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2 Introduction

This document present the details of the project, entitled Wireless Based
Positioning. Mentors for this project are Research scholar Satyam Dwivedi
and Prof. Magnus Jansson from Electrical Engineering school at KTH. We
are a team of six members.

The report is divided in following way. In the next section (Sec: 3), we
will describe the problem tackled in this project in greater details. Sec: 4
deals with the management of the project. Further, in Sec: 5, we explain
the theoretical background for this project and discuss various algorithms
implemented. Sec: 6 deals with the implementation and development work
related to this project. Next, Sec: 7 describes different results and analysis,
and sources of error in all implemented algorithms and methods. In the end,
we conclude our project with Sec: 8.

2.1 Background

Location awareness is of great benefit to a rich set of applications both in in-
door and outdoor environments. In such techniques determining the location
of a device or a person is a fundamental problem, and its importance has led
to the development of positioning systems. However, due to the poor signal
strength of the widely used Global Positioning System (GPS) in the indoor
environment or other special environment settings, GPS systems can not al-
ways work and many other positioning techniques are pursued to broaden
the application of location based services.

Since last decade, interests in the research of localization systems has
skyrocketed. Localization systems such as Cricket and Whistle systems are
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quite famous. Although these systems have a fantastic market potential,
there are still some problems with the existing solutions as follows,

• Location precision is not good enough.

• Multi-path interference and environment noises make some systems
become heavily environment and hardware dependent.

• High power consumption and Price.

However, since the ruling of Federal Communications Commission(FCC)
in the United States to open up the spectrum from 3.1-10.6 GHz for ultra
wideband (UWB) applications in 2002, a quality of UWB localization ap-
plications emerge in industry and academic community. These eclectic mix
contains localization based tracking services for factory automation, health-
care, safety/security and warehouse & logistics. There are two significant
advantages of UWB. One that it allows very high precision measurement of
the time of flight of the signal from transmitter to receiver. This can lead to
a very accurate distance measurement thus an accurate positioning system.
The other advantage is that UWB has the ability to allow direct path to be
identified even if it is severely attenuated.

In this project, we will be using Decawave’s DW1000 radio capable of
working in UWB to give a high precision (centimeter scale) measurements.
This radio is mounted on an evaluation board EVK1000 (ARM based).
DW1000 is one of the latest devices with good community support and doc-
umentation.
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3 Problem Specification

This project deals with the specific problem of wireless positioning, position-
ing in an indoor environment with an accuracy within decimeters from the
actual point. Detailed specification of the problem are discussed in sections
following.

3.1 Objective

The main objective of this project is to design a wireless positioning system
capable of calculating the position to an accuracy within decimeter precision.
The objectives can be further divided as follows:

• Positioning with accuracy within decimeters from actual point.

• Positioning relative to three or more than three fixed anchor nodes.

• Implement algorithms for static and dynamic positioning scenarios.

• Design and develop a positioning system using Decawave DW1000
UWB radio and EVB1000 evaluation board.

3.2 Overview

The basic design for a positioning system consists of using the location of
three base stations (or anchors) to calculate the position of a mobile station
(named as tag on this project). Further details about positioning and rang-
ing can be found in Sec: 5.

Devices (EVB1000 evaluation board + DW1000 radio) consists of a radio
system and a microprocessor (Sec: 3.3). In our system (Fig: 1), the mobile
device will communicate with each of the anchor devices to calculate the
range measurement from respective anchor nodes. The mobile device will be
connected to a computer running MATLAB and will feed the ranging data
into MATLAB constantly. The final position of the mobile device will be
calculated by an algorithm that will be running on MATLAB. Finally, the
results will be displayed in a user-friendly interface with a map showing lo-
cation of various entities in the system.
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Figure 1: System design used on the project.

3.3 Hardware and Software specifications

The stations used are part of an evaluation kit (EVK1000) from decaWave.
The kit, as seen on figure 2, contains two antennas, two micro USB cable
2.0, two perspex stands and two evaluation boards names EVB1000.

Figure 2: EVB1000 from decaWare’s EVK1000.

The boards are built with a microprocessor ARM STM32F105, USB port
for external connection, dip switch keys for user interaction, among other
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components. More details can be found on the manual [2].

The radio integrated circuit built on the EVB1000 is a wireless transceiver
called DW1000 [3]. It follows the IEEE Standard 802.15.4 - 2011 [6]. It uses
Ultra-Wide Band technique, with the supported band from 3.5 GHz up to
6.5 GHz, transmit power of -14dBm or -10dBm and BPSK Modulation.

Following list presents some information about the hardware and software
used in this project.

Radio unit : Decawave DW1000 [3]

• Supported Band : from 3.5 GHz to 6.5 GHz

• Transmit power : -14dBm or -10 dBm

• Modulation : BMP with BPSK

• SPI interface to host controller

• IEEE standard : 802.15.4 - 2011

Board & Processor: EVK1000, ARM [2]

• Microprocessor model : ARM STM32F105

• Microprocessor core : ARM® 32-bit Cortex® -M3 CPU

• I/O ports : Up to 80 I/O ports

• USB port from external control

• Power source : DC +3.6V to +5.5V

Software

• Programming language : C

• IDE : CooCox IDE
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4 Project Management

The project is a part of the course Project in Wireless Communication, of-
fered by KTH from March 16th, 2016 until May 27th 2016. The group was
created by the course responsible based on personal and academic informa-
tion.

4.1 Team

The team is consisting of six masters students from electrical engineerin.
Team member’s roles are provided below.

Name Responsibility
Satyam Dwivedi Project mentor
Adrien Anxionnat Error analyst and code developer
Baptiste Cavarec Coding expert and designer
Irlon Santos Presentation and video in-charge
Navneet Agrawal Project Manager and MATLAB developer
Raees Muhamad Theorist and MATLAB developer
Zhang Yuqi Code developer, focus: state machine

4.2 Initiation and planning

The first step in project management is to analyze the resources and prepare
a plan to achieve project goals. During the first week of work, we analyzed
our resource, team strengths and prepared a gantt chart to plan the 9 weeks
duration of the project. The Gantt chart is shown in figure 3.

The project implementation has two main distinct field - Coding and
Theory. Hence we divided two teams to focus on each part. Coding group
includes - Baptiste, Yuqi and Adrien, while theory group includes - Irlon,
Navneet and Raees. The group division is indeed loosely defined because
the actual tasks performed during the project were overlapped and shared
by everyone. Although the major responsibilities were assigned based on the
group division.
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Task division and description

We have divided the task in following fashion:

1. MATLAB and theory
Task encompasses understanding the input and output requirements for
device related to implementation of positioning method in MATLAB.
That means responsible person should have an overall understanding of
theory, specification of device and input measurements to the MATLAB
program. He should also understand the working of ”main.c” file where
all the input and output parameters are set.

2. Code Design and development
Software architecture and design is essential in our implementation.
Responsible person should have a good understanding of working of
entire code. He will work in tandem with the entire team to design
structure of software and guide others in the implementation of the
code. This basically involved almost all layers below the top appli-
cation layer (main.c). Task in this category involves writing/editing
callback functions, structuring messages based on IEEE standards and
implementing State machine for communication. Debugging code will
also be part of this task group. The person responsible should have a
good understanding of C programming.

3. Project demonstration and presentation
The final output of the project is a device that is capable of local-
izing in indoor space using five/three anchors. This output will be
demonstrated using a prototype implementation on MATLAB. Also,
to present the achievements of the project to more people, a video will
be created, that will include all the important details and a demonstra-
tion of the prototype. The person responsible should have an overall
understanding of the projects goal and presentation requirements. He
should also have some basic knowledge of video editing and MATLAB’s
presentation functions.

Mid-term target

1. Successful ranging of tag using three anchors based on one of the rang-
ing methods.
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Implementation of ranging protocols and state machines on hardware
board.

2. Centimeter accurate positioning
Implementation of non-linear least square estimation methods on posi-
tion measurements.

End-term target

1. Successful ranging of tag using Five anchors based on both two-way
and Symmetric two-way ranging methods.

2. Implementation of both ranging protocols and state machines on hard-
ware board.

3. Centimeter accurate positioning - Static and Dynamic positioning.

4. Implementation of non-linear least square estimation (NLS) and Ex-
tended Kalman Filtering methods on position measurements.

5. Live demonstration on Static and Dynamic filtering using five anchors
based setup.

6. Project report and other resources compiled and published for future
references.

4.3 Execution

The implementation phase ensures that the project management plan’s de-
liverables are executed accordingly. To keep track of the progress and to
plan for the next weeks work, we organized weekly team meetings on ev-
ery Wednesday. Report from this meeting is written and published on the
project’s web-page.

4.4 Monitoring and Control

For the purpose of monitoring and sharing information within the team
and keep version control on the project’s development codes, we create a
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Figure 3: Project Gantt chart time plan
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GitHub repository ”WirelessPositioning” (https://github.com/BaptCav/

WirelessPositioning.git). We also created a web page to publish infor-
mation on KTH web (https://www.kth.se/social/group/wireless-based-posit/

).

4.5 Ending phase

This is the ”Publication” phase of the project. In this phase we prepare
reports and archive all the files/documents useful in the project. We fi-
nalize all activities across both groups. Moreover, preparations for presenta-
tion/demonstration as well as the video are made in this phase of the project.
On the final day of project, we will present our results (demonstration and
video) to the project course in-charge and other course participants. That
will conclude the project.
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5 Theory

The project is mainly divided in two parts: ranging and positioning. Those
parts combined will create the final system. In this section we will then
present these two parts, the first layer to appear being the the ranging, as
the ranges are needed in order to do positioning, it will be presented first.
Then we will focus on explaining on how to find an approximation of the
position knowing these ranges.

5.1 Ranging

The ranging process can also be described as the calculation of the distance
between tag and anchor. Three main methods used to get ranging measure-
ments are Received Signal Strength (RSS), Angle of Arrival (AOA) and Time
of Flight (TOF). The first one is based on the fact that the amplitude of a
signal decreases with the distance in a square proportion. The idea beside
AOA is that the wavefront of a radio signal is orthogonal to the direction of
propagation. TOF will be discussed in more detail on this document, since
it was the chosen method for this project.

Time of Flight is defined as ”the time interval between transmission time
of an epoch to its reception at a distant receiver”[7], being epoch a particular
instant, like the beginning of a frame.
When developing a radio system for communication, it is mandatory that
a transmission frequency is set and known for all terminals, otherwise the
communication become impracticable. We know that wavelength λ is pro-
portionally inverse to its wave frequency f . Hence, the speed (v) that a
specific wave propagate is constant according to the equation λ = c

f
. For

electromagnetic radiation this speed can be considered as the speed of light
c.
As the Time of Flight definition implies, it is necessary to measure the in-
terval between the send and receive time of a particular event. It is possible
to do an analogy with a transport truck where this truck needs to leave the
warehouse, arrive at a specific point and go back to the start point using the
same path. Considering the truck has a constant speed v, and it took t sec-
onds for the round trip, the distance (d) can be easily calculated by 2d = v×t.

However, this formula can be applied in case the emitted wave is sup-
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posed to reflect immediately as is reaches the destination, as in a sonar for
instance. On this application, the wave contains a modulated signal with
information that need to be processed, thus, the time measured will include
the travel time plus the necessary time to process the data. To ensure that
the ToF calculation is correct, this time is a delay, purposely added in the
code.

Furthermore, the measurements will also include time necessary to travel
this distance between the antenna and the microprocessor itself as antenna
delay (Ta). This distance must be considered in order to get a better preci-
sion on the final result. More information about this on section 6.1.

In our ranging system, two different ranging algorithms, two-way ranging
and symmetric two-way ranging, are used to calculate time of flight. As we
will discuss later, these two algorithms have distinct performances in accu-
racy, variance and measurement rate thus can satisfy different application
situations.

5.1.1 Two-way Ranging

In our two-way ranging algorithm, two settings are made to support each
measurement. First for each anchor, we set a known response delay. Then for
tag, it will send Poll messages to anchors periodically to initialize a distance
measurement. The detailed scheme of two-way ranging can be found in Fig. 4
and discussed below.

• First tag sends a poll message to the Anchor and record the time stamp
of message sending as TSP . If tag does not receive any response message
in a next certain time period, it will time out and send another Poll
message again.

• Second when anchor receives the Poll message tag sends, it waits for
the known response time delay Td and do some necessary operations.
Then it sends a Response message to tag.

• Finally Tag receives the Response message from anchor and record the
corresponding time stamp of receiving TRR.

15



Figure 4: Scheme of two-way ranging.

The time measured within one experiment starting from the sending of
the poll message and ending when a response message is received at T1. All
the delays should be subtracted from this time period.

TOF =
(T1 − Td)

2
(1)

Eq. 1 is a basic Time of Flight formula for two-way ranging, because the
measurement is made based on a single poll-response arrangement. Another
thing that need to be noticed is that in our systems, except for the response
delay Td, we also need to subtract the antenna delay Ta as mentioned above.
But this delay is out of the scope of ranging algorithm and will be explained
in detail in Sec. 7.2.

As discussed in Sec. 7, we get some ranging errors in two-way ranging
algorithm because the average error is proportional to the response delay
Td. The average error can be large as Td varies, that can be a problem if
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not correcting in order to achieve a high accuracy positioning system. In
order to improve ranging performances and to be less sensitive to the clock
misadjustments, we introduce the symmetric two-way ranging process.

5.1.2 Symmetric Two-way Ranging

In addition to Poll message and Response message in former positioning
system (Sec. 5.1.1), the symmetric two-way ranging algorithm uses a Final
message sent from tag to anchor to decrease average ranging error compared
with two-way ranging. The detailed scheme of symmetric two-way ranging
is shown in figure 7 and discussed below.

Figure 5: Scheme of symmetric two-way ranging.

• First tag sends a Poll message to the Anchor and record the time stamp
of Poll sending as TSP . If tag does not receive any Response message
in a next certain time period, it will time out and send another Poll
message again.

17



• Second when anchor receives the Poll message tag sends, it records the
time stamp of receiving TRP . Then it sends a Response message to
tag and once more, record the time stamp of Response sending as TSR.
If anchor does not receive any Final message in a next certain time
period, it times out and wait for a new Poll message again.

• Next, tag receives the Response message from anchor and record the
corresponding time stamp of receiving TRR. Then it waits for a delay
time period and send a Final message where time stamp TRR is attached
to anchor. Notice that this delay time period is set by users so it is
known both at tag and anchors.

• Finally when the Anchor receive the Final message, it extracts TRR from
the message and calculate time of fight. We define some notations as
follows.

Trd1 = TRR − TSP Trp1 = TSR − TRP (2)

Trd2 = TRF − TSR Trp2 = TSF − TRR (3)

Another difference between the two-way ranging algorithm and symmetric
two-way ranging algorithm is that in symmetric two-way ranging algorithm,
time of flight is calculated at anchors. In order to run position algorithm
at tag, every anchor should send distance between tag and itself which is
calculated in last measurement to tag through Response message in current
measurement.

Next we are able to use all the time stamps we get and the notations we
define to derive the formula of TOF calculation in symmetric two-way ranging
algorithm. Let’s assume that TOF keeps the same in one measurement.
According to the symmetrical property shown in figure 7, we have following
range calculation equation[8].

TOF =
Trd2 × Trd1 − Trp2 × Trp1

Trd1 + Trd2 + Trp1 + Trp2

(4)

5.2 Positioning

The positioning stage is the last stage of the application and deals with
estimating the position of the tag by using the measurements supplied by
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the ranging stage. On these measurements we have to do trilateration i.e
the method of estimating the position of a point given the distances of the
point from three other known points. Geometrically it can be seen that the
solution is the intersection of three spheres having these distances as radius
and centered around the three points respectively. It must be mentioned
here that we have two solutions having the same set of distances from the
points(the actual tag position and its mirror image in the plane of the three
anchors).Therefore in the solution its always assumed that the tag is below
the plane. As indicated in the figure 6 the positioning algorithm uses the

Figure 6: (a)Trilateration from exact measurements (b)Trilateration from
noisy measurements

information in the distance measurements to arrive at an estimate that strives
to minimize the error in the mean square sense. In our solution we assume
the noise in the measurements to be Additive White Gaussian Noise. The
positioning algorithm has been split into two cases, namely static positioning
and dynamic positioning based on whether the tag is stationary or not. This
was done because there exists an optimal solution (minimizing the mean
square error) to the positioning problem assuming the tag is stationary while
an implementable optimal solution for the dynamic case is not available.
The solution implemented for the dynamic case would certainly work when
the tag is stationary it will definitely be sub-optimal compared to the static
positioning algorithm.

5.2.1 Static Positioning

Static Positioning is performed when we estimate a location of a stationary
tag. The tag continuously receives the distance measurements from the three
anchors. In this case we should be able to estimate the position at any time
by using all the measurements received until that time. Since the distance
between the tag and the anchors and the tag’s position are related in a non-
linear way, a non-linear weighted (weighting each anchor measurement) least
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squares algorithm on data batches has been proven to be the optimal solution
(in euclidian distance) by [9].

The algorithm used reduces the problem to finding the minimum of a
quadratic cost function. By decomposing the cost function minimization
problem into two steps we arrive at a solution that is optimal and recursive
[9]. The first step is achieved using a Kalman filter while the second step
uses an iterative Gauss-Newton algorithm.

5.2.1.1 Cost function
In order to describe the quadratic cost function used we first define the

system as a vector sk pointing to the position of the tag at any time instant
tk.

sk
T =

[
xk yk zk

]
Since the tag is stationary we can define the state of the system by:

sk+1 = sk (5)

Let zk refers to the vector containing measurements of the three anchors at
a time step tk .

zk =
[
(ma1(tk))2 (ma2(tk))2 (ma3(tk))2

]
Let f(sk) is a function which returns a vector containing the actual distance
between the tag and the three anchors and is given by:

f(sk)T =

(xk − xa1)2 + (yk − ya1)2 + (zk − za1)2

(xk − xa2)2 + (yk − ya2)2 + (zk − za2)2

(xk − xa3)2 + (yk − ya3)2 + (zk − za3)2


The error in the measurements at a time step tk be given by:

ek =
[
ea1(tk) ea2(tk) ea3(tk)

]
The measurements received any time instant are related with the state and
the measurement noise ek by 6.

zk = f(sk) + ek (6)

We then can combine all the vectors from all time steps untill the current
time step tn to obtain the following matrices

Zn
T =

[
z1 z2 . . . zn

]
20



F (sn)T =
[
f(s1) f(s2) . . . f(sn)

]
En

T =
[
e1 e2 . . . en

]
Therefore we can write 7

Zk = F (sk) + Ek (7)

Using this description we will be able to describe the optimality of our
estimate with respect to a cost function Jn defined over all measurements
till time step tn. Using a minimum mean square error criterion we are able
to arrive at the following cost function which gives a measure of this error
where R is the weighing matrix containing the variance of the measurement
of the three anchors[9] .

J =
1

2
(Zn − F (sn))TR−1(Zn − F (sn)) (8)

The static positioning algorithm tries to find an estimate which minimizes 8

∂J

∂s
|s=ŝ = 0 (9)

this is achieved in two steps, a linear first step where we estimate non-linear
combinations of the first step using a linear least square fit and a non-linear
second step which uses a non-linear squares fit of the first step estimates to
obtain an estimate of the unknown state.

5.2.1.2 First Step Optimization
Let Yn and yk represent F (sn) and f(sk) respectively and rewrite 6.

Zn = Yn + En (10)

A new cost function in terms of Yn can be minimized with with respect
to Yn. This cost function is:

Jy =
1

2
(Zn − Yn)TR−1(Zn − Yn) (11)

We now find a estimate Ŷn which minimizes this cost function. Note that this
cost function is linear with respect to Yn. The weighted least squares batch
solution is the optimal solution and it can be shown that the Kalman filter
is a recursive,iterative equivalent [9]. The Kalman filter would have only a
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measurement step as the state of the system is stationary. The estimate of
yk is given by 12

ŷk+1 = ŷk + Pk ·R−1 · (zk − ŷk) (12)

Pk+1 = (Pk
−1 +R−1)

−1
(13)

5.2.1.3 Second Step Optimization
The estimates of the first step are used as measurements in the second

step.
Ŷn = F (s) + Vn (14)

Vn is defined as the ’measurement noise’ which covariance matrix is given by
Pn, i.e. the covariance of the first step states. The second step cost function
to minimize becomes:

Js =
1

2
(Ŷn − F (s))TP−1

n (Ŷn − F (s)) (15)

The estimate of the position for the time instant tk at the sk is given by 16

ŝk = ŝk−1 −∆ ·H−1
k−1 · r(ŝk−1) (16)

Where H−1
k−1 is the Jacobian of the function f(ŝk−1)

Hk−1 =

p̂xk−1 − xa1 p̂yk−1 − ya1 p̂zk−1 − za1

p̂xk−1 − xa2 p̂yk−1 − ya2 p̂zk−1 − za2

p̂xk−1 − xa3 p̂yk−1 − ya3 p̂zk−1 − za3


r(ŝk−1) is the residual of the estimate

r(ŝk−1) =

(p̂xk−1 − xa1)2 + (p̂yk−1 − ya1)2 + (p̂zk−1 − za1)2

(p̂xk−1 − xa2)2 + (p̂yk−1 − ya2)2 + (p̂zk−1 − za2)2

(p̂xk−1 − xa3)2 + (p̂yk−1 − ya3)2 + (p̂zk−1 − za3)2

− yk−1 (17)

5.2.2 Dynamic Positioning

In dynamic positioning the tag is assumed to be in motion and a real-time
estimate of the tag’s location is required.

The Extended Kalman Filter has been extensively used in navigation
systems and can be regarded as the ’defacto’ standard for such purposes.
The linear Kalman filter is considered a good solution for linear systems
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models where both the measurement and state transition models are affected
by additive independent white Gaussian noise. The extended Kalman filter
works by adapting this technique to non-linear systems by linearizing the
model about a working point using the Taylor Series expansion [10]. The
Extended Kalman filter also uses a recursive approach that is comprised of
two phases, the predict phase and the update phase.

The non-linear system is modelled in the following manner: The state of
the tag at a time instance tk denoted by sk is defined by its position xk, yk
and zk, and its velocities ẋk, ẏk and żk in the three co-ordinates x,y and z
respectively.

sk
T =

[
xk yk zk ẋk ẏk żk

]
We model the non-linear state transformation by the following where wk is
the process noise.

sk = f(sk−1) + wk (18)

The measurement at any time instant tk can be modelled similarly as a non-
linear function of the state in the following way where vk is the observation
noise given by N (0, Rk).

zk = h(sk) + vk (19)

Here h(sk) is the observation function which gives the vector containing the
euclidean distances between the state and the anchors, and xai, yai, zai the
x,y and z co-ordinates of the anchor i.

h(sk) =


√

(xk − xa1)2 + (yk − ya1)2 + (zk − za1)2√
(xk − xa2)2 + (yk − ya2)2 + (zk − za2)2√
(xk − xa3)2 + (yk − ya3)2 + (zk − za3)2

 (20)

5.2.2.1 Prediction Phase
The predict phase uses a non-linear state tranformation to calculate the

estimate of the apriori state vector from the estimated posteriori state vector.
The transformation is then ’linearized’ to obtain the apriori state estimate
from the posterori state estimate .

ŝk|k−1 = Fk · ŝk−1|k−1 (21)
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Here Fk is called the linearized state transition matrix

Fk =


1 0 0 ∆tk 0 0
0 1 0 0 ∆tk 0
0 0 1 0 0 ∆tk
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


where ∆tk is the time elapsed between the previous estimation and the cur-
rent estimate.

P̂k|k−1 = Fk · P̂k−1|k−1 · F T
k +Q (22)

The acceleration of the tag reflects the process noise and is modelled here.
The acceleration along x, y and z axis are assumed to be independent white
gaussian noise and having variances σx, σy and σz respectively. Therefore the
Q matrix representing the process noise covariance matrix is given by.

Q = A ·

σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

 · AT (23)

where A is given by:

A =

[
∆t2k

2
I3

∆tkI3

]

5.2.2.2 Update Phase
The update phase updates the posteriori state vector from the apriori state

vector and the measurements. Firstly the innovation vector is calculated
using the measurement zk at the kth step and the observation function.

ỹk = zk − h(ŝk|k−1) (24)

The covariance matrix of the innovation vector is then computed.

Sk = Hk · P̂k|k−1 · Ĥk
T

+R (25)

where Rk is the covariance matrix of the measurements. And Hk is the
Jacobian computed around the apriori state estimate ŝk|k−1 given by:

Hk =


x̂k|k−1−xa1

dist(ŝk|k−1,pa1)

ŷk|k−1−ya1
dist(ŝk|k−1,pa1)

ẑk|k−1−za1
dist(ŝk|k−1,pa1)

0 0 0
x̂k|k−1−xa2

dist(ŝk|k−1,pa2)

ŷk|k−1−ya2
dist(ŝk|k−1,pa2)

ẑk|k−1−za2
dist(ŝk|k−1,pa2)

0 0 0
x̂k|k−1−xa3

dist(ŝk|k−1,pa3)

ŷk|k−1−ya3
dist(ŝk|k−1,pa3)

ẑk|k−1−za3
dist(ŝk|k−1,pa3)

0 0 0
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where dist(ŝk|k−1, pai) returns the Euclidean distance between the apriori
state estimate and the ith anchor We now compute the Kalman gain repre-
sented by Kk.

Kk = P̂k|k−1 ·Hk
T · S−1

k (26)

We compute the refined posteriori state estimate

x̂k|k−1 = x̂k|k−1 +Kk · ỹk (27)

Finally we update the posteriori state covariance estimate matrix

P̂k|k = (I6 −Kk ·Hk) · P̂k|k−1 (28)
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6 Development

6.1 C Code

On this part, we focus on explaining the challenges behind the implementa-
tions of a ranging system in hardware. As mentionned in Sec. 3, our position-
ing system has been realized on DecaWave Ltd. EVK1000 board. The ARM
processor has been programmed in C using the IDE CooIDE distributed by
CooCox Ltd.. The description of the ranging processes that we implemented
can be found in Sec. 5.1.

As mentioned in previous section, our positioning process aims at knowing
the position of a device (the tag) by estimating its distances with other
devices (the anchors). If nothing else is stated, in the following part of
the document N refers to the number of anchors with a minimal number
of 3 anchors (if we have less anchors we then wouldn’t be able to perform
3-Dimensional positioning).

We implemented two ranging methods in our hardware. These two meth-
ods use the same applicative top layer, that we described in this part. What
we call applicative layer is what drives the algorithm. We designed and used
this method presented as the top layer of both methods:

• First we initialize each value and determine the parameters and dif-
ferent operating modes of the board, by analyzing the values obtained
from the board switches S1.

• Then we enter the main loop (as we intend to do positioning with no
finite time the loop is an infinite loop), in this loop we first check for
the device interruption request, because all the messages coming from
the antenna are handled by the hardware as interruptions.

• Then we run the state machine to process the interruption. If a distance
is reported by the state machine we display it and send it to the front
end layer (Matlab in our case) through the USB link.

The loop ends there providing a decent way of making the system running
in real time, handling interruptions and data supply to the front end.

6.1.1 Two Way Ranging

In this part we focus on the specific implementation of the two way ranging
(TWR) and the problems we met during the implementation of this ranging
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process.

Timeline The two way ranging was our first trial of implementation on
these devices so it took us some time to get aknowledged with the envrione-
ments and devices. We then designed the state machine for TWR based on
the one designed by DecaWave Ltd for their STWR demonstration applica-
tion. On top of this we also designed a communication protocol to be able
to supply proper communication between the tag and the N anchors.

Communication protocol The idea behind the design of the communi-
cation protocoll is pretty simple. Each of the anchor has its address imple-
mented on the tag memory, this is encoded in a table TAnchors of length N .
The scheme we present was thought for 3 anchors so it makes sure that all
the anchors implied in the process are addressed and replied. Our scheme
uses an index iAnchor (initialised at 0), we then address the anchor situated
at iAnchor in TAnchors, if the process time out, or any error happens during the
process, we keep on addressing this anchor (to make sure we perform ranging
with any of the anchors). Once the ranging has been made between the tag
and this anchor, iAnchor is increased modulo N . this method is self sufficient
to provide the set of ranges with each anchors, but has the drawback of fail-
ing if one anchor is not working or the communication link deficient (loss of
line of sight, distance too high...) in the case of using more than 3 anchors.

Interfacing the top layer and the hardware As in our board, the EVK
1000, the DW1000 has its own processor, we needed to create an interface
between the top layer (State Machine) and the radio. For this most of the
functions were implemented in the API, but things were left to do so that
the communications are performed the way we want them to. The way
we communicate with the radio is through interruption requests (IRQ). This
interruptions have to be analyzed and rendered as events that can be analyzed
in our state machine, these events would the be stack into an event stack that
is handled by the state machine. The functions in charge of this analysis and
interface are the callback functions in our implementation. We implemented
two of them : the transmission callback and the reception callback function.

Transmission callback This callback function is called anytime a trans-
mission IRQ is received. It analyses the sending timestamp of the message
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and puts the event in the event stack.

Reception callback This callback function is more complex as it han-
dles the analysis of the received message. It first stores the timestamp of
the event (sent through the IRQ). Once this is done it analyses the header
to know if the message is a poll or a response message (see Sec. 5.1.1 for
vocabulary on TWR). Then it checks if the destination of the message is our
coressponding adress, if not the message is not refered. If it is the device
address, the message is analyzed and the message event is transmitted to the
state machine. In the case of a poll message being received the timestamp tRx

is used to directly set the sending time of the response message at tRx + D,
D being the reply delay, the response message is then sent using the callback
functions, it is not the responsibility of the state machine.

State Machine for TWR As mentioned in the above paragraph, the
implementation of our state machine is inspired by the one used by DecaWave
Ltd. in their demonstration application. The state machine of the TWR is
one of the simplest one that can be achieved for a communication protocol
between two devices. It can then be used to develop more complex systems
as a basis to understand how to build a State Machine.

The state machine does two-way ranging by forming the messages for
transmit(TX), commanding their transmission, by commanding the receive(RX)
activities, by recording the different timestamps from different callback event,
by calculating the time of flight according to those timestamps.

Figure 7: Two-way ranging state machine

In this state machine transition, we have totally 5 states to complete one
measurement.
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The tag It consists of all the 5 states and the description of tag execution
is as follows,

• State: TA INIT The initial state case TA INIT performs initialisa-
tion and determines the next state to run depending on whether the
inst-¿mode is selecting tag or anchor operation. In the case of a tag
we want to send a Poll message to allow an anchor to communicate
with the tag and then send back a response message, thus the state is
changed to TA TXPOLL WAIT SEND.

• State: TA TXPOLL WAIT SEND In this state we want to send
the Poll message, so we call function setupmacframedata(), which sets
up the all the other parameters/bytes of the Poll message. And We
also configure and enable the RX frame wait timeout, so that if the
response is not coming, the tag times-out and restarts the ranging.
Then we start the transmit.

• State: TA TX WAIT CONF In this state, we await the confirma-
tion that the Poll message transmission has completed. We get the
interrupt event by calling a transmit call back function. After a confir-
mation of a successful transmission, we will read and save the TX time
of Poll message and then proceed to the next state (TA RXE WAIT)
to turn on the receiver and await a response message.

• State: TA RXE WAIT This is the pre-receiver enable state. Here
the receiver is enabled and the state will then proceed to the TA RX WAIT
DATA where it will wait to process any received messages or will time-

out.

• State: TA RX WAIT DATA This is the biggest state in our state
machine. But for a tag, we only need to consider the situation where
we receive a response message from an anchor. We can see if we receive
a good response message or not through the event we get from the
receive call back function. If it is the correct response message from
the anchor, we record the receive time of this response message. Then
we can do time-of-flight calculations considering the delay of anchor is
known at tags. Finally we go to the TA TXPOLL WAIT SEND state
to start next ranging.
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The anchor It consists of 4 states and the description of flow of execution
is as follows,

• State: TA INIT In the case of a anchor we want to receive a Poll
message from one tag and then send back a response message, thus the
state is changed to TA RXE WAIT after some necessary operations
such as set the address and disable frame filtering.

• State: TA RXE WAIT The same thing happens here in this state
as a tag. The receiver is enabled and the state will then proceed to
the TA RX WAIT DATA where it will wait to process any received
messages or will timeout.

• State: TA RX WAIT DATA For an anchor, the only correct mes-
sage we may receive in this state is the Poll message from a tag. So
after getting a receive callback function, we first record the receive time
of Poll message(not used for time-of-flight calculation) and make state
transition. But this time we directly go to the TA TX WAIT CONF
state since in the receive callback function, we finish the task of setting
a constant delay of response and sending this response.

• State: TA TX WAIT CONF In this state, we record the transmit
time of response message and then calculate the overflow of our anchor’s
antenna delay. Then we may reset this delay in next measurement
in receive callback function to make our response transmit time more
accurate. After this, we go back to TA RXE WAIT state to wait for
next measurement.

Symmetrical TWR

In this part we will describe the Symetrical Two Way Ranging positioning
scheme (STWR) described in Sec. 5.1.2.The driving idea of this process is
quite similar to the one concerning the TWR (Sec. 6.1.1), we will then mainly
focus on the main differences on both implementation: only one more message
is exchanged in the communication scheme but both the Tag and the Anchors
can know their respective distance (actuallly only the Anchor computes it
but it uses the data frame of the response message to send this time of flight
estimation back to the Tag).
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Timeline This positioning process has been developed directly after the
completion of the TWR, we were then knowing the challenges of the imple-
mentation and the specificities of the hardware implementation. It has then
been a faster developing processus for us. The developement of this process
was done simultaneously with the dynamic positioning algorithm develope-
ment.

Communication protocol The communication protocol is exactly the
same as the one used in TWR, hence one can refer to Sec. 6.1.1 to see how
it had been designed and implemented.

Interfacing the top layer and the hardware In this section there are
few differences between the implementations of TWR and STWR. The con-
cept is still the same in order to process messages from the radio we process
IRQs through the two callback functions.

Transmission callback The transmission callback function for the
STWR is exactly the same as the one used in TWR, hence one can refer
to Sec. 6.1.1 to see how it had been designed and implemented.

Reception callback As for the TWR the aim of this function is to
provide an analysis of the received message (correct destination and source,
etc), carry the analysis and provide information to the event stack. The
main difference between this callback and the previous one is that, in case
of a response poll being received, the response is set immediatly (the device
sends as soon as it can). Then when a response message is recieved it is
reported to the state machine which then set the delayed final message.

State Machine for STWR The state machine for symmetric two-way
ranging contains 6 states to complete one measurement.

For tag, it consists of all the 6 states and the description of tag execution
is as follows,

• State: TA INIT The initial state case TA INIT performs initiali-
sation and determines the next state to run depending on whether the
mode is selecting to tag or anchor. In the case of a tag we want to
send a Poll message to allow an anchor to communicate with the tag
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and then send back a response message, thus the state is changed to
TA TXPOLL WAIT SEND.

• State: TA TXPOLL WAIT SEND In this state we want to send
the Poll message, so we call function setupmacframedata(), which sets
up the all the other parameters/bytes of the Poll message. And We
also configure and enable the RX frame wait timeout, so that if the
response is not coming, the tag times-out and restarts the ranging.
Then we start the transmit. The next state is TA TX WAIT CONF.

• State: TA TX WAIT CONF In this state, we await the confir-
mation that the Poll message and Final message transmission is com-
pleted. We get the interrupt event by calling a transmit callback func-
tion (instance txcallback()). After a confirmation of a successful trans-
mission, we read and save the TX time of Poll message(not for Final
message) and then proceed to the next state. The next state here can
be TA RXE WAIT for Poll message to turn on the receiver and await
a response message or TA TXPOLL WAIT SEND for Final message
to start next measurement.

• State: TA RXE WAIT This is the pre-receiver enable state. Here
the receiver is enabled and the state will then proceed to the TA RX WAIT
DATA where it will wait to process any received messages or will time

out.

• State: TA RX WAIT DATA This is the biggest state in our state
machine. But for a tag, we only need to consider the situation where
we receive a response message from an anchor. We can see if we receive
a good response message or not through the event we get from the
receive call back function. If it is the correct response message from
the anchor, we record the receive time of this response message. Then
go to state TA TXFINAL WAIT SEND.

• State: TA TXFINAL WAIT SEND In this state we want to send
Final message. The time of sending the final message depends on the
receive time of response message and the delay time we set. Also these
two time values and time stamp of sending Poll message are attached to
the Final message in this state so they can be known at anchors. After
sending Final message, the state machine go to TA TX WAIT CONF
to switch target anchor to communicate with in next measurement.
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For anchors, they consist of 4 states and the description of flow of exe-
cution is as follows,

• State: TA INIT In the case of a anchor we want to receive a Poll
message from one tag and then send back a response message, thus the
state is changed to TA RXE WAIT after some necessary operations
such as set the address and disable frame filtering.

• State: TA RXE WAIT The same thing with anchors happens here
in this state as a tag. The receiver is enabled and the state will then
proceed to the TA RX WAIT DATA where it will wait to process any
received messages or will time out.

• State: TA RX WAIT DATA For an anchor, the correct messages
we may receive in this state can be Poll message and Final message
from a tag. So after getting a receive callback function, we first record
the receive time of the message, do calculations and make state tran-
sition. If the received message is a Poll message, we directly go to
the TA TX WAIT CONF state which is totally the same as we do in
two-way ranging. The corresponding response sending is done in the
received callback function. However if the received message is a Final
message, we extract all the time stamps attached in the Final mes-
sage and calculate time of flight. Then the state machine switch to
TA RXE WAIT to wait for next Poll message.

• State: TA TX WAIT CONF In this state, we record the transmit
time of response message and go back to TA RXE WAIT state to wait
for Final message.

6.2 MATLAB scripts

In this section, we describe the implementation of the theory behind posi-
tioning discussed in Sec. 5.2. We have already discussed about positioning
of target device (Tag) using range measurements from three or more fixed
anchors. We have created simulations and real-time implementations for two
models for positioning. One is for static positioning and other for Dynamic
positioning. Simulations are performed to verify the theoretical model before
the real-time implementations, that ultimately provides the practical solu-
tion to obtain accurate positioning.
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Property Value Comments
Serial port COMXX Specific to OS
Input Buffer size 110 > Size of output chars (11)
Output Buffer size 110 > Size of output chars (11)
Terminator char(’t’) Set in TAG’s USB output
Timeout 100 Sec-

onds
Set to a large value

Table 1: List of properties configured

Obtaining real-time data

Range measurements are sent to MATLAB over serial COM port. Serial
port connection is established in MATLAB by creating a serial object,
and connection to this object is established using fopen function. Every
time a connection to the serial port is opened, it has to be closed before
starting a new connection on the same serial port object.

Serial port connection has specific properties which can be modified based
on the program requirements. Table 1 shows the list of properties that are
configured in our program. Other properties are left as default. The data
from serial port is read from the buffer using fscanf command. fscanf

reads the data from buffer till it reaches the terminator character. It returns
the set of characters. In our case, we obtain a set of chars in the a particular
format given by : <Anchor Index no. - 1 char >(space - 2char) <range in
meter - 5 chars (float)>.

To obtain position of the Tag in x,y and z directions, we need range
measurements from at least 3 anchors nodes. Hence our script reads the
serial port for range measurements corresponding to all three anchor index
values. If one of the values are corrupted or failed to reach the serial port,
we skip the complete set of readings and move to obtain the next valid set.

Two Way Ranging (TWR)
As two way ranging is faster that Symmetric Double-Sided Two Way Rang-
ing (SDS-TWR), we have to wait shorter amount of time to get same number
of reading. Although, TWR has worse precision and variance of error is quite
high as compared to STWR. In TWR we obtain one set of 3 range measure-
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ments in 0.035 seconds, which means that we get approximately 100 readings
in 3.5 seconds. After accounting for failed readings and buffer loss, we, in
practice, obtain 200 readings in 8-9 seconds.

Symmetric Double-Sided Two Way Ranging (SDS-TWR)
SDS-TWR gives much better precision, but at the expense of time. One set
of 3 range measurements take approximately 0.4 seconds. This amounts for
around 40 readings in 10 secs.

Static Position Estimation

As discussed in previous sections, the static position estimation is based
on the Non-Linear Least Square estimation (NLS). In static positioning, we
place the tag at a static position and wait for a number of reading (f value
for centimeter precision is found to be 200 readings). The more reading we
get at a position, the more accurate we can be in positioning, but at the
expense of time.

Figure 8: Matlab function flow for Static positioning

Implementation of Static positioning algorithm is done in a recursive fash-
ion using a two-step method, which estimates the correct ranges first, and
then estimate the position. We make a call to recursive function, which in
turn calls to get tag readings to get range data, and jacresfordistance
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for getting jacobian and residual values that help estimating positioning. The
process will become more clear from the figure 8.

Dynamic Position Estimation

In dynamic positioning, we use the Extended Kalman Filtering technique
to dynamically obtain the estimate of position of the TAG. The theory is
discussed in section 5.2. Here we create a model of movement of TAG and
estimate the position based on this model. The movement of the TAG will
be defined by its position, velocity and acceleration values. Our model only
predicts till first order derivative i.e. velocity.

Figure 9: Matlab function flow for Dynamic positioning

The important aspect of dynamic positioning is that the predicted posi-
tion should follow a path within the range of our model. Kalman filtering
enables us to get better estimates using a state space model. Initial steps are
similar to Static positioning case where we have to connect to the serial port
for obtaining data. However, in case of dynamic positioning, we only take
one set of range measurements at time to get position estimate. Initialization
of state model variables is also another important factor that can affect the
error in our estimates if not matched properly. The first step in EKF is the
Prediction phase where we predict new state variables based on initial posi-
tion estimate. In the second step, we use the values from prediction phase
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to obtain an Updated value of position and velocity estimate. The complete
flow of the algorithm can be seen in figure 9.

Complete set of MATLAB codes are available in the APPENDIX I sec-
tion. Scripts are thoroughly commented and easy to understand. The scripts
for Static and Dynamic positioning are organized separately.

Executing MATLAB codes

Make sure that all required files are available in the PATH of MATLAB.
For Static positioning, open ”Static Positioning main.m” file, and make changes
according to the setup. Run this file to execute Static positioning.
Similarly for dynamic positioning, open ”Dynamic Positioning main.m” file,
and make changes according to the setup. Run this file to execute Dynamic
positioning.

6.3 Prototype

The final user is able to operate and visualize the outputs from the position-
ing system through a user interface developed on MATLAB. When running
the algorithm it is possible to choose from three different parameters as shown
on figure 10.

Figure 10: Start screen of the user interface on final prototype.
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Related to the positioning algorithm, it is possible to select between dy-
namic or static method. There are also two supported operational modes for
ranging, two-way or symmetric two-way. Furthermore, it is possible to run
the algorithm considering five anchors, in case the user posses enough devices.

On the same screen it is also possible to calibrate system. In this case,
the tag should be placed at the coordinate plane origin.

After selecting the desired options the system can be initialized and the
results will be available on screen. In other words, it is possible to see the
actual tag coordinates in 3 dimension and a 2 dimension map with a path
suggestion, based on points marked on the floor of the room during experi-
mentation. On the top of the screen map is is possible to see the position of
the white board, such as the windows on the bottom. These are references
to help on the location in the map. As the user moves around the room the
UI keeps track of the movement.

Figure 11: User interface after running the dynamic algorithm for symmetric
two-way ranging with three anchors.

Figure 11 shows the user interface after someone walked on the path with
tag on its hand.
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7 Results

7.1 Positioning

7.1.1 Simulation results

Static Positioning
The Gauss Newton algorithm is used in the second step of the static posi-
tioning algorithm. The algorithm will not be defined for the estimates where
the Jacobian of the residual function is singular (as we calculate its inverse)
and is evaluated as the solution of 29.p̂x− xa1 p̂y − ya1 p̂z − za1

p̂x− xa2 p̂y − ya2 p̂z − za2

p̂x− xa3 p̂y − ya3 p̂z − za3

 = 0 (29)

Eq.29 is the equation of a plane which contains the three anchors. If the tag
is placed in the plane, the algorithm will diverge as the estimate gets close to
the actual location of the tag. However this is not a problem if the anchors
are placed in the roof our room and the tag in its intended operation will
never reach the plane.

There are still points in the operation area where the Jacobian is badly-
conditioned and causing divergence. For example the performance between
two points having different condition numbers associated with their Jacobian
is shown in Fig. 12. The algorithm diverges as the estimate gets closer to

Figure 12: Effect of condition number on convergence

the tag location with a high condition number. The condition number of the
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intended area of operation is plotted as a heatmap in Fig. 13.

Figure 13: Condition number of operation area

The efficiency of the Gauss Newton algorithm is depending on the quality
of the initialization of the parameters. Fig. 14 shows different initialization
values used for estimating the position. One can see in Fig. 14 that the
algorithm is robust to misadjustment on the initialization of the position
estimate, provided that enough iterations are completed.
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Figure 14: Parameter Initialization Error

Dynamic Positioning
As explained in Sec. 5, we use two different methodes, each having its speci-
fities. TWR offers superior update rate of 0.03s but with less accuracy with
a variance of 0.10 m2 and more bias. The STWR offers an update rate of
0.27s but a better accuracy and a variance of 0.004m2.

As it is difficult to know the exact time a point is reached while using
dynamic popsitioning, we are unable to carry a quantitative analysis of the
dynamic positioning in a real environment. We then used simulations to eval-
uate the quality of the algorithm. The simulation works by generating path
models for the tag by defining the coordinates of the system in parameters
of time t which enables us to generate any arbitrary paths.

x(t) = f1(t)

y(t) = f2(t)

z(t) = f3(t)

The distance measurements are taken from these coordinates at the cor-
responding time-intervals and an Additive White Gaussian noise is generated
on top of these values.

Straight Line Path : We model a straight line path with a speed of
5km/hr(average human walking speed). The results obtained are shown in
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Fig. 15.

Figure 15: Dynamic Positioning Simulation for straight line path

Circular Path : We model a circular path for the tag with the same
speed to reflect the movement of a human taking a turn. The results obtained
are shown in Fig. 16.

For both scenarios, our simulations of STWR offers better performance
in the than the simulated TWR.
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Figure 16: Dynamic Positioning Simulation for circular path
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Figure 17: Room B230 setup for experimentation
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7.1.2 Experiment setup

The real experiments for positioning are performed in room number B-230.
Devices used in the setup consist of 3 Anchors and 1 Tag. Position of the
anchors is fixed, while Tag can move freely within the line of sight from all
three anchors, in all three dimensions. The figure 17 shows the structure of
the experiment space, position of the anchors and the region available for
positioning.

We created a set of points and a path to obtain range measurements
for static and dynamic experiments respectively. The figure 18 shows these
points and path used.

Figure 18: Measurement points and path used for experiments
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7.1.3 Initialization

7.1.3.1 Static Positioning parameter initialization
The static positioning algorithm5.2.1 have parameters to be configured be-

fore operation. These parameters are initial position estimate (ŷ, ŝ), initial

posteriori error covariance matrix P̂ , measurement co-variance matrix (R)
and step size (∆).

Initial position and posteriori error covariance matrix : An estimate of
the position needs to be initialized in the beginning. Ideally, initial value
of ŷ and ŝ should be close to the actual square of the distances of the tag
with the anchors and the actual co-ordinate position respectively. Since the
position of the tag is unknown we initialize the tag at the center of all three
anchor locations. P̂ is initialized by assuming the tag can be anywhere with
uniform probability in the operating area and calculating the mean square
error between the position of the tag and the initial position estimate.

Measurement Co-variance matrix and Step size: The measurement co-
variance matrix, R is the variance in range measurement values from the
ranging stage. This parameter has to be initiated with an approximate value
close to the real variance in measurement data. The step size determines
the speed of convergence of the Gauss-Newton algorithm. If the value is
too small, it will take lot of time to converge to actual value, while if the
value to too high, the algorithm might not converge at all. The algorithm is
analyzed for different values of measurement co-variance and step size and
optimal values are selected by choosing the configuration which minimizes
the mean square of error, this is done for the two different ranging methods,
which have different nature of measurement noises associated with them and
accordingly have different parameters.

For TWR the performance analysis for the measurement variance and
stepsize is carried in Fig. 19. One cannot find the optimal configuration
in Fig.19 as the plot shows a lot of discontinuities. We then choose an
appropriate step size of 0.01 and a measurement variance of 0.1 m2.

For STWR, the performance analysis for the measurement variance and
stepsize is carried in Fig. 20. In Fig. 21, one can see that it is unappropriate to
choose a low stepsize value as the resulting error in distance would be higher
than 1m. One can extract form Fig. 22 that the error is almost constant
in the area studied that corresponds to the border of Fig. 20. Hence the
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Figure 19: Performance of TWR for different configuration values

Figure 20: Performance of SDS for entire configuration values
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Figure 21: Performance of SDS for low step size

choosen parmaters are taken in this area and are 0.004 m2 for the variance
and 0.7 for the stepsize.

7.1.4 Static positioning results

Convergence Analysis
The convergence of the static positioning algorithm is studied in Fig. 23 for
TWR , using the found as good step size and measurement covariance matrix.
We then can see that the convergence is reached in 100 measurements.

In Fig. 24, we carry the convergence analysis for STWR using step size
and measurement co-variance matrix found previously. The convergence is
reached for 20 measurements.

This difference in the number of iterations needed is lying on the fact
that STWR is way more accurate. However since the time taken for each
measurement is higher in STWR compared to TWR, the times are similar
to reach convergence. This can be seen on Fig. 25 where the curves are
displayed with respect to the acquisition time.

From Fig. 25. , one can extract that STWR is still better as the speed and
convergence is approximately the same for both but STWR is more accurate.
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Figure 22: Performance of SDS for optimal configurations

Figure 23: Convergence analysis for TWR
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Figure 24: Convergence for SDS

Figure 25: Convergence SDS vs TWR in time
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7.1.4.1 Static Positioning Final Results

Results for the TWR The studies performed in the other sections allowed
us to find a good operating point for our system. In this section we present
the results obtained for this system on the experience conditions.

Fig. 26 shows the behaviour of our TWR system with no correction being
performed, in functions of the x and y coordinates of the room for a constant
altitude z. One can see that the results are outside the 10cm range fixed by
our soecifications. in order to reduce these errors, we performed an in depth
error analysis in Sec. 7.2, in order to reduce those errors.

Figure 26: Heatmap for TWR without any correction being performed

After the error analysis we were able to provide a correction processus.
These led to very accurate results in Fig. 28 and Fig. 29.

Results for the STWR As for the TWR the results are presented here
for STWR in the same fashion. First, Fig. 30 shows the error induced by
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Figure 27: Heatmap for TWR with correction

the STWR process without any corrections. Then applying the correction
method developed, we obtained the corrected results in Fig. 31 and Fig. 32.

7.1.5 Dynamic positioning results

Dynamic positioning is based on the EKF algorithm. The algorithm esti-
mates the position and velocity of the tag using state space model of tag’s
movements. The parameters that needs to be initialized in this case are ini-
tial position matrix, covariance matrix of the initial position, acceleration
covariance matrix and measurement covariance matrix.

In order to analyze the results in dynamic positioning, we need some
device that can follow an exact path, with determined velocity and accel-
eration. This will enable us to study the predicted position estimates in
comparison with the actual values of position and velocity. Although, un-
fortunately, we don’t have such device to our disposal. Hence we could only
perform some manual tests, and resorted to simpler visual analysis for errors.
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Figure 28: Heatmap for TWR with correction

Fig: 33 and Fig: 34 shows the output from one of the manual tests per-
formed on two way ranging and symmetric two way ranging. Tag was moved
around different locations in the room at normal human speed (around 3-4
km/hr). Average time taken between any two predictions is around 0.25 sec-
onds in case of SDS-TWR and 0.12 seconds in case of TWR. Although this
causes a delay between the actual point and the point that is displayed, but
this delay is not very significant compared to the normal speed of a human.

7.2 Sources of error

The sources of error in the positioning algorithm are derived from the ranging
error made in the previous step. In order to study the ranging error, several
experiments have been carried out.

The first protocol that has been developed was to test the robustness of
TWR algorithm in different environment. The tag was set in a fixed position
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Figure 29: Heatmap for TWR with correction for each coordinate

and the anchors were moved step by step from 1m distance to 6m distance
with a 1 meter-step. This experiment has been carried out in two indoor
spot: one close to a wall and the other in the middle of the room. The
results of the tests can be found in Fig 35.
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Figure 30: Heatmap for STWR without any correction being performed

This result is crucial because it is three-fold: the range error depends on
anchor, on the distance from the tag to the anchor and on the environment
itself.

7.2.1 Dependency on the clock system of each anchor

The dependency of the ranging error on each anchor is obviously linked to
an inherent difference of clock system in each antenna. The Tab. 2 shows
the mean of the actual and the relative bias between antennas over 23’000
acquisitions in 23fa different spots of the room studied. The relative bias is
computed comparatively to anchor 2.

Measurement Anchor 1 Anchor 2 Anchor 3
Actual bias (m) 1.64 0.53 0.76
Relative bias(m) 1.11 0 0.23

Table 2: Studying of the range bias for each anchor
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This bias is related to the hardware differences between each antenna. It
is particularly high because of the choice of the TWR protocol (see Fig. 4
p. 16). Indeed, if the clock system of the anchor is slightly different from the
clock system of the tag there will be some inherent bias to the ranging. The
DW1000 clocking scheme operates at a frequency of 38.4 MHz [4]. Let etag
and eanchor be the relative frequency error of the tag and of the anchor. Let
TOF and td be respectively the time of flight and the time of response of the
anchor (see Fig. 4 p. 16) The following equations can be proved:

ˆTOF − TOF = TOF × etag +
td.(etag − eanchor)

2

≈ td ×
(etag − eanchor)

2

d̂ ≈ d+ c× td
2
.(etag − eanchor) (30)

The bias can then be explained by the fact that each clock crystal of
each antenna is different and operates at slightly different pulses. In order
to illustrate this bias we designed two different protocols.

The first protocol was to change the response reply td in Eq. 30. The bias
b = d− d̂ is then a linear function of td: b = b(td) with (etag−eanchor)

2
as slope.

This experiment has been performed for anchor 2, the result can be seen in
Fig 36

The second protocol was to measure the crystal signal directly on the 3rd
pin of the DW1000 [4]. The evolving of the frequency of each crystal has
been studied in Fig 37. The device used to measure was a frequency counter
of 350 MHz (Agilent 53230 [5])

Using the actual frequency measured, the clock related bias has been
computed and compared to the relative bias that was presented in Tab. 2.
The result can be shown in Tab 3. One can see that the clock related bias is
close to the relative bias measured.

A calibration of the data is done before applying the positioning algorithm
in order to address the clock system error. The calibration is performed in
(0,0,0) point (see Part. 7.1). Nevertheless, the bias related to the environ-
ment is not curbed. The next paragraph tends to show and explain the bias
due to the environment.
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Figure 31: Heatmap for STWR with correction

Measurement Anchor 1 Anchor 2 Anchor 3
Relative bias measured (m) 1.11 0 0.23
Clock related bias (m) 0.93 0 0.24

Table 3: Comparison between the relative bias measured and the clock
related bias
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Figure 32: Heatmap for STWR with correction for each coordinate
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Figure 33: Symmetric Two way ranging with Dynamic positioning.

Figure 34: Two way ranging with Dynamic positioning.
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Figure 35: Ranging error in two different environment

7.2.2 Dependency on the environment and the range itself

The ranging accuracy has been shown to depend on the environment and on
the range itself. This model can be confirmed by the heatmaps of the bias
that we produced see Fig 38- 41. The setup of the experiments is described
in Fig 17.

As one can assess, the main cause of error is due to the fact that the
bias is changing within the position in the room. We coded a function to
correct the ranges in real time before applying the positioning algorithm i.e.
before knowing the position of the point. The 23 biases related to each 23
measurement points are saved in a chart. The simple idea of the function is
hence to find the closest point in the range domain from three input ranges
and then correct all ranges by the saved biases.

It is crucial to precise that the bias correction is possible only if a heatmap
of the room has been made beforehand. If only one calibration is possible
the heatmaps show that it should be performed in the middle of the room.
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Figure 36: Ranging bias in function of td for anchor 2

Figure 37: Studying of the crystal frequency in function of time
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Figure 38: Heatmap of TWR range bias for anchor 1

Figure 39: Heatmap of TWR range bias for anchor 2
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Figure 40: Heatmap of TWR range bias for anchor 3

Figure 41: Heatmap of range bias for all anchors
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According to Decawave datasheet, the dependency of the range error
on the distance and on the environment could be merged into one unique
dependency on the received signal level. This phenomena is consistent with
the measurements gathered in Fig 38- 41. The persistent and substantial
bias on the right hand of each heatmap can be explained by a loss of power
due to the open space and very architecture of the room.
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8 Conclusion

We have successfully achieved project goals of accurate positioning using De-
cawave DW1000 radio devices. The accuracy of the system depends on type
of ranging and positioning methods are used, as well as many environmental
factors. However, for our environment specifically, we analyzed these factors
and calibrated the system for best performance. The achieved accuracy is
significant for positioning in both static and dynamic case. We will further
discuss conclusions drawn from different phases of the project.

In ranging phase, we implemented two separate protocols - Two-way rang-
ing (TWR) and Symmetric Double-sided Two-way ranging (SDS TWD).
TWR is faster, but with lower accuracy. While SDS-TWR is slower with
higher accuracy. In conclusion, TWR can be used in scenarios which require
real-time position updates with low accuracy. However, in scenarios where
accuracy is of high priority, SDS-TWR will prove to be a better option. The
variance of measurement errors in ranges in TWR case is around 0.12m and
for SDS-TWR case 0.04m. Moreover, due to added error by antenna delay in
TWR case, there is always some constant bias in measurements of around 1m
to 0.6m depending on the antenna pair. In case of SDS-TWR, bias is around
0.4m-0.01m. For circumventing this issue, we added a calibration step in our
implementation where devices can be calibrated at the origin to account for
this constant bias. Later, we created a heatmap of the bias values in different
location of the room, and used that to further improve our readings. This
resulted in significant improvement in accuracy.

In positioning phase, we implemented Static and Dynamic positioning al-
gorithms. Static algorithm uses Non-Linear Least square estimation (NLS),
which gives very accurate measurements of static location, but its takes a long
time to gather enough data to achieve specific accuracy. In case of TWR,
convergence is achieved after almost 500 readings, which takes around 17 sec-
onds at one point. For SDS-TWR, as it gives more accurate ranges, it takes
only 40 readings to converge, which is equivalent to 12 seconds. We analyzed
different initialization parameters used, to come up with values that leads to
minimum error and faster convergence of the algorithm. We also studied the
error in positioning at different locations in the room and created heatmaps
to understand the behavior of the system. This helped us to understand
how positioning is affected by the location of the tag relative to the anchors.
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Dynamic positioning uses Extended Kalman Filtering techniques to give po-
sition (and velocity) updates in real-time. Although in dynamic case the
accuracy is not as good as static case, but dynamic positioning can track
changes in position quite accurately. EKF algorithm is analyzed by visual
inspection of the deviation of tag’s estimated track from the actual track. In
real world scenarios, dynamic positioning can track human movements very
accurately.

In error analysis phase, we studied sources of error in both ranging and
positioning phases. We found out that many factors such as clock drifts,
antenna delays, environmental factors etc. adds to the error. Hence it is
important to pre-analyze the environment and other factors, and reduce the
errors due to these factors.

The prototype created for demonstration in this project is a simple user
interface running on MATLAB. A user have to connect the tag device to the
USB port of PC running MATLAB first. Once the tag boots up, one should
wait at least 30 secs for the core to get heated in order to prevent errors
due to cpu clock. After that user can start the positioning system by simply
clicking the start button. Estimated position of the tag will be shown in a
figure in the user interface. We provided two different methods of calibration
or bias-error correction. One is the calibration in which bias is corrected by
calibrating for the errors in positioning at the origin. And other is the bias
correction using heatmap generated for the entire room.

Finally, it can be concluded that UWB antenna (Decawave DW1000)
with high speed clock processors (ARM) provides a good hardware to get
centimeter level accuracy in positioning. Time-of-flight method works well
in regions which are within line of sight.

This project has provided us a valuable practical experience implementing
theory in real life. We learned about the implementation of communication
protocols.
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