
SF2729 Groups and Rings
Exam

Wednesday, June 8, 2016

Time: 08:00-13:00
Allowed aids: none
Examiner: Roy Skjelnes

Present your solutions to the problems in a way such that arguments and calculations are easy
to follow. Provide detailed arguments to your answers. An answer without explanation will be
given no points.

The final exam consists of six problems, each of which can give up to 6 points. The homework
problems will contribute with up to 9 points on the three first problems in the exam. Credits on
the three first problems in the exam will together with the contribution from the homeworks give
at most 18 points.

The minimum scores required for each grade are given by the following table:

Grade A B C D E Fx
Credit 30 27 24 21 18 16

A score of 16 or 17 is a failing grade with the possibility to improve to an E grade by additional
work.



Problem 1
1. Define the concept Sylow p-subgroup. (2 p)

2. Formulate Sylow’s theorem. (2 p)

3. Use Sylow’s theorem to prove that there is a unique group of order 33. (2 p)

Solution
1. If |G| = pkmwhere p is a prime, k ≥ 1 andm is not divisible by p then a Sylow p-subgroup

of G is a subgroup of G of order pk.

2. If G is a finite group then G contains a Sylow p-subgroup for any prime p dividing |G|. All
p-groups of G are contained in a Sylow p-subgroup and all Sylow p-subgroups of G are
conjugate. The number of Sylow p-subgroups of G is congruent to 1 modulo p and divides
|G|.

3. Since the number of Sylow 3-subgroups is congruent to 1 modulo 3 and divides 33, it has
to be 1. Moreover, the number of Sylow 11-subgroups has to be congruent to 1 modulo 11
and a divisor of 3. Hence this is also equal to 1. Both of these subgroups are normal and
their intersection is trivial. Hence the group is a direct product of C3 and C11 and therefore
it has to be isomorphic to C33.

Problem 2
Let f : R→ S be a homomorphism of commutative unitary rings where f(1) = 1.

1. Give the definition of an ideal being a prime ideal. (2 p)

2. Let P be a prime ideal in S, show that f−1(P ) is prime. (2 p)

3. Let P be a maximal ideal in S. Is f−1(P ) necessarily maximal? (2 p)

Solution
1. The ideal I is prime if it is a proper ideal and such that ab ∈ I then a ∈ I or b ∈ I .

2. The composite map R → S → S/P has kernel f−1(P ), which is a proper ideal. The
induced map

R/f−1(P )→ S/P

is injective. Hence R/f−1(P ) have no non-trivial zero divisors, and is then an integral
domain. That is f−1(P ) is a prime ideal.

3. Consider Z ⊆ Q, where f is the inclusion. Then 0 is a maximal ideal in Q, but its inverse
image is the zero ideal in Z, which is not maximal.



Problem 3
Let G be a finite group acting on a finite set X . Burnside’s theorem states that the number of
orbits is 1

|G|
∑

g∈G |Xg|, where Xg = {x ∈ X | g.x = x}.

1. Show that
∑

g∈G |Xg| =
∑

x∈X |Gx|. (Hint: consider {(g, x) | g.x = x} ⊆ G×X)
(1 p)

2. Prove Burnside’s Theorem. (2 p)

3. The symmetric group on three letters acts naturally on the setX of 64 (equilateral) triangles
having each edge painted with one of four colours. Apply Burnside’s theorem to determine
the number of distinguishable triangles. (3 p)

Solution
1. We compute the cardinality of N = {(g, x) | g.x = x} in two different ways. For each
g ∈ G there are |Xg| pairs in N having g as the first component. Thus |N | =

∑
g∈G |Xg|.

On the other hand, for each x ∈ X there are |Gx| pairs having x as the second component.
Thus |N | =

∑
x∈X |Gx|.

2. We have, from the course book, that |G : Gx| the index of the stabilizer of x ∈ X , equals
elements in the orbit |Gx| of x. We have furthermore that |G : Gx| = |G|/|Gx|, and we
can write

|N | =
∑
x∈X

|Gx| =
∑
x∈X

|G|
|Gx|

= |G|(
∑
x∈X

1

|Gx|
).

For any y ∈ X that are in one orbit Gx, we get
∑

y∈Gx
1
|Gx| = 1. Therefore we have that

|N | = |G| · r, where r is the number of orbits, and we have proved Burnside’s theorem.

3. The number of distinguishable triangles is the number of orbits r, and by the Burnside
theorem we have

r =
1

|S3|
∑
g∈S3

|Xg|.

List the group elements as S3 = {1, ρ1, ρ2, µ1, µ2, µ3} where ρ2 = ρ21, and ρ1 is rotation
(counter clockwise) with 1/3 of a circle. The µ1, µ2 and µ3 are reflections fixing one corner
of the triangle. The identity element fixes every triangle, so |X1| = 64. A triangle being
fixed by a rotation means that all sides in the triangle have the same colour. Thus

|Xρ1| = |Xρ2| = 4.

A triangle fixed by a reflection means that the two reflecting sides of the triangle have same
colour, hence

|Xµ1| = |Xµ2| = |Xµ3 | = 16.
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We then get that

r =
1

6
(64 + 2 · 4 + 3 · 16) = 1

6
8(8 + 1 + 6) = 20.

Problem 4
Let R = Z[x]/(x2 + 1) be the ring of Gaussian integers.

1. Determine the maximal ideal I such that I2 = (2). (3 p)

2. Show that the quotient ring R/(2 + 3x) is a field with 13 elements. (3 p)

Solution
1. We have 2 = (1 + x)(1 − x). As (1 + x) and (1 − x) both have norm two, we get

that (1 + x) and (1 − x) are both irreducible, hence prime elements. We then have that
these two elements generate maximal ideals. As the two irreducible elements are associates
(1 + x)(−x) = 1 − x, we get the equality of ideals M = (1 + x) = (1 − x). As 2 =
(1 + x)(1− x) it follows that we have the equality of ideals (2) =M2.

2. As 13 is a prime congruent to 1 modulo 4, we know that (13) = (2+ 3x) · (2− 3x), where
the two factors are irreducible, and hence prime, hence maximal in R = Z[x]/(x2 + 1).
We have that Z[x]/(x2 + 1, 13) = Z13[x]/(x

2 + 1), where Z13 = Z/(13). It then follows
that R/(13) is the Gaussian integers with coefficients in Z13, and that |R/(13)| = 13 · 13.
By the Chinese Restminder we also have that R/(13) = R/(2 + 3x) × R/(2 − 3x). The
only possibility for the order of the non-trivial ring R/(2 + 3x) is 13.

Problem 5
Let 1 denote the trivial group. A short exact sequence of groups is a sequence of groups and
homomorphisms

1
ϕ1 // G

ϕ2 // H
ϕ3 // K

ϕ4 // 1,

where the kernel of a homomorphism equals the image of the homomorphism preceeding it, that
is ker(ϕi+1) = im(ϕi) for any i = 1, 2, 3.

1. Show that if 1 → G → H → K → 1 is a short exact sequence and H is finite, then both
G and K are finite and |H| = |G| · |K|. (2 p)

2. Determine whether for odd integers n ≥ 3 there is a short exact sequence

1→ C2 → D2n → Cn → 1,

where D2n is the dihedral group, and Cn is the cyclic group, and their order is given by
their respective indices. (2 p)
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3. Determine whether for odd integers n ≥ 3 there is a short exact sequence

1→ Cn → D2n → C2 → 1.

(2 p)

Solution
1. The image of the leftmost homomorphism is trivial which shows that the kernel of the

second homomorphism is trivial. Hence this homomorphism is injective. The kernel of
the rightmost homomorphisms is all of K which shows that the third homomorphism is
surjective. Since a subgroup of a finite group is finite and the homomorphic image of a
finite group is finite we get that G and K are finite if H is finite. By the isomorphism
theorem we get that K is isomorphic to H/G and hence |K| = |H|/|G|, which proves that
|H| = |G| · |K|.

2. By the first part we have that C2 needs to be a normal subgroup of D2n. However all
reflexions in D2n generate subgroups of order two and these are all conjugated by Sylow’s
theorem. Hence D2n doesn’t have any normal subgroup of order two which shows that
there cannot be such a short exact sequence.

3. The subgroup of rotations is normal since sris = r−i for any reflection s. The quotient of
D2n by this normal subgroup has order two and is therefore isomorphic to C2. This proves
the existence of such a short exact sequence.

Problem 6
1. In R = Z[x]/(x2 − 7) we have the equality 2 · 3 = (1 + x)(−1 + x). Does this equality

imply that R is not a UFD? (2 p)

2. Show that Z[x]/(x2 + d) is not a UFD when d ≥ 3. (4 p)

Solution
1. No, the factors are not irreducible. We have that 2 = (3+x)(3−x), and 3 = (2+x)(2−x).

By looking at the norm N(a, b) = a2−7b2, we see that the elements 3+x, 3−x, 2+x and
2−x are irreducible. We have (3+x)(2−x) = −1−x and that (3−x)(2+x) = −1+x,
and in particular we have that

6 = 2 · 3 = (3 + x)(3− x)(2 + x)(2− x) = (1 + x)(1− x).

Therefore the given equality only appears to give two different factorizations, but gives in
fact only a partial factorization with factors not being irreducible.
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2. In a UFD an element is prime if and only if its irreducible. It then suffices to show that
one particular element is irreducible, but not prime. The element we will consider is the
number 2. We have the norm N(a+ bx) = a2 + db2, which is multiplicative. The norm of
2 is 4. If 2 was reducible it would be the product of two elements 2 = π · π′ where both
factors would have norm 2. However, as d ≥ 3, it is impossible to write 2 = a2 + db2. So,
2 is irreducible.

Now, if d = 2n is even, consider the product (2 + x)(2 − x) = 4 + (2n) = 2(2 + n)
which is in the ideal generated by 2. However neither 2 + x or 2 − x is in the ideal (2).
So 2 is not prime for even d = 2n. If d = 2n + 1 is odd, then we consider the product
(1+x)(1−x) = 1+(2n+1) = 2(n+1) which is in the ideal generated by 2. But, neither
(1 + x) nor (1− x) is in that ideal. So 2 is not prime for odd d = 2n+ 1 either.

Thus, for any d ≥ 3 we have proven that 2 is not prime, but irreducible. Hence the quotient
ring Z[x]/(x2 + d) is not a UFD.
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