KTH Teknikvetenskap

SF1625 Envariabelanalys Lösningsförslag till tentamen 2016-01-11

DEL A

1. Differentiate these functions with respect to x and state in each case for what x the derivative exists. Only answers are necessary, no motivations needed.
A. $f(x)=\arctan \frac{1}{x}$
B. $g(x)=2^{x}$
C. $h(x)=x e^{-x^{2}}$
D. $k(x)=\frac{\sqrt{x}}{\ln x}$

Lösning. A. $f^{\prime}(x)=\frac{1}{1+\frac{1}{x^{2}}} \cdot\left(-\frac{1}{x^{2}}\right)=-\frac{1}{x^{2}+1}$. Existerar för alla $x \neq 0$.
B. $g^{\prime}(x)=2^{x} \cdot \ln 2$. Existerar för alla x
C. $h^{\prime}(x)=\left(1-2 x^{2}\right) e^{-x^{2}}$. Existerar för alla x
D. $k^{\prime}(x)=\frac{\frac{\ln x}{2 \sqrt{x}}-\frac{1}{\sqrt{x}}}{(\ln x)^{2}}=\frac{\ln x-2}{2 \sqrt{x}(\ln x)^{2}}$. Existerar för alla $x>0$ sådana att $x \neq 1$

Svar: Se lösningen.
2. Compute the integrals and simplify your answers.
A. $\int \tan x d x \quad$ (you may want to use the substitution $u=\cos x$)
B. $\int x^{2} \cos x d x \quad$ (you may want to use repeated integration by parts)

Lösning. A. We use $u=\cos x$ med $d u=-\sin x d x$ and obtain

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} x d x=-\int \frac{1}{u} d u=-\ln |u|+C=-\ln |\cos x|+C
$$

C an arbitrary constant.
B. We integrate by parts twice and obtain

$$
\begin{aligned}
\int x^{2} \cos x d x & =x^{2} \sin x-\int 2 x \sin x \\
& =x^{2} \sin x+2 x \cos x-\int 2 \cos x \\
& =x^{2} \sin x+2 x \cos x-2 \sin x+C
\end{aligned}
$$

Svar: A. $-\ln |\cos x|+C, C$ an arbitrary constant.
B. $x^{2} \sin x+2 x \cos x-2 \sin x+C, C$ an arbitrary constant.
3. Decide whether the function $f(x)=|2 x-1|+\arcsin x$ assumes maximum and minimum values, and if so, find these. Simplify your answer.
Lösning. Domain $-1 \leq x \leq 1$. We oberve that f is continuous on the closed and bounded interval and so a maximum and a minimum value exist, and are assumed at either a critical point or a boundary point or a singular point.

$$
f(x)= \begin{cases}2 x-1+\arcsin x, & \text { if } 1 / 2 \leq x \leq 1 \\ 1-2 x+\arcsin x & \text { if }-1 \leq x<1 / 2\end{cases}
$$

We differentiate:

$$
f^{\prime}(x)= \begin{cases}2+\frac{1}{\sqrt{1-x^{2}}}, & \text { om } 1 / 2<x<1 \\ -2+\frac{1}{\sqrt{1-x^{2}}} & \text { om }-1<x<1 / 2\end{cases}
$$

At $x=1 / 2$ the function is not differentiable. We see that $f^{\prime}(x)>0$ on $1 / 2<x<1$ and so f has no critical points in that interval. On $-1<x<1 / 2$ it holds that $f^{\prime}(x)=0$ iff $x=-\sqrt{3} / 2$, which therefore is the only critical point.

It follows from the above that the maximum and minimum values of f is assumed at $-1,-\sqrt{3} / 2,1 / 2$ or 1 . We compare values:
$f(-1)=3-\frac{\pi}{2}, \quad f(-\sqrt{3} / 2)=\sqrt{3}+1-\frac{\pi}{3}, \quad f(1 / 2)=\frac{\pi}{6}, \quad f(1)=1+\frac{\pi}{2}$.
We see f :s maximum value is $1+\pi / 2$ and f :s minimum value is $\pi / 6$
Svar: Maximum value $1+\pi / 2$ and minimium value $\pi / 6$

Del B

4. Assume the function f to be three times differentiable on the real axis. Assume further that $f(1)=2, f^{\prime}(1)=-3$ and $\left|f^{\prime \prime}(x)\right| \leq 5$ for all x.
A. Find an approximate value of $f(1.1)$ using linear approximation (Taylor polynomial of degree 1).
B. Find as good a bound as possible for the error in your approximation.

Lösning. Using Taylors formula we get

$$
f(x) \approx 2-3(x-1), \quad \text { for } x \text { near } 1
$$

The error is $\frac{f^{\prime \prime}(c)}{2!} x^{2}$ for some c between 1 and x.
With $x=1.1$ this yields

$$
f(1.1) \approx 2-3(1.1-1)=1.7
$$

The sought for approximate value is 1.7 .
The error is at most $\frac{5}{2!} 0.1^{2}=0.025$.
Svar: A. 1.7. B. 0.025
5. Compute the integral

$$
\int_{0}^{\sqrt{3}} \arctan x d x
$$

(For a maximum score the integral should be computed exactly, but an approximate computation may be awarded partial score. Simplify your answer.)

Lösning. We integrate by parts and obtain

$$
\begin{aligned}
\int_{0}^{\sqrt{3}} \arctan x d x & =[x \arctan x]_{0}^{\sqrt{3}}-\int_{0}^{\sqrt{3}} \frac{x}{1+x^{2}} d x \\
& =\frac{\sqrt{3} \pi}{3}-\left[(1 / 2) \ln \left(1+x^{2}\right)\right]_{0}^{\sqrt{3}} \\
& =\frac{\sqrt{3} \pi}{3}-\ln 2
\end{aligned}
$$

(If you want to approximate the integral instead you may use for instance Taylors formula, Riemann sums or the trapezoid rule)

Svar:

$\frac{\sqrt{3} \pi}{3}-\ln 2$
6. We study the curve given by $2 x^{2}+4 x y+3 y^{2}+2 y=10$.
A. Find an equation for the tangent to the curve at the point $\left(x_{0}, y_{0}\right)=(-1,2)$.
B. Using the tangent, find an approximate value of the y-coordinate of a point on the curve with x-coordinate -0.8 .
C. Can there be more than one point on the curve with x-coordinate -0.8 ?

Lösning. A. The poin $(-1,2)$ satisfies the equation, hence it lies on the curve. We assyme $y=y(x)$ and differentiate implicitly and obtain

$$
4 x+4 y(x)+4 x y^{\prime}(x)+6 y(x) y^{\prime}(x)+2 y^{\prime}(x)=0
$$

which if $x=-1$ and $y=2$ yields

$$
-4+8-4 y^{\prime}(-1)+12 y^{\prime}(-1)+2 y^{\prime}(-1)=0
$$

We solve for $y^{\prime}(-1)$ and get

$$
4+10 y^{\prime}(-1)=0
$$

in other words $y^{\prime}(-1)=-2 / 5$. The equation of the tangent is

$$
y-2=-\frac{2}{5}(x+1)
$$

B. We use the tangent for approximation and get

$$
y \approx 2-\frac{2}{5}(-0.8+1)=2-\frac{0.4}{5}=1.92
$$

C. With $x=-1$ we use the solution formula for the quadratic equation and get

$$
2-4 y+3 y^{2}+2 y=10 \Longleftrightarrow y=\frac{1}{3} \pm \frac{5}{3}
$$

which means there are two points on the curve with x-coordinat -1 . (Ellipse)
Svar: A. $y-2=-\frac{2}{5}(x+1)$. B 1.92. C. yes

Del C

7. We study the function f given by

$$
f(x)= \begin{cases}\frac{\sin x}{x} & \text { when } x \neq 0 \\ 1 & \text { when } x=0\end{cases}
$$

A. Is f odd? Is f even?
B. At what points is f continuous?
C. At what points is f differentiable?
D. Is f integrable on the interval $-\pi \leq x \leq \pi$?

Lösning. A. Since $f(0) \neq 0, f$ cannot be odd. We see that for $x \neq 0$ it holds that $f(-x)=$ $\sin (-x) /(-x)=\sin x / x=f(x)$ and so f is even.
B. For all $x \neq 0, f$ is given by an elementary expression and so is continuous. Since

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1=f(0)
$$

f is continuous at $x=0$ too. Hence f is continuous everywhere.
C. For $x \neq 0$ we get

$$
f^{\prime}(x)=\frac{x \cos x-\sin x}{x^{2}}
$$

and so f is differentiable at all $x \neq 0$. The point 0 has to be examined separately using the definition of the derivative:

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\frac{\sin h}{h}-1}{h}=\lim _{h \rightarrow 0} \frac{h^{2} / 3!+\mathcal{O}\left(h^{4}\right)}{h}=0
$$

We see f is differentiable at the origin and $f^{\prime}(0)=0$. Hence f is differentiable everywhere.
D. Since f is continuous on the closed and bounded interval $[-\pi, \pi]$ it follows that f is integrable on that interval.

Svar: See solution
8. Find the smallest possible real number M such that $\left|f^{\prime \prime}(x)\right| \leq M$ for all $x \in \mathbb{R}$, if $f(x)=$ $\arctan x$.
Lösning. With $f(x)=\arctan x$ we get $f^{\prime}(x)=\frac{1}{1+x^{2}}$ and $f^{\prime \prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$ that exists for all real x.

We shall find the maximum value of the function g given by $g(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$ for $x \in \mathbf{R}$. We differentiate:

$$
g^{\prime}(x)=-2 \frac{\left(1+x^{2}\right)^{2}-\left(1+x^{2}\right) 4 x^{2}}{\left(1+x^{2}\right)^{4}}
$$

that exists for all real x. We see that $g^{\prime}(x)=0 \Longleftrightarrow x= \pm 1 / \sqrt{3}$. We study the sign of g^{\prime} and get:

If $x<-1 / \sqrt{3}$ then $g^{\prime}(x)$ is positive. Conclusion: g is increasing here.
If $-1 / \sqrt{3}<x<1 / \sqrt{3}$ then $g^{\prime}(x)$ is negative. Conclusion: g is decreasing here.
If $x>1 / \sqrt{3}$ then $g^{\prime}(x)$ is positive. Conclusion: g is increasing here.
Since $\lim _{x \rightarrow \pm \infty} g(x)=0$ it follows that g assumes its maximum value at $-1 / \sqrt{3}$, where $g(-1 / \sqrt{3})=2 \sqrt{3} /(4 / 3)^{2}=3 \sqrt{3} / 8$, and its minimum value at $1 / \sqrt{3}$, where $g(1 / \sqrt{3})=-3 \sqrt{3} / 8$.

Therefore $M=3 \sqrt{3} / 8$ is the smallest number such that $\left|f^{\prime \prime}(x)\right| \leq M$ for all $x \in \mathbf{R}$
Svar: $3 \sqrt{3} / 8$
9. The curves $y=x^{2 / 3}$ and $y=x^{3 / 2}$ bound a domain in the first quadrant. Compute the length of the boundary curve of that domaih.
Lösning. The boundary curve consists of two parts intersecting when $x^{2 / 3}=x^{3 / 2}$ i.e. when $x=0$ and when $x=1$. Since $f(x)=x^{2 / 3}$ and $g(x)=x^{3 / 2}$ are inverse to each other (check that $f(g(x))=g(f(x))=x$) the two parts have equal length. It is therefore enough to compute the length of one of them, for instance $y=x^{3 / 2}$ when $0 \leq x \leq 1$. The length is:

$$
L=\int_{0}^{1} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x=\int_{0}^{1} \sqrt{1+\frac{9}{4} x} d x=\left[\frac{\left(1+\frac{9}{4} x\right)^{3 / 2}}{27 / 8}\right]_{0}^{1}=\frac{13^{3 / 2}-8}{27}
$$

The length of the boundary curve is $2 L$, i.e.

$$
2 \frac{13^{3 / 2}-8}{27}
$$

Svar: $2 \frac{13^{3 / 2}-8}{27}$

