.01, ***<0.001. 	

! Exp!1!Ring!tones! Exp.!2!Film!clips!
! Energy! Valence! Energy! Valence!
R2! 0.94% 0.90% 0.92% 0.80%
Adjusted!R2! 0.93% 0.88% 0.91% 0.78%
Feature! sr2! sr2! sr2! sr2!
Speed% 0.36***% 0.09*% 0.14***% 0.10*%
Rhy.comp.% % % % %
Rhy.clarity% 0.08**% % % 0.10*%
Articulation% % 0.07*% 0.11***% (@)0.10*%
Dynamics% 0.20***% (@)0.13***% 0.39***% (@)0.27***%
Modality% 0.10**% 0.49***% 0.13***% 0.27***%
Harm.comp.% % % % (@)0.21***%
Pitch% % % 0.07*% %
Brightness%
Timbre% % 0.10**% %

(@)0.12***% 0.15**%
%

Predic.on	of	perceptual	features	from	
audio	features	using	exis.ng	toolboxes  

R2         squared correlation coefficient (explained variation) 	
PLS   Partial Least-square Regression	
SVR  Support Vector Regression 	
10-fold cross validation. 	
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Modelling the Speed of Music Using Features  
from Harmonic/Percussive Separated Audio (ISMIR 2013)        

•  Ground truth: Listener ratings of 
speed for a set of music examples 

 

Method 
•  Harmonic/Percussive separation 
•  Extract audio features such as 

o  Onset densities 
o  Spectral flux 
o  Tempo 

•  Map listener ratings to audio features in MLR 
 

                            Results 
•  93,4 % explained variance (R2) in independent 

test set 
 

                    Application Area 
•  Modelling high-level features (e.g. valence) 
•  Finding correct tempo octave  
 

A. Elowsson, A. Friberg, G. Madison, J. Paulin 
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Music	browsing	using	the	perceptual	features	-	
an	experimental	prototype	

Richard Nysäter (2016) Master thesis, KTH (forthcoming)	

http://musicdiscovery.se	
Evaluators are welcome!	

Appendix	
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Available	tools	

•  Analysis	
– MIR	Toolbox	(Univ.	of	Jyväskylä)	
– CUEX	(TMH	-	KTH)	
– SonicVisualizer	(Queen	Mary	Univ.	London)	
–  ...	and	more	

•  Analysis	and	synthesis	
– Marsyas	(G.	Tzanetakis,	Univ.	Victoria,	CA)	

–  CLAM	(UPF,	Barcelona)	

•  Auditory	models	
– Auditory	toolbox	(M.	Slaney,	MATLAB)	

–  IPEM	(Gent	Univ.,	real-.me	pD	version)	

•  Score	analysis	
– MelodicMatch	(Univ.	of	Melbourne)	



2016-05-18	

19	

Databases	

– Million	song	dataset		
•  hCp://labrosa.ee.columbia.edu/millionsong/	

•  Preanalysed	including	many	audio	features	and	labels	
(280	GB	data)	

•  Audio	snippets	(30s)	can	be	retrieved	
– MIREX	compe..on	
– List	of	datasets:	
hCp://grh.mur.at/sites/default/files/
mir_datasets_0.html	(updated	2009)	

Popular	applica.ons	

•  Shazam	(QBE)	
•  Midomi	(QBH)	
•  Pandora,	last.fm,	...
(recommenda.on)	

•  Tangerine!	(playlist	
genera.on)	

•  Musicovery	(mood	
playlist	&	recomm.)	

•  ...	sugges.ons?	
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Musicovery	mood	radio	

Analysis based on 40 hand-annotated labels by experts 

http://musicovery.com/	

Example	of	meta-data	analysis:	
Google	play	graphs	

Meta-data analysis of what Google play users have in their collections	

Release year	

http://research.google.com/bigpicture/music	
	


