
SF2729 Groups and Rings
Exam

Monday, March 21, 2016

Time: 08:00-13:00
Allowed aids: none
Examiner: Roy Skjelnes

Present your solutions to the problems in a way such that arguments and calculations are easy
to follow. Provide detailed arguments to your answers. An answer without explanation will be
given no points.

The final exam consists of six problems, each of which can give up to 6 points. The homework
problems will contribute with up to 9 points on the three first problems in the exam. Credits on
the three first problems in the exam will together with the contribution from the homeworks give
at most 18 points.

The minimum scores required for each grade are given by the following table:

Grade A B C D E Fx
Credit 30 27 24 21 18 16

A score of 16 or 17 is a failing grade with the possibility to improve to an E grade by additional
work.



Problem 1
Let Φ: G −→ H be a group homomorphism.

(a) Show that the kernel, ker Φ, is a normal subgroup. (2 p)

(b) Show that the image of Φ is subgroup. Is it normal? (2 p)

(c) For any a ∈ G, show that the order of Φ(a) divides the order of a. (2 p)

Solution

1. The kernel always contains the identity element e, so its non-empty. Let a, b be elements in
the kernel. We have that ab−1 is in the kernel since Φ(ab−1) = Φ(a)Φ(b)−1 = e · e−1 = e.
Therefore the kernel is a subgroup. We need to check normality. Let x be any element of
G. The element xax−1 is mapped to Φ(x)e′Φ(x)−1, where e′ is the identity element in H .
We get that Φ(x)e′Φ(x)−1 = Φ(x) · Φ(x)−1 = e′, and the kernel is normal.

2. The image is a subgroup: Its non-empty and if we have any elements a, b in the image, let
a′, b′ be elements in their pre-image. We then have that ab−1 = Φ(a′)Φ(b′)−1 = Φ(a′b′−1).
This is not necessarily normal since there exist subgroups that are not normal. Take for
instance the group of two elements G = S2 embedded as the permutations of the first two
letters in S3. Then G as well as its image is generated by (12) which is not normal as all
transpositions in S3 are conjugated.

3. Let n be the order of the element a ∈ G. Then an = e, and so Φ(a)n = e′ and the order of
Φ(a) divides n.

Problem 2
Let R be a commutative ring with 1.

(a) Define what an nilpotent element is, and show that the set of nilpotent elements in R form
an ideal. (2 p)

(b) Show that if an element x ∈ R is nilpotent, then x is contained in any prime ideal of R.
(2 p)

(c) Give an example of a ring R that is not an integral domain, and has no nilpotent elements
other than zero. (2 p)



Solution
1. An element x ∈ R is nilpotent if xn = 0 for some n ≥ 0. If x is nilpotent, then clearly rx

is nilpotent for any r ∈ R. Moreover, if x and y are nilpotent, then (x+y) is also nilpotent:
Let n be such that xn = 0, and m such that ym = 0. Then we expand

(x+ y)N =
N∑
i=0

(
N

i

)
xiyN−i.

Let N ≥ 2 ·max{n,m}, and we see that (x+ y)N = 0.

2. Let P be a prime. Let x be nilpotent. We then have that xn = 0 ∈ P . Let n be the smallest
integer such that xn ∈ P , but where xn−1 not inP . This integer exists. We then have that
xn ∈ P , and since P is prime we get that x ∈ P or xn−1 ∈ P . It follows that x ∈ P since
xn−1 ∈ P would contradict our assumption on n.

3. For instance Z/(6), has zero divisors, but no other nilpotents than 0.

Problem 3
(a) Describe the irreducible factors of the monic polynomial (3 p)

f(x) = x5 − x4 + 3x3 + 3x2 − 3x− 3 in Q[x].

(b) Let F (x) = (x− a1) · · · (x− an) be a polynomial with distinct roots ai 6= aj (when i 6= j)
in Q. Show that (3 p)

Q[x]/(F (x)) '
n∏

i=1

Q.

Solution
1. We see that 1 is a root of f(x) since f(1) = 0. Polynom division then gives that f(x) =

(x4 + 3x3 + 6x + 3)(x− 1). The polynomial x4 + 3x2 + 6x + 3 is irreducible in Z[x] by
the Eisenstein criterion, p = 3. Hence irreducible in Q[x].

2. For any a ∈ Q we have that (x − a) is irreducible, hence a maximal ideal. Different
maximal ideals are co-prime. By the Chinese Restminder Theorem we obtain the equality
of ideals

(x− a1) · · · (x− an) = ∩n
i=1(x− ai).

The canonical map

ϕ : Q[x]→
n∏

i=1

Q[x]/(x− ai)
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then has kernel (x− a1) · · · (x− an), which clearly equals the ideal (F (x)). And we have
that Q[x]/(x− a) = Q.

Problem 4
Let G = GL2(Z3) the group of invertible (2 × 2)-matrices with entries in the field with three
elements. The group acts naturally on the vector space Z2

3, and also on the set L of lines that
passes through origin.

(a) Determine the order of G. (2 p)

(b) Show that the center of G is the set of scalar matrices, and isomorphic to S2. (2 p)

(c) Show that the action of G on the set L induces a surjective group homomorphism from G
to S4; the symmetric group in four letters. (2 p)

Solution

1. The first row in the matrix can be any non-zero vector in Z2
3. Given the first row, the

condition on the second row is that it is not a scalar multiple of the first. Therefore we get
that the number of elements in G is (32 − 1)(32 − 3) = 8 · 6 = 48.

2. Let Z(G) denote the center, and let
[
a b
c d

]
be an element. Then in particular we have that

[
a b
c d

] [
0 1
1 0

]
=

[
b a
d c

]
=

[
0 1
1 0

] [
a b
c d

]
=

[
c d
a b

]
.

So b = c and a = d. We also have that[
a b
c d

] [
1 0
0 −1

]
=

[
a −b
c −d

]
=

[
1 0
0 −1

] [
a b
c d

]
=

[
a b
−c −d

]
,

so b = 0 and c = 0. We then have that the center Z(G) is a subset of the scalar matrices.
However, the scalar matrices do commute, so Z(G) equals the scalar matrices. We have
only two elements, the identity matrix and −1 times the identity matrix in the zenter, so
the group Z(G) is S2.

3. A line passing through origo is given by a non-zero vector. Two non-zero vectors determine
the same line if they are equal up to a scalar. Therefore we have four lines passing through
origo. We identify the set L with the four numbers 1, 2, 3, 4 by marking the lines. The
natural action of G on L determines a group homomorphism Φ: G → S4, sending g ∈ G
to the permutation Φ(g) = µg where µg(l) = g · l, where l is any number/line in L. The
kernel of the induced group homomorphism are those elements that act trivially on L, that
is

µg(l) = g · l = l,
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for all lines l ∈ L. Thus, the kernel is the set of scalar matrices Z(G) = ker(Φ). The image
of Φ is then a subgroup of order 48/2 = 24 = |S4|, and it follows that Φ is surjective.

Problem 5
Let R = Z[

√
7] = Z[x]/(x2 − 7), which is a free Z-module of rank 2. Let N : R → Z be the

map N(a+ bx) = a2 − 7b2. Then N is multiplicative.

(a) Determine a unit ξ, different from ±1. (1 p)

(b) Show that (2 + x) and (2− x) are co-prime.1 (2 p)

(c) Write 6 as a product of irreducibles, and verify if any of these irreducible components are
associates (3 p)

Solution
1. We need to find a solution to a2 − 7b2 = ±1. One solution is ξ = 8 + 3x, which has norm

82 − 7 · 32 = 1.

2. By substituting x = 2 in the quotient ring Z[x]/(x2− 7, x− 2) we obtain that it is the field
Z/(3). So x− 2, and similarily x+ 2 is a maximal ideal. These two maximal ideals are not
associates. Because, assume that we have a+ bx such that

2 + x = (2− x)(a+ bx) = 2a− 7b+ x(2b− a).

This is an equality that requires 1 = 2b−a, so a = 2b−1. And we also have that 2a−7b = 2
which gives 2 = 4b− 2− 7b = −2− 3b, which has no integer solution.

3. We have 6 = 2·3. We have that 2 = (3+x)(3−x) = 9−7 and that 3 = (2+x)(−1)(2−x) =
−(4− 7). The norm of 3 + x and 3− x is two, which is a prime, hence these two elements
are irreducible. Similarily, the norm of 2 + x and 2− x is −3, and these two elements are
also irreducible. Therefore we have a decomposition into irreducibles as

6 = (3 + x)(3− x)(2 + x)(−2 + x).

Two associate elements must have ± the same norm. So the question is wheter 3 + x is
associate to 3−x, and if 2+x is associate to 2−x. We have from the results above that 2+x
is not associate to 2−x. However, we have that (3−x)·(8+3x) = 24−21−8x+9x = 3+x.
The element 8 + 3x is a unit, so these two elements are associates.

1Co-prime is the same as co-maximal.
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Problem 6
Let Q denote the rational numbers, which is an abelian group under addition.

(a) Show that Q is not a finitely generated group. (2 p)

(b) Show that Aut(Q) is isomorphic to Q∗; the multiplicative group of the non-zero rational
numbers. (2 p)

(c) Show that Aut(Q2) is isomorphic to GL2(Q). (2 p)

Solution

1. Suppose the group was finitely generated, and let x1, . . . , xn be a set of generators. Then
any element in Q can be written as a1x1 + · · · + anxn, with integers a1, . . . , an. Assume
that the rational numbers xi = ni/mi are written in reduced form, and let m be the least
common multiple of their deonominators. Let p be a prime number which is not a divisor of
m. Then, by assumption the rational number 1/p =

∑n
i=1 aixi. This is however impossible

because
n∑

i=1

aixi =
n∑

i=1

aini

mi

=
1

m

n∑
i=1

a′ini =
a

m
,

and we have assumed that p does not divide m.

2. Let ϕ be an automorphism, and set a = ϕ(1). Then ϕ(n) = nϕ(1). We then get that
a = ϕ(1) = ϕ(n · 1/n) = n · ϕ(1/n), and that ϕ(1/n) = a/n. Thus any automorphism
is determined by the number ϕ(1), and the only number we can not allow is a = 0. This
shows that Q∗ is the set of automorphisms. The composition is identified with multiplica-
tion, and it follows that the groups are isomorphic.

3. Let Φ be an automorphism of Q2. Let Φ(1, 0) = (a, b) and Φ(01, ) = (c, d). Argueing as
above shows that these two values determine the automorphism. For any (x, y) ∈ Q2 we
get that

Φ(x, y) = xΦ(1, 0) + yΦ(0, 1) =

[
a c
b d

] [
x
y

]
.

We then have that any automorphism Φ determines a matrix, and that composition is iden-
tified with matrix multiplication. The matrix represents a Q-linear map, and such a map is a
bijection if and only if the matrix is invertible. This show that the group of automorphisms
equals GL2(Q)

6


