Interactive Virtual Agents

Catharine Oertel

TMH, KTH

School for Computer Science and Communication
Introduction
Multimodal speech synthesis
Motivation: using talking heads to improve...

HUMAN-MACHINE INTERACTION

HUMAN-HUMAN INTERACTION

Mime telephone conversations
Conventions? - use same as for person-to-person communication.
A new paradigm for human-computer interaction

- Shift from desktop-metaphor to person-metaphor
- Spoken dialogue as well as non-verbal communication
- Take advantage of the user’s social skills
- Strive for believability, but not necessarily realism
Why Talking Heads?

- The most natural form of communication that we know of is face-to-face interaction
- A virtual talking head can improve information transfer
 - Through expression, gaze, head movements
 - Through lip-cheek and tongue movements
Tasks of an Animated Agent

- Provide intelligible synthetic speech
- Indicate emphasis and focus in utterances
- Support turn-taking
- Give spatial references (gaze, pointing etc)
- Provide non-verbal back-channeling
- Indicate the system’s internal state
Applications

- Improved speech synthesis
- Human-Computer Interface in spoken dialogue systems
- Aid for hearing impaired
- Educational software
- Stimuli for perceptual experiments
- Entertainment: games, virtual reality, movies etc.
Dialog systems at KTH

- Waxholm
- Olga
- GULAN
- AUGUST
- Adapt
Targeted audio & talking head for personal announcements (EU/Chil project)
Different characters
Facial animation techniques
Techniques for facial animation

• Talking head synthesis requires:
 – A signal model
 – A control model
The signal model

- **Video-based (2D)**
 - Enables realistic reproduction
 - Lacking flexibility

- **Muscle based (3D)**
 - Highly flexible
 - Difficult to gather anatomical data
 - Computationally intensive (although less of a problem today...)

- **Direct parametrisation/morphing based (3D)**
 - Good compromise between flexibility and realism
 - Simple data acquisition using optical methods
Direct parameterisation

- 3D-modelling
- Deformation through high-level parameters
- Different possible parameterisations:
 - Articulatory oriented
 - MPEG-4 (low-level)
Articulatory oriented direct parameterisation

- High-level parameterisation tailored for visual speech animation
- Parameter set includes
 - Jaw opening
 - Lip rounding
 - Bilabial closure
 - Labiodental closure
- Parameters are normalized relative to spatial targets
MPEG-4 direct parameterisation

- Original purpose: model based video coding
- The standard defines a generic face object
- 84 feature points (FPs)
- 68 facial animation parameters (FAPs)
- FAPs are normalized relative to distances in the face
- Expressed in FAPU (FAP unit)
MPEG-4 FA

- Advantages:
 - A standard

- Disadvantages
 - Difficult to know the perceived result of a certain expression or articulation
 - Difficult to control manually (ex: lip rounding involves manipulation of 20 FAPs...
Automatic creation of MPEG-4 models

- Input: static face model
- Annotation of FPs
- Calculation of deformation weights
- Output: animatable MPEG-4-modell
Measuring talking faces

- **Video analysis**
 - Can provide texture, contours and points
 - Inexpensive hardware
 - Typically less accurate than motion capture

- **Cyberware scanning**
 - High definition 3D shape and texture
 - Static
 - Expensive equipment

- **Motion capture**
 - Captures points in 3D
 - Dynamic
 - Starting to become affordable
Data recording for talking head animation

- 3D motion capture
- Marker placement corresponding to MPEG-4 FAPs
- 4 reference markers capture rigid head movement
- 25 markers capture facial deformation
Motion capture in movies

Facial motion capture was used extensively in Polar Express by Image Metrics where hundreds of motion points were captured.

Tom Hanks
Computer game animators

http://www.studiopendulum.com/alterego/index.html
How it works

- IR-sensitive cameras
- Infrared light is emitted from each camera
- Reflective markers are attached to objects to be tracked
- Each camera outputs 2D coordinates of markers
- Data from multiple cameras are combined to provide 3D coordinates
Data processing from measurements to animation parameters

- Motion capture data
- Sorting, gap-filling
- Rigid body motion processing
- Local/deformation motion processing
- Animation data
Sorting

• Output is a point cloud – how can we tell which point is which?

• Two approaches:
 – Sorting based on motion
 – Sorting based on a model
Combining model and data

Re-synthesis using speech movement recorded with Qualisys
Combining several motion capture techniques

EMA & Qualisys
Control models for talking heads

• A control is what makes that talking head move
• Input is typically time stamped events, e.g. phonemes, gestures symbolic, or an audio signal
• Output is control parameters for the signal model
• May work in real-time or off-line
Text-to-animation

- Text-to-speech
- Para-linguistic markup etc
- Non-articulatory control model
- Articulatory control model
- Phonetic specification
- Sound
Articulatory control models for visual synthesis

• Concatenation of
 – Diphones
 – Non-uniform units

• Co-articulation model
 – Rule-based
 – Trainable models (Cohen/Massaro, Öhman)

• General machine learning methods
 – Hidden markov models
 – Artificial neural networks
Experiment: which control model should we use?

- Head-to-head comparison of 4 models:
 - KTH Rule-based (hand-crafted)
 - Cohen massaro (trained)
 - Öhman (trained)
 - ANN (trained)
KTH Rule-based model

- Each target is either assigned a value or is left undefined
- Undefined values are interpolated from context
- Example:
 /r/ has undefined lip rounding, will be inferred from context
Cohen/Massaro model

• Each segment has
 – A target value
 – An exponentially decaying dominance function
• Parameter trajectory is given as a weighted sum of targets and dominance functions
• 3800 free parameters to be trained using error minimisation
Öhman's model

- A vowel track $v(t)$ is formed by interpolation between successive vowels
- Consonant movements are superimposed/blended into the vowel track using a co-articulation factor
- 1040 free parameters to be trained using error minimisation
ANN-model

- An artificial neural network may be used to predict animation parameters
- Input vectors with 17 prototypical phonetic features specifying place and manner of articulation, phoneme class etc.
- 250 ms forward and backward context
- Recurrent connections in hidden layer
- 123870 free parameters trained using back propagation
Model training

Training set of 87 phonetically balanced sentences
Training aims to minimize error between measurement and prediction
Intelligibility comparison

- All 4 models were used to synthesize short sentences
- Intelligibility in noise with/without talking head was measured

<table>
<thead>
<tr>
<th>Keywords correct (%)</th>
<th>Audio only</th>
<th>Cohen-Massaro</th>
<th>Öhman</th>
<th>ANN 1</th>
<th>Rule-based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62.7</td>
<td>74.8</td>
<td>75.3</td>
<td>72.1</td>
<td>81.1</td>
</tr>
</tbody>
</table>
Collection of audio-visual databases: interactive spontaneous dialogues

- Eliciting technique: information seeking scenario
- Focus on the speaker who has the role of information giver
- The speaker seats facing 4 infrared cameras, a digital video-camera, a microphone. The other person is only video recorded.
Transcription and annotation

- Time consuming
- Maximize automation
- Iterative annotation
 - Initial annotations quickly
 - Detailed annotations when needed
- Example from Spontal
The spontal recordings

- Fortunately, spoken interactions are complex
- Real example from the Spontal recordings
 - Incrementality a must...
 - Tools need continuous adjustments, as do models
 - Subjects crippled by the laboratory setting?
The WaveSurfer Tool

• Interface is based around WaveSurfer, a general purpose tool for speech and audio viewing, editing and labelling
• TTS and Talking Head functionality is added as plug-ins
• WaveSurfer (presently without TTS&TH) works on all common platforms and is freely available as open source

http://www.speech.kth.se/wavesurfer
Conversation with agent
Face Robot - a commercial facial animation system
Emotional animation
Emotional/ubiquitous computing – do we want it?

Early BBC vision – the conversational toaster
Thanks to Mark Huckvale, UCL, for the video clip
Basic emotions

Happiness Anger Surprise Disgust
Vision from audio

Fónagy, 1967 “Hörbare Mimik” , Phonetica

Multimodal Synthesis [49]
Result from listening test

Percent response

Synthetic stimuli

Happy
Sad
Angry

intended

neutral
angry
happy
sad
1. technologies for speech-to-speech translation
2. detection and expressions of emotional states
3. core speech technologies for children

EU project: start October 2002, duration 2 YR
ITC-IRST (Trento) co-ordinates + 3*Germany
+ Italy + UK + Sweden
http://pfstar.itc.it/
Neutral

Angry

Surprised

Happy
Measurement points for lip coarticulation analysis
The expressive mouth

- All vowels (sentences)
 - Encouraging
 - Happy
 - Angry
 - Sad
 - Neutral
Interactions: emotion and articulation
(from AV speech database - EU/PF_STAR project)
Datadriven facial synthesis with MPEG4 model

- Happy
- Angry
- Sad
- Surprised
Examples on the use of eyebrow and head motion
(from the August dialogue system)

Translation: “Symmetrical works of art easily become dull just like symmetrical beauties; impeccable or flawless people are often unbearable.” (Strindberg 1907)
Talking heads as assistive technology
Talking heads as a visual hearing aid

- 2% of the population are severely hearing impaired
- They rely on lip reading
- Telephone conversations are difficult
SYNFACE

• No need for special equipment at other end
 – Compare to video telephony, text telephony

• Only interprets sounds, not words
 – Single mis-interpretations often OK.
 – Graceful degradation
EU-project Synface - Coordinated by KTH

Phone success for hard of hearing

A computer that generates pictures of moving faces from speech is helping hard of hearing users.

The technology, known as Synface, was hailed a success by the 40 people with hearing problems who trialled a prototype in the UK.

The software can be installed on a regular computer and is used with a standard telephone.

European scientists will use the trial results to tweak the device before it is made available in coming years.

Synface - synthetic face - was developed by researchers at the Royal Institute of Technology in Stockholm, Sweden, and University College London.

http://www.speech.kth.se/synface/
Demonstration video from EU
Formal intelligibility test

- Material: VCV (symmetric vowel context)
 - 2 vowels: /ʊ, a/
 - 17 consonants: /p, b, m, f, v, t, d, n, s, l, r, k, g, ŋ, ɧ, ç, j/
- Task: consonant identification
- Synthetic face with human speech
- Hard of hearing subjects (or KTH students)
- Additive white noise, –3 dB SNR (if normal hearing)
Results for VCV-words (hearing impaired subjects)

% correct

0 10 20 30 40 50 60 70 80 90 100

Audio alone Synthetic face + rule-synthesis Natural face

Natural voice
Better than humans?

<table>
<thead>
<tr>
<th></th>
<th>bil</th>
<th>labd</th>
<th>den</th>
<th>pal</th>
<th>vel</th>
</tr>
</thead>
<tbody>
<tr>
<td>bilabial</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>labiodental</td>
<td>96,3</td>
<td>3,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dental</td>
<td>3,0</td>
<td>78,0</td>
<td>5,5</td>
<td>13,4</td>
<td></td>
</tr>
<tr>
<td>palatal</td>
<td>9,9</td>
<td>70,4</td>
<td>19,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>velar</td>
<td>4,9</td>
<td>16,0</td>
<td>79,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Synthetic face

<table>
<thead>
<tr>
<th></th>
<th>bil</th>
<th>labd</th>
<th>den</th>
<th>pal</th>
<th>vel</th>
</tr>
</thead>
<tbody>
<tr>
<td>bilabial</td>
<td>96,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>labiodental</td>
<td>92,6</td>
<td>2,5</td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dental</td>
<td>85,8</td>
<td>7,4</td>
<td>6,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>palatal</td>
<td>1,2</td>
<td>17,3</td>
<td>71,6</td>
<td>9,9</td>
<td></td>
</tr>
<tr>
<td>velar</td>
<td>2,5</td>
<td>25,0</td>
<td>72,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Natural face
Possible improvements to “lip readability”

- Great variation in human speakers due to for example:
 - Speaking rate
 - Extent of articulatory movements (the hypo – hyper dimension)
 - Anatomy, facial hair
 - Light, distance, viewing angle...
Hypo to hyper articulation
Pilot study stimuli
The Synface telephone

Press the telephone button to call 0090510
Real user tests
SYNFACE: Recent tests/results

• Tested on hearing impaired users in England, Holland and Sweden
• Most were positive
 – Believe that SYNFACE helps (80%)
 – Think that SYNFACE is a useful product (80%)
• Desire a more realistic face (79%)
SynFace: preliminary results for German
World leading technique for synthesized talking face derived from speech

SynFace AB sells the world leading and award winning software EyePhone. EyePhone transforms the sound in the spoken language (phonemes) to facial and lip movement that is visualized on a synthesized face in real time.

EyePhone helps the hard of hearing people

EyePhone enables for hard of hearing people that need lip reading to interpret speech to now have telephone conversations. Simply install EyePhone on your computer and use IP-telephone. When the opposite party speaks you will get support in the conversation as you simultaneously can read the lips on the synthesized talking face.

Other areas that can use EyePhone

There are many other uses for EyePhone such as on-line games, public information systems and language studies.

News

2006-09-25
Free EyePhone download now available for testing

2006-09-21
SynFace is invited by European Commission, Directorate-General for Research Information and Communication Unit to participate at the exhibition "Today is the Future - 07" on March 7-18 in Brussels

2006-09-19
Meet SynFace at ID-dagarna Oktober 11-13 at Factory Nacka Strand

2006-08-17
Pål Ljungberger is elected CEO and Per Junesand is elected Chairman of the Board for Synface AB at extra shareholders meeting.
Talking faces for speech reading support in TV

2005 KTH Centrum för talteknologi
Talking heads in educational applications
Language learning

- Oral proficiency training
- Possible display of internal articulations
- Exploiting hyper/hypo dimension
- Training in dialogue context
- Always available conversational partner
- Untiring model of pronunciation
 - everything from phonemes to prosody
Unacceptable pronunciation needs to be identified from a Vinnova video (on CTTs webpages)
Automatic tutor simulation

no gestures

some gestures
Different representations
Reiko Yamada ATR, 1999
National project ARTUR

What?
Automatic articulatory feedback display using face and vocal tract models.

For whom?
Hearing impaired children, second-language learners, speech therapy patients.

How?
Contrasting the user’s articulation with a correct one.
ARTUR: the articulation tutor

- Video/image
- Computer vision
- "Hally Pottel"
- Articulatory inversion
- Mispronunciation detection
- Feedback display
- Relation between face and vocal tract movements
- VT model
“OK” 3D tongue movements (difficult to define an objective evaluation criteria - suggestions?)
The tongue movements can be presented from different views.
CNN video with Arthur
VILLE - Virtual Language Tutor

- Practice dialogues
- Correct your pronunciation
- Keep track of your improvements
- Tailor lessons based on your interaction
Different types of VILLE users

- Swedish children learning English
- Adult immigrants learning Swedish
- Adult Swedes wanting to improve aspects of English (e.g. corporate English, technical English)
- Native Swedes with language disabilities wanting to improve their Swedish
Discriminate acceptable from unwanted variation

- How to do it (automatically)
- What are the aims of L2 learning
 - Less accentedness
 - Comprehensibility
 - Intelligibility
 - More? – Acceptability in context
- Economy of language learning
- Could a virtual tutor help?
Nordic project – NordPlus Sprog
Using VILLE – CTT Virtual Language Tutor