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1 Mathematics

1.1 Determine the one-sided Laplace transform of the following signals.

0, t<0 ,
a) u(t) = { , where A is a constant.

A, t>0
0 t<0
b) u(t) = A)t ; i 0’ where A is a constant.

c) u(t)=e2 fort > 0.
d) u(t) = cos b5t for t > 0.

Express the following in U(s), the Laplace transform of u(t).
e) u
f)
g)
h) @
i)

1.2 Consider the differential equation

y(t) +2y(t) = u(t)

a) If u(t) is constant then ¢(¢) ~ 0 when time goes to infinity. What value
will y(¢) approach as t — oo if u(t) = 5?

b) Determine the transfer function relating U(s) and Y (s) for the differential
equation above.

1.3 Determine the general solution of the differential equation

d?y A%y | _dy
— 4+ 4— +5— + 2y = 3sin(2¢
e + a2 + T + 2y sin(2t)

1.4 Below, differential equations that describe dynamic systems are given together
with system inputs and initial conditions. Use the Laplace transform to de-
termine the system outputs.

d%y y
-7 7 49y =
dt2+3dt+ y=o(t)
t
o(t) = 0, t<0
1, t>0
dy
5(0)—11(0)—

9(8) +y(t) = u(t)
u(t) =1+sint

y(0) =0

1.5 Write the following complex numbers in polar form, that is, determine their
absolute value and argument.

a) 1+1i
14i
b) 5i(14++/31)
Write the following complex numbers on rectangular form:
c) 2ei%
d) Hei™
1.6 A system has amplification 100. What is the amplification expressed in decibel

(dB2o)? What is the amplification corresponding to 20 dBag, —3 dBag, 0 dByy,
—10 dB2g, and 10 dByg respectively?

1.7 Verify that the following rule for inversion of 2 x 2 matrices holds.
A= ail a2 e 1 Q22  —Q12
az1 @G22 a11G22 — @12G21 \ —a21 Q11

1.8 Determine eigenvalues and eigenvectors of the matrix

2 -1 -1
A=1 0 3 0
-6 2 1



1.9 Determine a transformation matrix 7', such that T-'AT is a diagonal matrix,
where
1 6 0 -3
A==-|-1 5 -1
3\e 2 7

1.10 Characterize the range space and null space of the matrix A by specifying
bases for them. Find the rank of the matrix.

21 21
0110
A_3132
1 01 1

1.11 What are the time functions corresponding to the Laplace transforms below?
What values will the time functions approach as time goes to infinity?

a)

F($) =
b) 1

F(s) =
5 1

F) = o

1.12 The water level, y, in a tank is modelled by the differential equation

y(t) +y(t) = 2(t)

where z denotes the inflow. The inflow is a function of a valve position, which
in turn is controlled by the electric control signal u. The relation between
control signal and flow is given by the differential equation

5(t) + 4(t) + 2(t) = u(t)

What differential equation relates the water level y to the control signal u?




2 Dynamic Systems
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2.1 A common component in a control system is a DC-motor. A schematic picture I P
of the motor is shown in Figure[2.Ta] The motor is characterized by a number of T Re
physical relationships as will now be explained. The rotating axis is described K =25 K =05
by K =01
J = —f6+ M, K =25 K =3.0
where 0 is the angle of rotation, M is the torque, J is the moment of inertia
of the load and f is the frictional coefficient.
The interplay between rotor and stator is given by Figure 2.2b

M =kyi and v=k,0

2.2 A servo system for positioning of a tool in a tooling machine is depicted in
Figure[2.:2a] In Figure[2.:2B] the poles of the closed loop system are plotted for
different values of the gain K. Find (without calculations), for each of the step
responses in Figure the corresponding value of K used when generating
the step response.

where i is the anchor current, k, a proportional constant characteristic for
the motor, v is voltage induced by the rotating axis and k, is a proportional
constant. The input voltage u is the control signal and 6 is the output.

a) Use the equations above and Kirchhoff’s voltage law to write a differential
equation that relates u and 0. The inductance L, can be neglected.
b) Determine the transfer function of the system from u to 6.

¢) Study the behavior of the system by calculating § when u is a step.
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Figure 2.2c. All comparable axes have equal scaling.
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2.3 Consider the simple model of the roller depicted in Figure To obtain a
simple model we describe the relationship between the position of the screw
and the thickness of the sheet dy directly after the rollers as a first order
transfer function 5

T 14T

To determine the constants 8 and T we register the effect of a sudden change
in the position of the screw. The units used in the model are chosen such that
a unit step will make an appropriately sized input for identification purposes,

G(s)

and that is the input used in the experiment for which the resulting thickness
profile d; (t) is shown in Figure In production the thickness cannot be
measured directly behind the rollers for practical reasons, and instead the
thickness da(t) is measured L length units after the rollers. Find the transfer
function from the position of the screws to the thickness dy. The sheet moves
with speed V.
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Figure 2.3b

2.4 The step response of the following system

1
s2+s+1

is shown as the dashed line in each part of Figure

G(s) =

a) The step response of the system

1
s2+as+1

is shown as the solid line in the left of Figure Determine if ¢ > 1 or
a<l1.

G(s) =

b) The step response of the system
b2
Gls) = 50
() $2 + bs + b2
is shown as the solid line in the right of Figure Find b.



0 5 10 0 5 10
t[s] t [s]

Figure 2.4a. Dashed: original system. Solid left: part a). Solid right: part b).

2.5 Pair the step responses and pole-zero diagrams in Figure

2.6 Consider the systems

1 1
G = " G = -
Als) s2+2s+1 B(5) s2+04s+1
1 1
GC()752+58+1 GD(S)iSZ—I—s—I—l
4
Gals) = 242544

a) Use MATLAB to plot the step responses of the systems. Find T, (rise
time), Ty (settling time) and M (overshoot) for the five step responses.

b) Compute the poles of the systems Ga(s), Gg(s), Gc(s), Gp(s), and
Gg(s) respectively.

¢) How is the location of the poles related to the properties of the step
responses?

2.7 Consider a system with the transfer function

as+1

Gls) = s2+2s5+1

Compute and plot the step response of the system for some different values of
« in the range —10 < o < 10. How are the properties of the step response
affected by the location of the zero of the system?

Pole-zero map Step response

Im
E
Re
F >
Re
N S ——
Real part Time

Figure 2.5a. All comparable diagrams have equal scaling. In the pole-zero maps, imagi-
nary and real parts have equal scaling, X marks poles, and o marks zeros.



2.8 Consider a system described by the model Y(s) = G(s)U(s) as shown in
Figure Given G(s), how is the step response computed? How can the
step response be determined using experiments?

_ ] G

Figure 2.8a

2.9 Figure shows the step response of a system Y'(s)
step has amplitude 1. Use the figure and determine

= G(s)U(s). The input

a) Steady state value.

b) Overshoot M in % of the final value.
¢) Rise time T;.

d) Settling time Ts.

1.6 £
1.4
1.2

0.8
0.6
0.4
0.2

~
~

t [s]

Figure 2.9a

2.10 Figure[2.10a]shows the step responses of four different systems. Combine each
step response with a transfer function from the alternatives below.

Transfer function Poles Zeros |G(0)]
Gl( ) = % —1+10i 1
Ga(s) = 713 -2 1/2
Gs(s) = <51+°fo +220+0;g§g(;go) —10,-5+8.7i | —10+£10i | 2
Gu(s) = W —2, -5+ 8.7 1
Gs(s) = m -3, -5+ 8.7 2
Go(s) = wosiiooyary | —2 D87 2

Step A

Step B

Step C

Step D

Figure 2.10a. All comparable axes have equal scaling.




Acid process flow \w /( NaOH solution

N e

O

l Flow with desired pH

Figure 2.11a

2.11 In the continuously stirred tank, see Figure an acid process flow is

neutralized by adding a concentrated NaOH solution. The acid process flow
has a tendency to vary its pH with time, which gives undesired variation of
the pH in the outflow. In an effort to reduce these variations one has decided
to use control.

a) Classify the different signals as input, output, and disturbance signal.

b) Draw a block diagram of the system with a control strategy.

p— —
g1, CA1 \w /( g2, CA2

N e

o=
X7

Ha ea

Figure 2.12a

2.12 Two flows with different concentrations of a chemical component A are mixed
in a continuously stirred tank, see Figure The volume can be assumed
constant, V =1 m3.

a) During a stationary period the values of the concentrations and flows
are, c¢j ; = 1.0 kmol/m?, ¢f = 1.0 m®/min, Crho = 4.0 kmol/m? and
¢5 = 0.5 m®/min. What are ca(t) and ¢(¢) during this period?

b) Write down the dynamical balance equation for component A. State all
your assumptions. Is the dynamical model linear?

c) Assume that cy 1 changes value from 1.0 kmol/m?® to 1.2 kmol/m? at
t = 0. Show that the expression for ca (t) can be written as

ca(t) = ko + k1 (1 - eft/T)

Determine the constants kg, k1 and .
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Figure 2.13a

2.13 The distillation plate, see Figure has the following variables:

L; - Liquid flow from plate ¢ (kmol/min)
Vi - Steam flow from plate ¢ (kmol/min)

M; - Amount of liquid on plate ¢ (kmol)

x; - Mole fraction of the most volatile component in the liquid on plate 7.

y; - Mole fraction of the most volatile component in the steam from plate 3.

Assumptions:

- Perfect mixing of liquid on the plate.
- Binary separation

- y; is in equilibrium with x;.

- The equilibrium is described by

ax;

yz:l‘F(OL—l)QSl

a) Write the two differential equation that describes M;(t) and x;(t).

b) Linearize the model under the assumption that the change of the mass
on the plate is zero.

2.14 Figure shows the step response from a system with the transfer function

2.15

2.16

2
“o

Gls) = §2 4+ 2Cwps + w?

for the following sets of values. Combine values and step responses.

€
S
Il

<.
S
S
€
)
|

@
RS
S ESsE s
&
S
I

4
4
2
2

e NN
I

Il
e e
OIS BORSY

€
S
I

2009-12-15 Upg. 1d
Berékna 6verforingsfunktionen fran U(s) till Y'(s) for systemet i figur

2009-12-15 Upg. 1d
I denna deluppgift ska vi studera de sex overforingsfunktionerna

s+1 1-s s+1
Gabs) =gy P =mnar %= arost
1 1 9
Gols) = 55 Cel) = G P oo

I Figur syns de sex stegsvaren for overforingsfuktionerna ovan. Para
ihop ritt stegsvar och overforingsfunktion. Skalorna pa bade x-axlarna (tid)
och y-axlarna (utsignal) ar lika for alla figurerna. Rétt svar ger +1p, fel svar
ger —1p, och inget svar ger Op.

Motivera noga! (Ej fullstandig motivering raknas som felaktigt svar.)
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3 Feedback Systems

Valve
X -
Inflow
U
PID- Y o Tanl; y
controller 1m

: ¥

Pump

Figure 3.1a

3.1 A feedback system for level control is shown in Figure [3.1a] where all variables
denote variations from a working point. The flow to the tank is given by the
valve position and the outflow from the tank by the flow v(t) via the pump.
The transfer function from valve opening u to the flow z is denoted G (s).

a) Determine the important signals of the system and draw a block diagram
of the whole system. Use mass balancd] to determine a transfer function
for the tank.

b) The transfer function of the valve is

ky

Gvls) = 14+ Ts’

To find ky, and T a unit step change in u has been applied. The step
response is shown in Figure [3.1b]l Determine the constants k, and 7T

*That the change in tank level is proportional to the difference between inflow and outflow.

10

2
1.5
8
1 —
0.5
0 I I I I I |
0 5 10 15 20 25 30
t [s]
Figure 3.1b

¢) Compute the transfer functions from h,er to h and from v to h and verify
that they have the same poles.

d) Assume that we use proportional control, that is, F(s) = K. How large
gain, K, can we select if we want all poles of the closed loop system to
be in the area shown in Figure [3.1c]

e) Assume that a disturbance is introduced in the outflow v in the form of
a unit step. How large will the level error due to the disturbance be in
steady state with control according to d)?

f) How large will the steady state level error due to the disturbance be with
a PI controller?

3.2 Consider the tank system in Problem [3.1]

a) Assume that proportional control with gain K = 1 has been selected.
Which poles will the closed loop system have?

b) Consider a PD controller

dh
“ P P
Assume that Kp = 1 and calculate a value of Kp so the damping ratio of

the closed loop poles will be greater than 1/+/2. This corresponds to the



Figure 3.1c

grey area in Figure Poles in this region corresponds to an overshoot
of less than 5% (the overshoot may also be affected by the zeros).

e
Controller Hydraulic cylinder
Yref e /\ 1 y
AL T i s
Figure 3.3a

3.3 Figure [3:3a shows the block diagram for a hydraulic servo system in an auto-
matic lathe (Swedish: svarv). The output signal y(t) represents the position of
the lathe tool (Swedish: svarvstal), yret(t) is the desired position of the lathe
tool, m is the mass of the tool slide (Swedish: verktygsslid) and the hydraulic
piston (Swedish: kolv), d is the viscous damping of the tool slide, F(s) is the
transfer function for the controller, f. is the cutting power.

a) How large, in steady state, is the error e(t) between the actual value of the
lathe tool and its desired reference value, when there is a step disturbance
in the cutting power f.(t)? The controller is assumed to be an amplifier
with a constant gain F'(s) = K.

b) How is this error changed if the amplifier is replaced by a PI controller
with transfer function F'(s) = K7 + Ka/s?

11

3.4 Consider the system

a)

0.2
(s24+s+1)(s+0.2)

Y(s) = G(s)U(s) = U(s).
Suppose G(s) is controlled by a proportional controller with gain Kp,
that is,

U(s) = Kp(R(s) =Y (s)).
Use MATLAB to compute the closed loop system, and to plot the step
response of the closed loop system. Choose some values for Kp in the
range 0.1 to 10. How are the properties of the step response affected by
Kp? What happens with the steady state error when Kp increases? Is
it possible to obtain a well damped closed loop system and small steady
state error using proportional control?

Let us now introduce integration in the regulator and use
1
U(s) = (Kp + K17)(R(s) = Y(s)).

Put Kp = 1 and try some values of K7 in the range 0 < K1 < 2. How are
the step response and the steady state error affected by the introduction
of the integrating part and the value of K17

Finally we will introduce the differentiating part in the regulator and use

1 KDS

= (Kp + K1— —Y(s)).
U(s) = (K + Kiz + 2 (Rls) = Y ()
Since true differentiation is difficult to implement, the derivative part is
approximated by ffb’sT (This will low-pass filter the error signal before
differentiation.) Put Kp = 1, K1 = 1 and T = 0.1 and try some values
of Kp in the range 0 < Kp < 3. How does the D-part affect the step

response of the closed loop system?

+§)— Gos)

Figure 3.5a

3.5 Draw a root locus with respect to K for the system in Figure with Go(s)
given below. For which values of K are the systems stable? What conclusions
on the principal shape of the step response can be drawn from the root locus?



a) A Ferris wheel (Swedish: Pariserhjul):

_ K(s+2)
Gols) = T D+ 3)
b) A Mars rover:
K
Gols) = s(s? +2s+2)
¢) A magnetic floater:
_ K(s+1)
Gol®) = =105 1 6)
Orer =\ k 0 1 0
by by -
= +\Tg b 14 o7 5
o]
Figure 3.6a

3.6 Consider the servo system in Figure with a DC-motor. Suppose that the
angular velocity can be measured with a tachometer and let the control law
be as in the block diagram. Let 7 = 0.5 and k = 2.

a) Draw the root locus with respect to K for the system without the
tachometer feedback (that is, a = 0).

b) Draw the root locus with respect to K for a = 1.

¢) Draw the root locus with respect to K for o = 1/3.

d) Let K =1 and draw the root locus with respect to a.

Discuss, using the results from a), b), ¢), and d), what is gained by using the
tachometer.

3.7 Consider an aircraft where the pitch angle 6 is controlled by the elevator
deflection (Swedish: hdjdroderutslag) 6, see Figure Let w be the angular
velocity,

w = 0.

12

Figure 3.7a

If we consider small deviations from a reference value 6y, we get the transfer
function from ¢ to w for a specific aircraft as

s+1

)= e -9

This model is valid when the aircraft is flown with a large 6y. The elevator
(Swedish: hdjdroder) is driven by a hydraulic servo amplifier with the transfer

function
10

Gi(s) = s+ 10

from elevator command e to 6.

a) What happens with w if one gives a constant elevator command 0yef?
Motivate!
b) The angular velocity w is measured and a control law is used so that the
input ¢ to the servo amplifier is
K (wret — w).
Draw root locus with respect to K. For which values of K is the system
stable?

c¢) Is there any value of K such that the closed loop system is stable and all
poles are real?

3.8 The block diagram in Figure shows a cascade controlled DC-motor where
Kqi>0and Ko > 0.
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Figure 3.8a

a) Draw root locus with respect to Ky for the characteristic equation of
the closed loop system. For which Ky > 0 are the closed loop system
asymptotically stable?

b) How is the stability requirement on K5 affected by the size of the velocity
feedback K17

3.9 We want to control the temperature of an unstable chemical reactor. The

transfer function is )

(s+1)(s—1)(s+5)

a) Use a proportional controller and draw a root locus with respect to the
amplification K. Calculate which K in the compensator that stabilizes
the system.

b) Use a PD controller. The control law is given by

de
=K T —
U (e+Tp dt)
where e is the error. Let Tp = 0.5 and draw a root locus with respect to

K. For which values of K does the controller stabilize the system?

3.10 Consider the system in Figure In a realistic situation what you really
measure is not y(¢) but a signal y, () which is the sum of y(¢) and measurement
noise. To avoid that the control is based on noisy measurements one uses ys (t)
instead of Y, (t). The signal y¢(t) is ym(¢) filtered through the low pass filter

a
s+a

13
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s+a 2/ Measurement
noise

Figure 3.10a

a) First we assume that the measurement noise is negligible. Choose k = 6.
Draw a root locus for the closed loop system with respect to the time
constant of the low pass filter 1/a. Find for which a > 0 the system is
stable.

b) Use k = 6 and assume that the noise is a high frequency sinusoid. The
amplitude of y¢ when
Ym (t) = sin(10¢)

is used as a measurement of how effective the noise reduction is. What is
the smallest value you can obtain (after transients) by choosing a suitable
a. We also want y to tend to the steady state value 1 when r(¢) is a unit
step.

3.11 Figure shows the root locus for the characteristic equation of a P-
controlled process G with respect to the gain K. In Figure [3.110] four step
responses for the closed loop system with different values of K are shown.



Match the plots in Figure [3.11D] with the K-values below. Justify your an-
swer.
K=4 K=10 K=18 K =50

Im

Figure 3.11a. Starting points are marked X and end points o.

3.12 Consider a system with the transfer function

snfl +b15n72+~“bn
Sn+alsn—1+_..+an

G(s) =

that has all zeros strictly in the left half plane. Show that such a system always
can be stabilized by
u(t) = —Ky(t)

if K is selected large enough.

3.13 We want to control the level in a lake by controlling the flow using flood gates,
see Figure The relationship between changes in the level of the lake,
ha, and changes in the flows, gin A and gout,a, is given by

d
a(AhA) = Gin,A — Gout,A

14

3.14

Step C Step D

Figure 3.11b. All comparable axes have equal scaling.

Dam Dam

— Lake —

—  (in v Gout
ddam

Figure 3.13a

where A is the area of the lake. In order to try to keep the level of the lake
constant the flows through the lake are controlled at the inflow such that

ddam,A = K(href,A - hA)
where hper A is the reference value. The reservoir that controls the outflow
is controlled so that gout is constant, that is, gous,o = 0. Since it takes time
before a change in gqam gives a result in g;, we have
Qin,A = qdam,A(t - T)

where T' = 0.5 hours. How large can the quotient K/A be at the most before
the system becomes unstable?

A system G(s) is controlled using feedback with a proportional controller ac-

cording to Figure



3.15

(O—{x ¢

T_

Figure 3.14a

For K = 1, the open loop system KG(s) has the Nyquist diagram ac-
cording to (i), (ii), (iii), or (iv) in Figure[3.14b| Is the closed loop system
stable in each case? G(s) has no poles in the right half plane.

If K > 0, for which values of K are the different closed loop systems
stable?

Draw the Nyquist curve for an integrator G(s) = 1/s.
Draw the Nyquist curve for the double integrator G(s) = 1/s%.

15

Figure 3.14b

3.16 The system G(s) is asymptotically stable and has the Nyquist curve in Fig-
ure It is controlled using feedback according to Figure [3.16b}

a) For what values of K (K > 0) is the closed loop system asymptotically
stable?

b) Determine the steady state error, e, as a function of K if yef is a unit
step.

c) Assume that G is controlled using an I controller according to Fig-
ure For what values of K is the closed loop system stable?



4 Im to T77. Can the parameters 7, T, and T} be decided from these data? If so
determine 7, T' and T7.

Yref +<:T) € F(S) G(S) Y

Figure 3.18a

3.18 A system G(s) is to be controlled using the regulator

K
s+ 1

F(s) =

according to the Figure The controller has positive gain K that, how-
Figure 3.16a ever, is not completely known. For what values of K is the closed loop system
asymptotically stable? The Nyquist curve for G(s) is given in Figure [3.18b

Yref /N €[] y
Jr@ K G(s) 4 Im
e
Figure 3.16b s .
\
v — VA 1
w = Uy

Yref € K Y — =Y,
O T Lo T ke

— \ /
T ax\l\ ) /

Figure 3.16¢

3.17 Consider the DC-motor

T4(t) + y(t) = u(t)

It is controlled by
u(t)=K(rt-T)—-yt-T)) Figure 3.18b

Here 7 and T are positive constants. K is slowly increased until the system
oscillates with the angular frequency w = 1. K is then set to 33% of this
value. After a while the system starts to oscillate again, now with the angular
frequency w = 0.5. This is due to the fact that the time delay T has changed

16



3.19 The Nyquist curve for the system G(s) = % can be seen in Figure
Determine which one of the root loci in Figure that matches

A(s)+ KB(s) =0
for this system.

Im

Figure 3.19a

3.20 The system with input v and output y has the controller

1
s(s+1)

. 5082 + b1s + by
S

U(s) = F(s)(R(s) = Y(s)) F(s)

How should the coefficients of F' be chosen to achieve pure P, pure I and pure
D control respectively?

3.21 The equations for the P, PI, and PID controllers to be used in this problem
are given in Problem [3.4]

a) Let the system

0.2

Y(s) =G(s)U(s) = (324 s+1)(s+0.2)

Ul(s)

be controlled by a proportional controller with gain Kp. Use MATLAB
to plot the root locus with respect to Kp of the characteristic equation
of the closed loop system. For which values of Kp > 0 is the closed loop
system asymptotically stable?

17

X
X

Root locus A Root locus B

Root locus C Root locus D

Figure 3.19b. Starting points (K = 0) are marked x, and end points (K — oo) are
marked o. All diagrams have equal scaling.

In Problem [3.4] we found that the step response was slow but well damped
for small values of Kp, while it became faster but more oscillatory when
Kp was increased. For large values of Kp the system became unstable.
We also found that the steady state error was reduced when Kp was
increased. Can these results be interpreted using the plot of the root
locus?

b) Now assume that the system is controlled by a PI controller where Kp =
1. Plot the root locus of the characteristic equation, with respect to
K1, and determine for which values of K1 > 0 the closed loop system is
asymptotically stable.

Problem [3.4] showed that an integrator eliminates the steady state error.



A small value of K7 gives a large settling time, while a too large value
gives an oscillatory, and perhaps unstable closed loop system. Give an
interpretation of these results using the root locus.

Finally, let the system be controlled by a PID controller where Kp = 1,
Ki =1and T = 0.1. Plot a root locus of the closed loop characteristic
equation, with respect to Kp > 0, and relate the behavior of the root
locus to the simulation result in Problem [3.4] that is, that the derivative
part increases the damping of the closed loop system, but a too large Kp
will give an oscillation with a higher frequency, and finally an unstable
closed loop system.

3.22 Consider the system

3.23

a)

Y(9) = GG = o +0i2)(s ol )

Use MATLAB to plot the Nyquist curve of the open loop system when
G(s) is controlled by a proportional regulator. Try some different values
of Kp and find for which Kp the closed loop system is asymptotically
stable. Compare your results with those from Problem [3.2Th.

Assume now that the system is controlled by a PI controller where Kp =
1. Investigate how K7 affects the Nyquist curve and determine for which
values of K7 the closed loop system is asymptotically stable. Do you get
the same results as in Problem [3.21b?

Finally test a PID controller with Kp = 1, K1 = 1 and T = 0.1 (cf
Problem [3.4). How is the Nyquist curve affected by the value of Kp?

Assume that the system

0.4

Y(s) =G(s)U(s) = (32 + s+ 1)(s +0.2)

U(s)

is controlled by a proportional controller where Kp = 1. Use MATLAB
to make a Bode plot of the open loop system and determine w. (gain
crossover frequency), w, (phase crossover frequency), ¢m (phase margin)
and A, (gain margin) respectively. Compute the closed loop system and
plot the step response.

Now let Kp = 2.5. How does the change of Kp affect w., wp, ¢m, and
Ay 7 Simulate the step response of the closed loop system and plot the
result. How have the properties of the step response changed?
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¢) How much can Kp be increased before the closed loop system becomes
unstable? How does this value relate to the value of A, that was obtained
for Kp = 17 Compute and plot the step response of the closed loop
system for this value of Kp. How does the closed loop system behave in
this case?

3.24 A system is controlled by a PID controller,
1
U(S) = (Kp + KI; + KDS>E(S)

In Figure four step responses from a unit step for the parameter triples

i) Kp=1 K =0 Kp=0
i) Kp=1 Ki=1 Kp=0
iy Kp=1 Ki=0 Kp=1
) Kp=1 Ki=1 Kp=1

are shown. Match each one of the parameter triples to one of the step re-
sponses. Justify your answer!

3.25 Assume that a DC-motor of the type described in Problem is controlled
by a proportional controller, that is, u(t) = Kp(0rer — 0).

a) Write down a block diagram for the control system. Compute the closed
loop transfer function and determine how the poles of the closed loop
system depend on the control gain Kp. Discuss what this means for the
behavior of the system for different values of Kp.

b) Determine the transfer function from the reference signal to the error.
Let the reference signal be a step and a ramp respectively and determine
what the control error will be in steady state in these two cases.

c¢) Let the controller be a PI controller. What will the steady state error be
in this case if the reference signal is a ramp?

3.26 Determine the transfer function for the loop gain and the closed loop system
for the control system given by the block diagram in Figure

3.27 Figure[3.27a]shows a block diagram of a control system. Determine the transfer
function
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Figure 3.27a

b) Determine a regulator F'(s) such that the steady state error is zero when
r(t) is a step.

c) Assume F(s) = 1. Determine the poles and zeros of the closed loop
system.

3.29 The system

c D Y(s) = :

(s/0.6+1)(s+1)
is controlled using PID feedback

U(s)

Figure 3.24a. Four step responses. All comparable axes have equal scaling.

Figure 3.24b 1
U(s) = (Kp + K17 + Kps)(R(s) = Y (s))

r u Yy
Go(9)
* o Figure shows the step responses for the following four combinations of
1 coefficient values. Combine the step responses and coefficients.
=4
Figure 3.26a (1) Kp=4 Ki=0 Kp=0
. (3) Kp=4 Ki=1 Kp=0
a) of the loop gain, 4) Kp=4 Ki=0 Kp—4
b) of the closed loop system from R(s) to Y (s),

)

)

¢) from the disturbance N(s) to the output Y (s),

d) from the reference signal R(s) to the error signal F(s).

3.30 Continuously stirred tanks have an extensive use in chemical processes. They

3.28 Consider again the control system in Figure with n = 0 and are often supplied with some sort of heat exchange system. If the tank is used
1 for a chemical or biochemical reaction it is often important to keep a certain
G(s) = m temperature to obtain desired productivity. A continuously stirred tank with
a common type of heat exchange system is shown in Figure [3:30a] The tank
a) Assume F(s) = K. Determine the steady state control error when r(t) is is surrounded with a heating/cooling layer in which a liquid flows through in
a step. order to heat or chill the liquid in the tank.

19



C D

Figure 3.29a. Four step responses. All comparable axes have equal scaling.

a)

b)

Determine the important signals of the system. Suggest a control strategy
based on feedback and draw the block diagram.

To be able to construct and evaluate different controllers it is necessary
to have a process model. Determine a dynamical model for this system.
Assume that the volumes in the tank and in the heat exchange system
are constant.

Linearize the model. (Stationary values: Ty = 50.0 °C, T = 75.0 °C.)

The parameters of the model are as follows

pe = pe = 1000.0 kg/m® ¢f; =P =4.2kJ/kg°C U =672 kJ/°Cmin
F,=01m%/min F.=02m*/min V,=10m> V,=10m?3
Tiin = 10.0°C  Tej, = 95.0 °C

Determine the transfer function from flow in the heat exchange system
to the temperature in the tank.

Let the system be controlled by a P controller. Draw the root locus for
the system.

20

5 )

I . Fc,in; Tc,in
Tank -
‘/{:7 Tt
FC7 TC
— Cooler

\ \ Ft;Tt

Figure 3.30a. Process consisting of a tank and a cooler. Input flows have a “,” subscript,
while outputs have no such subscript since they are also the same as the quantities found
inside the tank or cooler.

3.31

3.32

Consider a continuously stirred tank with a cooling system. In the tank a
component A reacts to form component B in an exothermic reaction. This
reaction is unstable, but possible to stabilize with feedback. A model for the
purpose of control has been established

-1

Y= o3

U(s)
where y(t) is the temperature in the tank and u(t) is the cooling flow.

a) Show that the system is unstable.
b) Prove that the system can be stabilized by a P controller.

Bacterial growth is described by the equation ¢y = py where y is the amount
of bacteria and u is a positive constant. Assume that we have a control signal
u available that affects the speed of growth so that

y=py+u

One can then use a P controller u = K(r — y) where r is a reference signal.
For which K-values will the system approach an equilibrium?



3.33

3.34

While working in space an astronaut has to be able to move. Necessary force
is obtained by letting out gas from thrusters. For such a positioning control
system the control law

dy

w=Ki(r —y) — KiKy 2

dt
is used, where u = thruster force, r = set point for the astronaut’s position
and y = the actual value of the astronaut’s position. Draw a block diagram of
the system, and use physics (Newton’s law) to make a model of the astronaut.
Also determine K; and K5 such that

o If the set point r(¢t) = ¢ there has to be a time Ty so that |r(t) — y(t)] < 1
for t > To.

e The damping ratio of the closed loop system will be 0.7. The mass of the
astronaut is assumed to be 100 kg, equipment included.

2009-06-10 Upg. 2
Givet systemet
s+ 2
G = =————

a) Antag att systemet aterkopplas med en P-regulator med forstarkning K|
0 < K < oo. Rita rotort och ange for vilka virden pa K som det
aterkopplade systemet ar stabilt. Markera ockséa i rotorten det val av
poler som ger snabbast mojliga stegsvar utan svingningar.

b) Antag att man istallet anviander en PI-regulator

u(t) = Kpe(t) + KI/O e(r)dr

Rita rotorten med avseende pa Ky, 0 < K; < oo, da Kp = 4.

c¢) Vilka kvalitativa skillnader finns det mellan stegsvaren for de aterkop-
plade systemen i uppgift a) och b)?
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4 Frequency Description

4.1 A mercury thermometer can be described with high accuracy as a first order
linear time invariant dynamic system. The input is the real temperature and ~
the output is the thermometer reading. In order to decide the transfer function
in a thermometer it is placed in liquid where the temperature is varied as a
sinusoid. The obtained result is shown in Figure Find the transfer v )
function of the thermometer. =21} §

Figure 4.2a

Wiet € u 1) |\
F(s) Gi(s) Gis(s)

Figure 4.2b

engine. Figure [£:2D] shows a block diagram of the auto pilot. The auto pilot
has the transfer function

| 1+ E
0 F(s)=K &, a=0.02,6=0.05
1+ 7
Figure 4.1a
while G, is given by
1
Gi(s) = ——, T5=10
(S) 1+ 8T2 2

4.2 We want to keep a ship on a given course, ¥, with an automatic control system ]
using the rudder angle §. See Figure If w denotes the angular velocity of and Gi(s) is defined by (4.1) and (4.2).

the ship, o= (4.1) a) Make a Bode plot for the transfer function F'G,Gs, for K = 0.5.

the following differential equation is valid for small values of w and 6,
Tl(.ZJ = —w+ K15 (42)

where T7 = 100 and K; = 0.1. The desired course, W..¢, and the measured
course, ¥, are fed in to the auto pilot, which gives the signal u to the rudder
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4.3

b)

a)

b)

At the testing of the auto pilot we do the following experiment. The gain
of the auto pilot K is increased until the control system oscillates with
constant amplitude. At what value of K does this occur? What is the
period time of the oscillation?

V.. is allowed to vary as a sinusoid
Vot (t) = Asinat

where A = 5° and a = 0.02. When the movements of the ship have
stabilized we have
U(t) = Bsin(Bt + ¢)

What values do B, 3, and ¢ have if K = 0.57

NN
[are]
@

Figure 4.3a

In Figure the Nyquist curve for a system is shown. Draw the Bode
plot for the same system. The scale on the w-axis is not important, as
long as the amplitude and phase curve are in agreement.

Draw a diagram for the poles and zeros for the system. The relative
placement is important, not the scale.

44 F igure shows the step responses (when the input is a unit step) and Bode
gain plots of four different systems, in no particular order. Identify the pair
of plots that belongs to each system. That is, for each step response, find the
corresponding Bode gain plot (amplitude curve). Motivate your answer by
pointing out a set of unique features for each system.
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Step response Bode plot

Y 1 +——— ]
A1 '/\

0

I Y 1__"/,,,,x
B 1

0

AN — I _—
C 1

0
p 7/

0

Time Frequency

Figure 4.4a. All comparable diagrams have equal scaling.



4.5 a) Consider the transfer functions Ga(s), Gg(s), Gc(s), Gp(s), and Gg(s)
in Problem

1 1
G = = G e —
Al = Foa T 80) = 304 1
1 1
GC(S):82+58+17 GD(S):52+S+1
4
Grls) = s2 42544

Study the amplitude curves of the Bode plots for the systems and find
the static gain and bandwidth of the systems. In cases when it is relevant
find also the resonance frequency and resonance peak.

b) Describe qualitatively (without formulas) the relationships between T
(rise time) and wp (bandwidth) and between M (overshoot) and M,
(resonance peak) respectively?

4.6 A system has the transfer function
6725

R TP

What is the output (after transients) when the input is

u(t) = 2sin(2t — 1/2)

4.7 For the systems below the input is chosen as u(t) = sin(2t). Determine the
output signal y(t) after transients have faded away, provided that it exists.

a) Y(s) = 737U(s)

b) Y(s) = ;55U(s)

) Y(s) = WMU(S)
d) Y(s) = 57 U(s)

4.8 A system is described by Y(s) = G(s)U(s). Figure shows u(t) = sin(wt)
and the corresponding output y(t) (after all transients have faded away) for
the frequencies w = 1, 5, 10, and 20 rad/s (from top to bottom).
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a) Determine the gain (|G(iw)|) and phase (arg G(iw)) for the system for
each value of w.

b) Determine the gain values in dBgg (20log;o(|G(iw)])).
c¢) Sketch the Bode plot using the values determined above.

4.9 Combine the transfer functions below with the Bode plots in Figure

1 _ 6(s+1)
Gils) =37 @2(8) = GG+ )
Gsls) = Ga(s) = ﬁ
Gs(s) = > (poles: —1+1i2)
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Figure 4.8a. u(t) = sin(wt) (solid) and y(t) (dashed).
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I 1 s
Bode gain A Bode gain B

I 1 +— <
Bode gain C Bode gain D

1 — - ey o
Bode gain E

Figure 4.9a. All diagrams have equal scaling.

4.10 Figure [4.10a] shows the Bode gain plots and step responses of four different
Identify the pair of plots that belongs to
each system. That is, for each Bode gain plot (amplitude curve), find the
corresponding step response. Motivate your answer by pointing out a set of

systems, in no particular order.

unique features for each system.



Yref +<:T) € F(S) U G(S) Y

Figure 4.11a

Bode plot Step response 4.11 The pH in a biochemical reactor is controlled by addition of a base. The

transfer function G(s) from added base to pH for the open system has been
determined by experiments to be

1.7

G(s) = (s+1)(0.7s+ 1)(0.55 + 1)

In a attempt to control the pH the control structure shown in Figure is
employed
a) Make a Bode plot for the transfer function G(s).

0 _Z b) Assume that a P controller is used (F'(s) = K). At what value of K does

the pH start to oscillate with constant amplitude?

Frequency Time

Figure 4.10a. All comparable diagrams have equal scaling.
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Figure 4.12a

4.12 Consider the biochemical reactor in Figure It is desirable to control
the concentration of biochemical material cx (output y) by manipulating the
dilute flow g (input w). A model of this system can be described as

2 —bs
Y(s) = o
30s 4+ 1

where the time delay reflects the time it takes to measure the biochemical
concentration. The bode digram of the system is shown in Figure [£.125

Uls)

a) For which values of K is a P controller going to stabilize the system?

b) Construct a controller which has the crossover frequency weq = 0.1 and
no steady-state error.

4.13 A system

is used with a controller

a) In Figure are Bode diagrams of the open loop systerm G, for two
different systems (top), the closed loop systems G. (second row), step
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Figure 4.12b

responses of the closed loop systems (third row) and the poles of the
closed loop systems (bottom). Assign each closed loop system, closed
loop step response and closed loop pole diagram to the correct open loop
system.

b) Solve the same task for Figure

4.14 2010-10-19 Upg. 1la
D& man applicerar insignalen

u(t) =sin(2t), t>0
pa ett forsta ordningens system
y(t) + ay(t) = bu(t), y(0) = yo

far man utsignalen
y(t) = 2sin(2t — w/4).

Bestdm systemparametrarna a och b samt initialvardet yq.



Open system A Open system B Open system A Open system B

i

Closed loop system @  Closed loop system b Closed loop system a  Closed loop system b

Step response 1 Step reponse 2 Step response 1 Step reponse 2
x

x  x x x : x x x x o x x
x

Poles I Poles 11 Poles 1 Poles 11

Figure 4.13a. The frequency scales of the Bode diagrams are the same. The time scales Figure 4.13b. The frequency scales of the Bode diagrams are the same. The time scales
of the step responses are the same. In the pole-zero maps, X marks poles. of the step responses are the same. In the pole-zero maps, X marks poles.
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5 Compensation

Controller Motor Mechanical resonance
Wre 1 4 w
N (s +0.1)(s + 0.5) $2+0.4s + 4
Figure 5.1a

5.1 The block diagram for speed control of a DC-motor is shown in Figure
Find a compensator F(s) such that the following specifications are fulfilled.

e The system should be twice as fast as for F(s) = 1, but with the same
damping as for F(s) = 1.
o If wyer is constant, |wyef — w| /wres should be less than 5%.

e The controller should not be unnecessarily sensitive for high frequency
disturbances and the open loop system’s low frequency amplification
should not be larger than necessary.

X—-

He

)

lA

Figure 5.2a

5.2 The outflow temperature 6 in the liquid A can be controlled in a heat exchanger
by controlling the flow of the liquid B by a valve with the setting denoted wu.
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See Figure Measurements have been made using a sinusoidal input u
and the gain and phase shift have been measured at different frequencies. The
results are given in the following table.

Frequency [rad/s] | Gain | Phase shift
0.05 1.37 —67°
0.1 0.80 —106°
0.2 0.34 —153°
0.3 0.18 —185°
0.4 0.11 —210°

a) Make a Bode plot for the system.

b) What is the largest crossover frequency possible to achieve when using
proportional control and wanting a phase margin of at least 50°7

¢) Suggest a compensator that doubles the speed compared to b) and still
keeps the phase margin.

5.3 A hydraulic system with a valve and a piston is described by the following
linearized transfer function

ky/A
s(gzg +205 +1)

G(s) =

where A is the area of the piston and k, the hydraulic gain.

a) Make a Bode plot for the system when wy = 150 rad/s, ¢ = 0.1, and
keu/A = 20.

b) What is the smallest value of the ramp error that can be achieved using
proportional control if we want an amplitude margin of 2?7 What is the
crossover frequency in this case?

¢) Suggest a compensator such that the ramp error decreases 15 times at
the same time as the crossover frequency, phase margin and amplitude
margin will be the same as in b). Due to physical constraints in the
implementation, this regulator has to have finite amplification at all fre-
quencies.



5.4

5.5

eref € u kjm 0
+@T_ F(s) s(L+ sTy)(1 + sT0)

Figure 5.4a

Figure shows a position servo including a DC-motor. The extra time
constant T, is due to the inductance in the winding of the motor, which is
usually not taken into account. The parameter values are k,, = 10, Ty, = 0.1
and T, = 0.01. We want the servo to fulfill the following specifications:

e Rise time < 0.1 s.
e Overshoot < 10%.
e The steady state error at step in ..t should be zero.

e The steady state error when 6, is a ramp with slope 10°/s should be
less than 0.1°.

Suggest a compensator such that the specifications are fulfilled. (Clue: Sup-
pose that the relationship between rise time, overshoot, and other specifi-
cations are the same as for a second order system, that is, according to
Figures and in Solution (the figures can also be found in
Glad&Ljung).)

In Figure we have arranged step responses and open loop and closed loop
(feedback with —1) Bode plots for five different systems. Identify the three
plots that belong to each of the five systems, one open loop and one closed
loop Bode plot and one step response. Motivate your answer by pointing out
one unique feature for each system.
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Bode plot Bode plot Step response

Open loop system Closed loop system Closed loop system

1
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Frequency Frequency Time

Figure 5.5a. All comparable diagrams have equal scaling.



5.6

5.7

5.8

eref € u 1 km 0
+ T_ () 1+ sT s(1+ sTy)(1 4 sTz)

Figure 5.6a

A DC-servo is described by the block diagram in Figure[5.6a] where 77 = 50 ms
is a mechanical time constant, k,,, = 10 is a proportional constant, T = 25 ms
is an electrical time constant, and 7" = 10 ms is an amplifier time constant.
The system is tested with F(s) = 1 and we find that the dynamic properties
are satisfactory but that the system is somewhat too slow. Find an F(s) so
that the closed loop system is twice as fast as for F'(s) = 1, without increasing
the overshoot. F'(s) should also give a closed loop system which fulfills the
following accuracy demands:

o |0 — O,et] <0.001 rad in steady state when 6..¢ is constant.

e When 6, is a ramp with slope 10 rad/s we should have |0 — 0| <
0.01 rad in steady state.

O«

Figure 5.7a

The amplitude curves and the phase curves in Figure have been measured
for a system without poles in the right half plane. The system is controlled
using feedback according to Figure Use the Nyquist criterion to decide
for which values of K the closed loop system is stable (K > 0).

A block diagram for a control system with time delay is shown in Figure
The system G has no poles in the right half plane.

a) G has a Bode plot according to the plot in Figure m Determine for
what values of the time delay T the closed loop system is stable.

b) The same as in a), but for the plot in Figure

2

S

3 -160° - 155
g -180°

0 -205°

<

w [rad/s]

Figure 5.7b

7O Gl [

Figure 5.8a
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40°

w [rad/s]

Figure 5.8b

Figure 5.8¢
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Figure 5.9a

5.9 A servo system based on a DC-motor has to be designed. A block diagram for

the system is given in Figure [5.9a] By measuring the phase shift and the gain
at different frequencies the Bode plot for the motor, see Figure has been
determined. The amplification is a system of the first order, that is, it has the
transfer function

ka
s+a’

In order to find the constants kx and a, a unit step experiment has been
carried out on the amplifier, giving the output shown in Figure

Ga(s) =

a) Find the constants ka and a from Figure Also draw the Bode plot
for the open loop system, that is, the system from wu to y.

b) Find a compensator F(s), such that the closed loop system fulfills the
following demands:

¢ The system has to be 5 times as fast as when using F(s) = 1.
¢ The overshoot should not be larger than for F(s) = 1.
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Figure 5.10a

5.10 A system G(s) can be split into two sub-systems

G(s) = Gl(s)é

according to Figure The Bode plot for G;(s) is given in Figure [5.10b
Find a compensator for the system G(s) such that the following is fulfilled:

e The phase margin for the compensated system is 40°.

e The closed loop system is twice as fast as what is possible to achieve using
proportional control with a 40° phase margin.

e The steady state error when the reference signal is a ramp is 1% of the
corresponding error with proportional control and 40° phase margin.

— 10-1 N\

3 g

§ i
1072 S

— 0° —

3

S_'O -90 \\\

CG A At R A i i i e i ””\(;;”

””””\."Q; -
-180° ——
1072 10t 10° 10! 102

w [rad/s]

Figure 5.10b

5.11 The Bode plot for a system is given in Figure [5.11a]
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a) Draw the Nyquist curve of the system.

b) Assume that the system is controlled using the proportional feedback

For which K > 0 is the closed loop system asymptotically stable?

¢) Assume that we choose K = 2 in the proportional controller in problem
b). What will the steady state error be when r(t) = 10t?

d) Assume that y(t) is delayed T seconds. How large is T allowed to be in
order for the system to still be asymptotically stable with K = 27

100
_ 10
3 1
S
0.1
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-90° e
N R \\\ o]
3 -120°0 — N
?o 150 N R I B I A \\
g -180°
I S S s D o - N M
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NI A R T RN
1072 101 10° 10!
w [rad/s]

Figure 5.11a



5.12

a) A plot of the amplitude curve of a stable transfer function G, (s) is given
in Figure [5.12a] Choose one of the following alternatives regarding the

stability of the closed loop system

b) Repeat for the transfer function whose amplitude curve is given in Fig-

1. It is stable.

2. It is not stable.
3. Impossible to determine given these facts only.

1

o .
+ Gy’

ure Justify your answers carefully.

|Go(iw)|

arg Go (iw)

10°

107!

1072

107!

10°

Figure 5.12a
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Figure 5.12b

5.13 Consider the relation

where
725

a) Assume that the system is controlled by

where F(s) = 1. Find we, wp, ¢m, and A, for the loop gain.



5.14

5.15

b) Compute a regulator such that the open loop system fulfills the following
requirements:

(i) we=5
(i) pm = 60°
and the closed loop system fulfills:
(iii) eg =0
Draw the Bode plot of the compensated open loop system and check
that the requirements are satisfied. Simulate the closed loop system for

a step in the reference signal and plot the step response. Check that the
requirement on the steady state error is satisfied.

¢) Draw the amplitude curve of the Bode plot of the closed loop system with
and without the compensator. Describe how the properties of the closed
loop system have been changed by the compensation.

d) Simulate the control error when the reference signal is a ramp and the
regulator designed in b) is used. Is the stationary error zero?

When using microorganisms in production it is important to keep the oxygen
concentration at a certain level to get maximum productivity. There are many
ways to control the amount of dissolved oxygen, in this example we will use
the speed of stirring as the controlled signal. The transfer function from the
stirrer speed N to the oxygen measurement Opa becomes (linearized model)

b e—ST

Gs)= —— ¢
)= T T

The parameters 7 = 28, 75 = 20 s and b = 0.02 remain constant with change
in stirrer speed while T} can vary from 0.02s7! to 0.224 s=! as the stirrer
speed increases from 400 r/min to 1200 r/min. A Bode plot for G(s) is given
in Figure Construct a controller, for the 1200 r/min case, which has a
crossover frequency w. = 0.2 rad/s, a phase margin ¢, = 60° and no steady-
state error.

Earlier in the history of the basic automatic control courses at LiTH, the lead
and lag compensators were parameterized in a different way. This parameteri-
zation is used in this problem, which is not only meant to be a crash course in
understanding exams with solutions dating back to those days, but should be
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Figure 5.14a. Solid line: 400 r/min. Dash-dotted line: 1200 r/min.

seen as a chance of practicing the ideas of loop shaping rather than exercising
recipe knowledge.

The old parameterization of a lead compensator looked as follows:

s+b

R =N
lead(s) s+bON

The schematic Bode plot of such a lead compensator is shown in Figure [5.15a]
and it can be shown that the maximum phase lead is obtained at the frequency
bv/N, where the gain is v/N, and the phase lead is given by

VN —-1/VN

Pmax = arctan ———

2
(shown in Figure [5.15b)).
The old parameterization of a lag compensator looked as follows:
s+a
F, =—
lag (5) s+a/M

The schematic Bode plot of such a lag compensator is shown in Figure
Just like the parameter 71 of the new parameterization, the parameter a used



here shall be determined as a trade-off between the undesirable phase lag and
the bandwidth of the desirable low frequency gain. As a rule of thumb, one
may use a = 0.1wq as an initial guess, and iteratively improve from there.
The worst phase lag for this choice of a is about 5.7°.

Nf

— Pmax

700

Figure 5.15a. Schematic Bode plot for the old parameterization of a lead compensator.

A read/write head of a hard disk is mounted on a mechanical arm which is
moved by a motor. The system from motor input voltage to the angle of the
arm is modelled by

) 0.05

Y(s) = P 1)U(s)

where Y and U are the Laplace transforms of the output and input respectively.
The numerical values of the constants are 7, = 1072 och 7 = 0.05. The Bode
plot of the system is given in Figure [5.15d]

a) To begin with, assume that the arm is controlled using proportional feed-
back,

U(s) = K(R(s) = Y(s))

What are the step and ramp error coefficients (often referred to as ep and
e1)? For what values of K are they defined?
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Figure 5.15b. Maximum phase advance as a function of N in a lead compensator param-
eterized the old way.

b) Compute a controller,
U(s) = F(s)(R(s) - Y (5))

for the same system, such that the resulting system fulfills the following
requrements:

o eg=0

¢ e <0.001

© we = 100 rad/s
& Ym > H0°

5.16 A vehicle is described by the model

where u is the input and y is the position and

0.1
Co)= e

The Bode diagram of the model is given in Figure
a) Assume that the vehicle is controlled using proportional feedback

U(s) = K(R(s) = Y(s))



Figure 5.15c. Schematic Bode plot for the old parameterization of a lag compensator.

Which is highest cross-over frequency that can be acheived if it is required
that the phase margin is at least 60°? For which value of K is this cross-
over frequency obtained?

b) Assume that it is required that the vehicle is able to follow a reference
path given by the function

r(t) =05t t>0
What is the resulting steady state error if the vehicle is controlled by the

proportional feedback designed in a).

¢) Design a controller,

for the vehicle above, such that the resulting control system fulfills the
following requrements:

o The steady state error, using the same reference signal as in b), is
less that 10% of what was acheived in problem b).

¢ The phase margin is at least 60°.

¢ The cross-over frequency is the same as what was obtained in problem

a).
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Figure 5.15d

5.17 The upper figure in Figure shows, in four different cases, the Bode dia-
gram for the loop gain
Go(iw) = F(iw)G (iw)

and the lower figure in Figure shows the amplitude curve, | Go(iw) |,
for the transfer function of the closed loop system

__Gols)
Gels) = HOTo(S)

in the corresponding four cases. Combine the diagrams in Figure [5.174}

5.18 A system is described by the relationship

Y(s) = G(s)U(s)
where the Bode diagram of G(s) is given in Figure

a) Give a possible combination of values of p,n and m such that the diagram
corresponds to the transfer function
(o) = Klo ) (o 20)
st p1) (5 + o)




b) Assume that the system is going to be controlled using the feedback
U(s) = F(s)(R(s) = Y (s))
Determine F'(s) such that the control system fulfulls the following re-

quirements:

¢ The steady state error is zero when the reference signal is a unit step.

o The absolute value of the steady state error is less than 0.01 when
the reference signal is a unit ramp.

¢ The compensated open loop system has cross-over frequency 3 rad/s
and phase margin 45°.

5.19 A system is described by the model
2

Y(s5) = ——=
)= Fos 12V
and is controlled by the feedback
. ™ms+1
U(s) = K 22222 (R(s) ¥ ()

In Figure four step responses for the parameter pairs

) K=10 =01
W) K=10 § =08
i) K=5 f=0.1
iv) K=5 =038

are shown. Combine these values with the step responses in Figure

5.20 Consider a system G(s), whose Bode diagram of G(s) is given in Figure
and the input-output relation Y (s) = G(s)U(s). This system will be controlled
with the feedback law

a) Calculate the closed-loop transfer function, i.e., G.(s) in the relation

Y (s) = Ge(s)R(s).

39

b) Let F(s) = K. When K = 1, calculate crossover frequency w,. and phase
margin ,,. Is the closed-loop system stable for K =17

c¢) Using a controller of the form F(s) = K, calculate K such that the
closed-loop system is twice as fast as with K = 1.

d) What have we lost by making the closed-loop system twice as fast?

e) Use a controller of the form

TS+ 1

Fieaa(s) = K227~

! d<s> TDﬁs +1

to obtain a closed-loop system that is twice as fast and has approximately
the same overshoot as with K = 1.

f) Calculate the steady-state error when the reference signal is a unit step.
What must happen to F(0) if we want to decrease the steady-state error?

g) If we use a controller of the form F(s) = Flag(s)Flead(s), where

T8+ 1
Trs+ 7’

Flag(s) =

what is the value of + such that the steady-state error is eliminated?
What is the value of F(0) in that case?

h) To avoid this, we decide that a steady-state error of 0.01 is acceptable
when the input is a unit step. Choose 7y to accomplish this, and an appro-
priate value of 7;. What can happen if we do not choose an appropriate
value for 77

5.21 2009-06-10 Upg. 3
Processer hdmtade fran kemisk industri kan ofta forenklat beskrivas av ett
forsta ordningens system med tidsfordréjning. Ett exempel pa ett sadant
system ar
2
G(s) = 670.255
(s) s+1

Man bérjar med att reglera systemet med en P-regulator med K = 1/4/2.
Fasmarginalen for detta fall &r acceptabel men systemet blir fér langsamt.

For att uppratthalla produktkvalitén krdver man att utsignalens vérde
stationért inte avviker mer &n 5% procent fran det konstanta borvardet.



5.22

Bestdm en regulator F'(s) sd att skérfrekvensen férdubblas jamfort med P-
regleringen ovan, samt att de stationédra kraven uppfylls. Systemet skall ha
samma fasmarginal som vid den rena P-regleringen.

2011-06-10 Upg. 4
Betrakta ett system med 6verforingsfunktion

k1
(s+a)(s+b)(s+c)

G(s) =

dér k; = 100, a = 3, b = 6 och ¢ = 100. Bodediagrammet for G(s) visas i
Figur

)

b)

Designa en fasavancerande och fasretarderande kompenseringslénk for
G(s) sa att skérfrekvensen blir 30 rad/s, fasmarginalen blir 40°, och
statiska felet da referenssignalen &r ett enhetssteg blir noll.

Antag nu att det finns en tidsférdrojning i systemet sa att 6ppna sys-
temets verkliga éverforingsfunktion ges av GY(s) = G(s)e~T2%. Fér vilka
varden pa Ty ar slutna systemet stabilt dd regulatorn fran Uppgift a)
anvands?

En regulator har nu designats fér G(s) och forstarkningen for det
resulterande slutna systemet G.(s) aterges i Figur [5.22bf For att
reducera Oversvangen da steg i referenssignalen appliceras infors ett

forfilter F.(s) =
1+47s
utsignal blir G9(s) = G.(s)F,(s).

sa att Overforings-funktionen fran referens till

Uppskatta det minsta virdet av 7 som kommer att paverka systemets
snabbhet vid steg i referenssignalen.
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Figure 5.17a. Upper: Go(iw). Lower: | G¢(iw) |.
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6 Sensitivity and Robustness

v A Im
r=20 e U 1 P2 Y
K [ —»@—0—»
+ ; ss+1)| + -1
| >
Figure 6.1a Re
6.1 Consider the control system in Figure where v(t) is a sinusoidal distur-
bance, v(t) = sin(t). Compute the absolute value of the sensitivity function G,
at w = 1 rad/s as a function of K. How must K be selected if the amplitude )
of y(t) shall be less than the amplitude of v(¢) at this frequency? Figure 6.3a
v
r e U Y
@)— F(s) G(s) .
: —O- :
G —> —>
+ © +
Figure 6.2a T
Fj 6.3b
6.2 Assume that we have constructed a controller F(s) for the model G(s), see aHre
Figure such that there is no steady state error when the reference signal
is a step. Let the real system be given by r e " y
. - F(s) @ (s)
G(s) = (s +1)G(s) /
and assume that GY(s) — 0, s — oco. Also assume that the amplitude curve
of the closed loop system has no resonance peaks and decreases, at least Figure 6.4a
and asymptotically, with 20 dBsg/decade for frequencies over the bandwidth.
What is the highest possible bandwidth we can use for the closed loop system 6.4 Consider the control system in Figure The true system, denoted G°(s),
in Figure while at the same time guaranteeing stability? is modeled as
1
G =
6.3 Figure shows a Nyquist diagram for the loop gain G,. Show in a figure () s+ 10
for what frequencies (that is, for what part of the Nyquist curve above) ad- The controller
ditive disturbances on the output are amplified in the sense that the output s+ 10
amplitude of the control system in Figure is larger than the disturbance F(s) = .
amplitude.
gives an asymptotically stable closed loop system with the model G(s). Now

44



assume that the system is given by
GO(s) = G(s)(1 + Gals))
where it is known that Ga(s) has no poles in the right half plane, and that

0.9
V1+w?

Can we be sure that the closed loop system is asymptotically stable?

Ga(iw)] <

6.5 A process is described by the model G(s), while the process in reality has the
transfer function
G(s) = e*TG(s)

a) Draw the absolute value of the inverse of the relative model error, that
is,

1

|G a(iw)|
b) Assume that we design a controller F(s) starting with the model G(s).
How large may
F(iw)G(iw)
1+ F(iw)G(iw)

be at most, in order to guarantee asymptotic stability of the closed loop
system for all values of T', when the controller F'(s) is used on the system
GO(s)?

r20+@e' K 5(515)7@_"_1{

Figure 6.6a
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6.6 Consider the control system in Figure [6.62]

2)

Assume that the real system is given by
GO(s) = G(s) + G(s),

where
1

U=+

and let K = 25/2. Use the robustness criterion to obtain a condition on
|G(iw)} that guarantees stability in the closed loop system. Does G(s) = 1
fulfill the conditions?

Now let G(s) = o where « is a scalar. Calculate the characteristic equa-
tion for the closed loop system and decide for which « the system is
stable. Does this contradict the condition from the robustness criterion?



10°

Ge(iw)]

107!

10" 10° 10"
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Figure 6.7a

6.7 A DC-motor is assumed to have the transfer function
1

Gls) = s(s+1)
and it is controlled using proportional feedback,
U(s) = F(s)(R(s) = Y (s))
where F(s) = 4. The amplitude curve of the feedback system

F(iw)G(iw)
1+ F(iw)G(iw)

is given in Figure [6.7a] Assume that the real system is given by
GO(s) = G(s)—

s+a’
and the controller F(s) is used on the system G°(s).

() = |

a>0

a) Draw a root locus with respect to « for the characteristic equation of the
closed loop system and determine for which « the closed loop system is

asymptotically stable.

b) Use the robustness criterion to decide for which « the closed loop system
is asymptotically stable.

¢) Comment on the possible differences in the demands on « in a) and b).

6.8 A system G(s) is controlled using a regulator F(s). In Figure the am-
plitude part the Bode plot of the nominal closed loop system,
F(s)G(s)

B ETEE)

46

is shown. It is known that G. is stable, and it is assumed that G and G°
have the same number of poles in the right half plane. The model uncertainty

GAa(s), defined by

-G
N

is assumed bounded by |Ga (iw)| < yw. In what interval must + lie to guarantee
stability of the closed loop system?

Ga

10!
10°
10t

|Ge(iw)]

1078

Figure 6.8a
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6.9 Consider the system in Figure[6.9a] For r(t) = 0, n(t) = 0 and v(t) = sint the
steady-state output is given by

Determine the steady-state output y(t) when r(¢t) = 0, v(t) = 0 and n(t) =
sint.

6.10 Recall the model that was used in the design of a lead-lag controller using
MATLAB in Problem Assume that the true system contains a time con-
stant that was neglected, and that the transfer function of the system is given
by

1
s+1

GO(s) = G(s)

a) Determine the relative model error Ga(s).

b) Draw |GA1(iw)\ and 15252;();8?2;) in a Bode plot, when G(s) is given by

725
(s+1)(s+2.5)(s + 25)

G(s) =

for the two cases F(s) = 1 and F(s) being the controller designed in
Problem What can be said about the robustness of the closed loop
system in these two cases when F'(s) is used for control of the “true”
system G°(s)?

One possible solution to the design problem in Problem was the

controller
043s+1 2.0s+1

F(s) = 0.46 - :
(5) =046 o0 0s 71"~ 2.0s

47

’“—;(?D—e» F(s) = G(s) |4+

Figure 6.11a

6.11 Consider the control system in Figure The controller F(s) = 2 gives
the Bode plot of the loop gain F(iw)G(iw) shown in Figure The Bode
plot of the sensitivity function is shown in Figure The reference signal
is 7(t) = 2sin0.1¢. Determine the amplitude of the error in steady state.

20 dByo |
3 0dBy —
O -20 dByo
~40 dBao N
-90° T
3 T
G -180°
- N i e R T
-270° In
10 10° 10"
w [rad/s]

Figure 6.11b

6.12 In Problem we saw how the amount of dissolved oxygen depends on the
stirring speed. A lead-lag controller was designed for the model linearized
around 1200 r/min. Check if this controller also stabilizes the system when
the stirring speed is 400 r/min.
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Figure 6.11c

Consider the connected tank system in Figure where u is the inflow to the
upper tank and y is the level in the lower tank. The system can approximately
be described by the following transfer function

1

=G

The level in the lower tank is controlled by a P controller;

The goal of the control is to minimize the influence of the disturbance v. This
has been formalized as the following demand on the system:

|S(iw)| < 0.1

at w = 1, where S(s) denotes the sensitivity function. How must K be selected
if the demand should be satisfied?

2010-12-14 Upg. 5ab
For det aterkopplade systemet i Figur [6.14a] definieras kénslighetsfunktionen
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L

\ |
1

Figure 6.13a

S(s) och slutna systemets overforingsfunktion G.(s) som

B 1 _ Go(s)
S(s) = TG0 och G.(s) = TG

dir G,(s) ar det 6ppna systemets 6verforingsfunktion.

a) Forklara hur |S(iw)| paverkar ett aterkopplat systems forméga att under-
trycka en additiv stérning v till utsignalen, samt hur |G.(iw)| paverkar
ett aterkopplat systems formaga att undertrycka méatbrus n. Kan bade
storningen och méatbruset undertryckas godtyckligt mycket samtidigt?
Motivera ditt svar.

b) Visa att om r &r ett steg sa blir statiska reglerfelet noll ifall S(s) har alla
poler strikt i vinstra komplexa halvplanet och ett nollstélle i origo.
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7 Special Controller Structures

eref

9 w
I |
Gri GRro

3
]

Cooling water

Figure 7.1a

7.1 To control the temperature 6 in a chemical reactor, the control system in

Figure is used, where f,c¢ is the desired (reference) temperature. The
temperatures 6 and 6,, in the reactor and the cooler, respectively, are mea-
surable and can be used to control the valve u. The structure of the control
system is given by Figure It is here assumed that both Gr; and Ggrs are
P controllers.

a) Let Ko = 9 and draw the Bode plot of the transfer function from w to
0. Then choose K; so that the gain margin A,, = 2. What are the gain
crossover frequency w, and the steady-state error, if we assume that yef
is changed stepwise?

50

b) Suppose that we make a simple feedback loop instead, see Figure
How is the Bode plot affected? Again, choose K3 so that the gain margin
A = 2, and determine the gain crossover frequency w. and the steady-
state error. Compare with a) with respect to steady-state errors and
response times. Conclusions?

Valve and
GRr1 Gra cooling jacket Wall and liquid
Y 1 +\T{ =21 | 105 +1 (305 +1)(3s + 1)
Figure 7.1b
Valve and
cooling jacket Wall and liquid

Oret /Z\ '_|K u 1 0, 1 0

JF\T{ [t 10s + 1 (30s+1)(3s + 1)

Figure 7.1c
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7.2 A level control system for a water tank is shown in Figure where all
variables denote offsets from an operation point. The inflow, z(t), to the tank
(with area A) is determined by the valve, and the outflow, v(¢), is determined
by the pump. Stu Dent has got the assignment to keep the water level in
the tank constant, in spite of variations in the outflow v(t). First, Stu deter-
mines the transfer function Gy(s) from the valve to z(t). By step response
experiments, he obtains the following result:

1

) = 55511

a) Because the disturbance v(¢) is measurable, Stu first considers a feedfor-
ward compensator to completely eliminate it. Stu, who also knows that
it is dangerous to differentiate the disturbance, cancels all the derivative
terms in the compensator. Compute the feedforward compensator, and
determine the response h(t) Stu will get, if the outflow v(¢) is changed
stepwise with an amplitude of 0.1.

51

b) To improve the control system, Stu also introduces a proportional feed-
back of the water level h. What is the steady-state error in the level h
now, if the outflow is changed in the same way as in a)?

7.3 Consider the following system

2 3
s—|—3U(s)+s—|—4

Y(s)= V(s)

where u is the control signal, y is the output and v is a disturbance. It is
desired that y should be as small as possible despite the disturbance v.

a) Design a feedforward controller from v to u that eliminates the influence
of v on y.

b) Assume that v is a pure sinusoid with amplitude 2. How large will the
control signal be?

¢) The real system is described by

b 3

Yis) = s+3U(s)+3—|—4

Vi(s)

where b value is not exactly known but has its value close to 2. To solve
this problem a P controller is added to the feedforward controller that
was designed in a). The full controller looks like

U(s) =—KY(s) + Fr(s)V(s)

where Ft(s) is the feedforward controller. What is the stationary error if
v=17



7.4 The transfer function for a temperature control system is given by

3 4

Y = 75V g6+

V(s)

where y is the controlled temperature, u is the supplied power and v is the
temperature of the surroundings. Assume that the desired temperature is zero.

a) Design a feedforward controller U(s) = F¢(s)V(s) which eliminates the
influence of the disturbance v on y.

b) To simplify implementation F(s) is replaced with a constant, Fy = F¢(0).

Assume that v is given by v(t) = —1 — 0.1¢ and that U(s) = F;V (s) is
used. What will y(¢) be in steady state?

¢) The previous controller is now extended with a P controller:
U(s) = F;V(s) — KY(s)

What will now y(t) be in steady state?

d) Assume that one only uses the P controller
U(s) = —-KY(s)

What will now y(t) be in steady state?

7.5 2011-06-10 Upg. lab

a) I Figur visas en process och en regulator med bade framkopplings-
och aterkopplings-lankar. Harled (uttryck i G1(s), G2(s), Fy(s), Fr(s) och
Fy(s))

i) overforingsfunktionen fran referenssignalen r till utsignalen y,

ii) overforingsfunktionen fran storsignalen d till utsignalen y.
b) Antag att processen i Figur har oéverforingsfunktionerna G1(s) =

2
52—{19—;75—1—1 och Go(s) = T13 fram en lamplig framkoppling F(s)
for att eliminera inverkan av storningen d. Diskutera &ven hur du enkelt

kan implementera framkopplingen om maélet dr att eliminera konstanta
storsignaler i stationéritet.
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Figure 7.5a




8 State Space Description

8.1 Define suitable state space variables for the DC motor discussed in Prob-
lem and write the system in state space form.

Figure 8.2a

8.2 Consider the system illustrated in Figure It consists of a hinge that can
move in the direction marked “z”, and a thereto attached pendulum. The
system is described by the equation

06 + gsin® + 2 cosf = 0
Define state space variables, input, and output as
21=0 x9=10 u=z2/ y=20

and
wy =g/t

Linearize the system around the equilibrium point given by

zi=7m x9=0 u=0
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Figure 8.3a

8.3 The block diagram in Figure describes an electric motor that drives a
load via an elastic axis. Here ¢ is the driving current to the motor, which gives
the torque M;. z is the turning rate of the motor and y is the turning rate of
the load. @ is the angle of the transmission axis. M, = K56 is the torque this
angle causes. M is the torque from the load. Give a state space description
for the system with M) and ¢ as inputs and y as output. (There are at least
two different ways to solve this problem.)

8.4 Write the following systems in state space form.

a)
Py | d%y dy
Y6 1112 1 6y=6
ap TOqe Ty Ty

b)
A3y d%y dy d?u  du
bl A A e 4 —4 2
@ e P T T T T
c)
2s+3
Gls) = -2
)= 275556

Use for example controllable or observable canonical form or diagonal form.

8.5 A system has the impulse response (weight function)
g(t) =2e "+ 3

Write the system in state space form.



8.6 Consider the system

Compute the transfer function of the system.

8.7 Consider the system

#(t) = Ax(t) + Bu(t)

The input is being held constant, u = ug, for the time to <t <tg+T.

Give a relation between z(t), x(to + 1), y(to), y(to +T) and ug.

Uy U2

q1 q2
Inflow \\ (( Inflow
‘h

\q

Figure 8.8a
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8.8 Consider the tank in Figure The tank can be filled from two different
pipes, where the flows ¢; and ¢o are determined by the valve settings u; and
ug. If g1, g2, u1, us, and h denote the deviation from a nominal value, we get
the linearized equation

.1
h + —h = U1 + U9
T
where 7 = 1. It is desired that the level should follow a reference value hf

and that ¢; and ¢ should be of approximately the same size. Therefore two
PI controllers are used so that

t
uy = (hpet — h) + / (hret — h) dT (8.1)
0
t
Uy = (href —h)+ / (href —h)dr (8.2)
0
a) Introduce the state variable 1 = h, and let x5 and x5 represent the

integrals in (8.1) and ({8.2)) respectively. Derive a state space description
of the closed loop system with h..¢ as input and A as output.

b) Verify that the closed loop system is unobservable and that the unob-
servable subspace is spanned by the vector

0
1
-1
Give a practical interpretation of this phenomenon.

c¢) The level is measured by two different sensors, and due to the poor accu-
racy in the first sensor it delivers the level signal together with an error.
The equation of the first regulator can hence be written

ulz—(h+n)+/0t—(h+n)d7 (8.3)

where it for simplicity has been assumed that h,s = 0. The second
regulator is then given by

t
uy = —h+/ —hdr (8.4)
0

Modify the state space model by letting the measurement disturbance be
the input to the state space model of the closed loop system.



8.9 Counsider the system
. (-1 1 n 1
t={ 4 _g) K
Is it possible to control the system from the origin to z = (1 3)T within 4

seconds?

8.10 Give the dimensions of the controllable and unobservable subspaces to the
systems below. Give also the controllable and unobservable subspaces.

a)

-2 0 0 1
=10 -1 1 Jax+]|-1]u
0 0 -3 2

b)
-1 0 0 0
T = 1 -2 0 |z+ 4 | u
0 0 —4 -2
y= (0 3 0) T
8.11 A state space representation of
1
G =
(8) =7
is given by
. -1 0 1
= (0 2)+ (1)
Yy = (1 0) T

a) Compute x1(t) z2(t) and y(t) if 2(0) = 0 and

u(t){o, t<0

1, t>0
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b) Is the system asymptotically stable? Input-output-stable?
¢) Examine the controllability and observability for the system.

d) Explain why the realization is not suitable for simulating a system whose
transfer function is G(s).
8.12 Compute the poles and zeros of the system

(3 7))

y=(1 1)z

Figure 8.13a

8.13 Two mathematical pendulums are mounted on a trolley. They are mounted so
that they can move without friction in a plane coinciding with the direction
of movement for the trolley. The lengths of the pendulums are ¢ and af and
their masses are m. For one pendulum we have

Zcosp+ @l = gsing

a) Linearize the system around ¢ = 0 and put the constants ¢, m, and g to
1 and write the equations in the form & = Ax + Bu.

b) Give the values on « for which the system is controllable. Give a practical
motivation.



8.14

8.15

8.16

s+1 +
e —— ]
J}L

1 T2 +

by
+U 8+3

Figure 8.14a

A system is given by the block diagram in Figure Derive a state space
model of the system, with the state space variables given in the figure.

The substances A and B react according to, 3A — B, in a tank. The reaction
speed is given by ra = —kic}. The inflow, ¢ to the tank has concentration
CA,in- The tank volume V' and the in- and outflow can be considered constant.

a) Determine the dynamical mass balance for the components A and B in
the form of differential equations.

b) Linearize the differential equations around a stationary point, ¢, cf,
Ch in» and use the state space representation

d
d—f:Az+Bu
y=Cz+ Du

where the state x consists of the deviations ca A and cg a of the concen-
trations. The input signal v is the deviation ca in A in the inflow concen-
tration and the output signal y is the deviation Beg a in concentration
of component.

Figure shows a protein that changes between the conformations x
and x2. The kinetic parameters k;; determine the rate of the conformational
changes. The input signal, u, toghether with the constant, K, represent
introduction of x5 to the system. We assume that we can measure x5, i.e.
y = xo. All reaction rates are assumed to be given by expressions proportional
to the concentration of the states they emanate from. That is, for a state
1 the differential equation will be #; = Zp kipxp — Zq kqix;, where p is the
number of incoming and ¢ the number of outgoing flows from the state i. This
corresponds to mass action kinetics for a regular biochemical reaction network.
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Figure 8.16a. Protein in two possible conformations.

a) Write down the state space equations that describe the system.
b) Compute the poles of the system. Is the system stable?

c) What are the conditions on the kinetic parameters k;; for the system to
be observable? Give an interpretation of this result.

d) Assume that the conformation change from x5 to x; is catalyzed by an
enzyme. To describe this, include Michaelis-Menten saturation in the
flow from x5 to x1, i.e. replace the expression kioxo with %, where

Vmax 1s the maximal rate and Ky the saturation constant. Write down

the differential equations for the states xy and zs.

e) Sketch the relation between x5 and the saturated reaction rate in d).

f) Linearize the system around the stationary point z; = ‘2/‘,;2‘*;‘, ro = Ky,
u = 0.

Figure 8.16b. Protein in three possible conformations.

Now, assume that the protein can exist in a third conformation x3, according
to Figure We measure y = o as before.

g) Write down the state space equations that describe the system.



h) What are the conditions on the kinetic parameters k;; for the system to
be observable? Give an interpretation of this result.

Figure 8.17a

8.17 The model in Figure describes the interaction between two proteins
with concentrations x1 and x5, where the kinetic parameters ki, k21, k12 and
ko determine the reaction rate.

The law of mass actions for biochemical reaction networks leads to the follow-
ing state space model for the system.

P —ka k1o 24 ky u
ko1 —kia — ko 0
Y= (O 1) x.

The input u is a unit step.

a) What are the steady state values of 1 and 3, when the input v is a unit
step?

b) Compute the transfer funtion of the system, from u to y.

c¢) Use the final value theorem to find the steady state gain of y. Compare
with the result in a). What conclusions can be drawn?

8.18 An electromagnet can make a metal ball levitate. The electromagnet is posi-
tioned so as to make the magnetic force act upwards in the vertical plane. By
placing a metal ball under the magnet, the ball stays in the air if the magnetic
force exactly matches the gravity acting on the ball.

The gravitational force is F; = mg where m in the mass of the ball and g is
the gravitational constant. The force from the magnet is described by F,,(t) =
ku(t)y=2(t) where u(t) is the current through the coil of the electromagnet,
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y(t) is the distance from the magnet to the ball and k is a proportionality

constant. Force equilibrium leads to mgj(t) = — ’;*;g)) + mg.

Using the states 1 = y and x5 = y leads to the state space description

. z2(1)
a(t) = (—% +g>

ma3 (t
y(t) = 21 (2)
a) Show that all stationary points are given by x1 = x19, 2 = 0 and ug =
2
m:vlo
g—=L.

b) Determine a linear state space model approximating the nonlinear system
around each stationary point.

8.19 2008-12-20 Upg. 5
Studera det olinjara systemet

y(t) = —y(t)u(t) + v
med insignal u(t), utsignal y(¢) och dér v r en okénd konstant positiv storning
(v > 0). Malet ar att konstruera en regulator, som haller utsignalen y(t) pa
en given konstant niva y(t) = yo, yo > 0.
a) Linjarisera systemet runt motsvarande stationira punkt.

b) Uppgiften ar att konstruera en regulator sa att det aterkopplade linjéris-

erade systemet med styrlag
s+ 1
U(s) = F(s)E(s), F(s)= KITT e(t) = yo — y(t)

ar stabilt for alla positiva virden pa den okdnda stérningen v.

Visa att det 4r mojligt samt ange ett val av —oco < K < oo
och 77 > 0.

8.20 2011-12-17 Upg. 4abc
Betrakta systemet

.i?l(t) = xl(t) + U(t)
Eo(t) = =221 (t) + axa(t) — u(t)



a) For vilka virden pa o &r det 6ppna systemet (d.v.s. da u(t) = 0 for alla
t) asymptotiskt stabilt?

b) For vilka virden pa « dr systemet observerbart?

c¢) For vilka virden pd « ar systemet styrbart?
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9 State Feedback

9.1 Counsider the system The module is both in the #-direction and in the z-direction obeying Newton’s
law of motion without any kind of damping. The transfer function from the
= (_12 _01> x4 (é) u control signal of the astronaut (y.ef) to velocity 2 is
Y= (1 O) T KiK»
53

a) Calculate a state feedback that places the poles in I) { -3, =5}, II)
{—=10, —15}. What limits the possibility to achieve arbitrary dynam-
ics of the closed loop system?

which is very difficult to control by hand.

. a) Write the system in state space form.
b) Suppose only the output is measured. Calculate an observer that makes

the transfer function from the reference signal to the output the same as 0
in a). Discuss the influence of the poles of the observer. ‘R/v
. by
Attitude —ay Direction
thrusters .
of motion
[: Hﬂ; \ < ﬁg l
z
Figure 9.2b
yref@ul_”_{élélgé 1 .
+\&/ 124 s s 2 s
mq ma
Figure 9.2a
Feedback
9.2 Figure shows the Lunar Excursion Module from the Apollo project. Con- Figure 9.2c

sider the module hovering a short distance above the surface of the moon using
its main engine. If the pitch angle of the module (angle between the vertical
line and the direction of movement) differs from zero, a horizontal component
of the force is obtained and the module is accelerating along the surface.

We will study a block diagram which shows the connection between the input «
(the control signal to the attitude thrusters), the pitch angle 8 and the position

coordinate z. See Figures and
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b) In order to make the control duty of the astronaut easier we change
the dynamics of the module by making internal feedback. The following
signals are measurable:

mq, the attitude angular velocity measured using rate gyro.

mo, the acceleration in z-direction measured using accelerometers posi-
tioned on gyro-stabilized platforms.

mg, the velocity in z-direction measured using doppler-radar.

Calculate a state-feedback using these signals such that the closed loop
system obtains its poles in s = —% and the control signal of the astronaut
becomes the reference signal of the velocity in z-direction.

¢) Suppose we by safety reasons are interested in the possibility of controlling
the module even if the sensors measuring m; and mo are not working.
Design a controller that can handle this and has approximately the same
behavior as in a).

9.3 A DC motor with an external load, T, is described by
w=1~0
. 1
w=——w+cru+coT
T

where 6 is the angle, w the angular velocity, u the control signal, T" the torque
of the load, and c1, co, and T are constants.

a) Introduce a controller
u = l09ref — 110 — lgw

such that the poles of the closed loop system becomes %(—1 +1) and
0 = Ber in steady-state if T'= 0 and 6,e¢ is constant.

b) Introduce a modified controller
u = loeref — 110 — ZQOJ + U/

such that § = 0, in steady-state even for constant non-zero T' and con-
stant G-
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9.4 A system can be described in state space form as
. (0 0 n 1
t={y _1)7 DK
y=(1 -1z

We want to place the poles in { —2, —3 }. Suggest an observer, and use a linear
state feedback controller. Which are the poles of the closed loop system?

9.5 Is it possible to design an observer with poles in { =5, —6, —7, —8 } for the
system below? Motivate your answer.

01 1 1 1
oo 11 10
T=1o 00 1[*T|=3

000 1 2
y=(1 0 0 0)z



U1 L1 L2 €T3 U2

Figure 9.6a

9.6 We want to control the temperature in a long copper rod by heating or cooling

its endpoints. Principally, this problem is described by a partial differential
equation. To simplify the problem we assume that the temperature profile
in the rod can be approximated by the temperatures x1, 2, and x3 at three
points. The temperatures in the end points are the inputs, u; and us. All
temperatures are relative to the temperature of the surroundings.

We get the following ordinary differential equations:

1 = a(u; —x1) + a(ze — x1)
o = w1 — z2) + a(zs — z2)

3 = a(ze — x3) + a(ug — 3)

where « is a constant that depends on the coefficient of thermal conductivity
and the specific heat of the rod. For simplicity, let & = 1. Consider the problem
of controlling the temperature in x1, 3, and x3 with u; only, assuming us = 0.

a) Assume that we want to have an arbitrary temperature profile, that is,
arbitrary values of x1, xo, and x3. Is this possible? Why/why not?

b) Assume that all the temperatures 1, 2o and x3 are measurable. Find a
state feedback that brings any initial state to zero as e3¢,

¢) Assume that only one of the temperatures x1, z2, or x3 is measurable, and
that we still want a controller which damps a disturbance as e 3! by using
an observer. The sensor can be placed so that any of the three values x1,
To, or r3 is measured. Which choices of measure point make it possible
to control the system as desired?” Give a motivation. Choose one of the
points making the wanted design possible and design a controller, that
is, an observer and a state feedback, giving the desired error damping.
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9.7 Consider the lunar excursion module in Problem [0.2] Suppose that there are

no rate-gyro measurements available but that the sensors measuring ms and
mg are still working.

Show how my can be reconstructed from uw and measurements of mso such that
the reconstruction error decreases arbitrarily fast without differentiation of
any of the measured signals.

Propose a filter and describe the resulting controller when the feedback consists
of both measured and reconstructed states as in Problem [0.21
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Figure 9.8a

9.8 In Figure a level control system for a tank is shown. The objective is to

keep the level at a desired value. Let u, h, ¢, and v denote small variations
around the desired working point. The inflow, ¢, to the tank is determined by
the valve, u, calculated by the controller. The outflow v is determined by the
pump and deviations from zero is considered as process noise. The valve has
some dynamics, which is modeled with the transfer function

Q) = 12 U(s)

where k1 =1 and T = 0.5. The level is given by
Ah=q—v

where the tank cross-section area is A = 1m?2.

a) Let g and h be state variables and give a corresponding state space model
of the process. Compute a state feedback v = —l;¢ — loh + r, such that
the closed loop system poles both are at —2.

b) How large is the steady-state level error for a constant disturbance v = 0.1
if r =07

)

Consider the closed loop system in a) and compute a feedforward control
law from v to r such that the influence from v is completely eliminated.
Exclude all terms in the control law in which v is differentiated to make
it implementable. How does this modified feedforward control law work?
Steady-state level error?

Suppose that kp differs slightly from 1, but that the same control law
as in c) is used (the control law derived under the assumption k; = 1).
What happens with the steady-state level error?

Propose a modified control law such that the stationary level error is zero
for constant disturbances regardless of small deviations from the nominal
value of k.
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; |
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Figure 9.9a
9.9 We want to control the system
. 0 1 0
= (o o)+ ()
Yy = (1 O) T

with a state feedback. (This can be interpreted as a moving vehicle in one
dimension, where z; is the position, x5 is the velocity, and the acceleration is
the control signal.) We introduce the control law

u(t) = —=L&(t) + r(t)
where & is constructed by an observer
=A%+ Bu+ K(y — C#)

We choose the vectors K and L as L = (1 2) and K* = (4 4). These
choices put the eigenvalues of A— BL in —1 and the eigenvalues of A— KC' in
—2. A block diagram of the closed loop system is shown in Figure Due
to a time delay, the real input is given by the equation

u(t)=—-LE(t—-T)+r

What is the largest possible time delay T without the closed loop system
getting unstable?

9.10 One wants to construct an observer for the system

ﬂ@:(j jﬁx@+(3u@

y(t) = (2 1)=(t)
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a) Suppose a = 1. Construct an observer with the poles in { =5, —10}. For
which values of a is this possible?

b) Suppose that the measured signal y is given by
y(t) = (2 1)z(t) + ()

Here v(t) is the measurement noise. Compute the transfer function from
v to &1(¢), that is, the first element in the state vector for the observer
error Z(t) = x(t) — &(¢).

1.2
1

0.8
0.6 /

. 04 y
0.2 A

0 /
~0.2
-04-\ /
~0.6

——
N

t [s]
Figure 9.11a

9.11 Consider the system
1-s/a
(1+s/B)*

Systems of this kind, that is, with a zero in the RHP have the property that
the step response goes in the “wrong direction” initially, see Figure

G(s) = a>0,6>0

a) Show that the derivative of the step response at t = 0, that is, g(0),
decreases as the zero of the system approaches the origin.

b) Is it possible to use state feedback to eliminate the problem that the step
response goes in the wrong direction initially? Justify your answer.

9.12 Theoretically one can place the poles of a controllable system arbitrar-
ily. Which practical difficulties limit the performance that one can actually
achieve?



9.13 Consider the system

(3 5)er ()

j’; =
y=(1 1=z
a) Determine L of a state feedback u = r — Lz, that places the poles at

—2+i

b) The state feedback of a) is used. It is observed that the output y(t) =0
for all ¢ is obtained for a reference signal of the form r(t) = e**. For what
value(s) of a does this occur?

9.14 Consider the model of a DC-motor

where

R TP

a) Generate a state space representation using MATLAB. Which physical
signals are represented by the states?

b) Suppose that the system is going to be controlled using state feedback
u(t) = —=La(t) + lor(t)

Compute the gain vector L and simulate the closed loop system for the
following two choices of closed loop poles:

¢ Real poles at { —2.2, —2.1}

© Poles at —1 +1i
Also compute [y such that the closed loop system gets static gain one. In
particular look at the properties of the step response and the magnitude

of the control signal in the two cases. Which pole locations give the best
trade off between response speed and control signal magnitude?

¢) Now let L be computed using linear quadratic optimization (LQ) in order
to minimize the cost function

/Ooo ()" Qx(t) + u(t)* dt
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for the three choices of weight matrices given below. Compute the closed
loop poles and the step responses of the closed loop system for the three
cases. Describe how the properties of the step responses in the different

0 Q= (8 ‘1))
@ Q= (8 100>
i) @= (8 0(.)1)

Start from case (ii) and increase the weight on the control signal gradually
until the cost function becomes

/ o Qu(t) + 10u(t)? dt
0

Compare the result with the result obtained for case (i).

Start from case (i) and introduce a weight on the velocity ¢(t). Increase
the weight gradually and study how the poles and the step response of
the closed loop system change.



9.15

9.16

The ingestion and metabolism of a drug in a human body can be described by
the following equations:
dg(t)
—— = —kiq(t t
a 14(t) + u(t)
dm(t
% = kiq(t) — kam(t)

where the input signal u(t) is the ingestion rate of the drug, the output y(t)
is the mass m(t) of the drug in the blood, and ¢(t) is the mass of the drug
in the gastrointestinal tract. The constants k; and ko are metabolism rates,
satisfying k1 > ko > 0. k5 characterizes the excretory process of the individual.
In this example, k1 = 0.05 and k3 = 0.02.

a) Is the system controllable?

b) Design a state feedback that places the closed loop poles in —0.1.
q(t) (the mass of the drug in the gastrointestinal tract) cannot be measured,
so to be able to use the state feedback in b) we need an observer.

¢) How should the poles of the observer be selected?

d) Design an observer with poles in —0.2.

A system is described by the state space equations

z(t) = Azx(t) + Bu(t — 7)

9.1
y(t) = kCx(t) + e(t) (0-1)
where it is known that

7<0.3
09<k<11

It is also known that e is a sinusoidal disturbance with angular frequency
10 rad/s. The control design is based on the simplified model

y(t) = Cx(t (9.2)

~—

The specifications for the control system are given by:
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Figure 9.16a. Bode plot of the loop gain.

1. The bandwidth of the closed loop system must fulfill wg > 5 rad/s.

2. The closed loop system shall be stable despite the disturbance and the
uncertainties in the parameters 7 and k.

3. The static gain of the closed loop system shall be 1 despite the disturbance
and the uncertainties in the parameters 7 and k.

4. The closed loop system shall handle the measurement disturbance suffi-
ciently well.

The regulator design is carried out using state space methods. The poles of the
closed loop system, that is, eigenvalues of A— BL, are placed in { —4, —24+2i }
and the poles of the observer, that is, the eigenvalues of A — KC|, are placed
in {17, —0.2 £ 10i }.

The figures below show different aspects of the control system. It is important
to note that the diagrams are obtained using the model and the designed
regulator. Determine if the requirements 1—4 are fulfilled when controlling the

system given by (9.1]).
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Figure 9.16b. Nyquist curve of the loop gain.
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Figure 9.16¢c. Gain curve of the sensitivity function.
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Figure 9.16d. Gain curve of the complementary sensitivity function.
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Figure 9.16e. Gain curve of the transfer function of the closed loop system.

9.17 In purification processes sometimes bacteria are used to consume the unwanted

substance (possibly converting it to something more useful). Let £ denote the
amount of bacteria, 7 the amount of substance to be removed, and ¢ the input
flow (that contains the substance to be removed). The system is then described
by a set of nonlinear differential equations

§= fil&n,q)
77 = f2(£a777Q)

When considering small deviations from an equilibrium the equations can be
approximated by a linear system. In this example, the numeric values of the
linearization are given by

(4 ) )

where z1, x2, and u denote the deviations from the equilibrium values of ¢, 7,
and g respectively.

a) Assume that both z1 and x5 can be measured. Determine a state feedback
placing the closed loop poles in { -2, —4 }.

b) Assume that only x5 is measured. Is it possible to calculate the amount
of bacteria x; from this measurement if u is known? If the answer is yes:
Why is it important that u is known?

c) Assume that the value of w is unknown, but let it be known that it
is constant. Is it then possible to calculate the amount of bacteria, z;
from a measurement of x3? In case it is, show some way of doing the
computation.



9.18 A certain species of bacteria grows by consuming glucose, whose inflow is

controlled. The following model is used
m=(f-1m f=-m+q

where m is the amount of bacteria, f the amount of glucose and ¢ the inflow of
glucose. One wants the system to operate in the neighborhood of the operating
point m =1, f =1, g = 1. Using the notation z; = m—1, x5 = f—1, u = ¢—1,
an approximate model (z1z2 neglected) is

.i‘1:$2
To=—T1+u

Sometimes there are disturbances that are modeled as a constant, unknown
external signal w:

i1i$2+’w

To=—T1+u
One wants to drive x; to a reference value r using u as control variable.

a) x7 is measured. What performance (stationary error, speed of response)
can be obtained using a P controller?

b) o is measured. What performance (stationary error, speed of response)
can be obtained by using a control law where u depends linearly on r and
xo if w =07 What happens when w # 07

¢) 2 is measured. Determine a controller that does not differentiate o,
gives an asymptotically stable closed loop system and makes x; converge
to r asymptotically for an arbitrary constant but unknown w.

9.19 2010-12-14 Upg. 2

Ett system har modellerats genom att dela upp det i flera delsystem enligt
Figur

a) Finn 6verforingsfunktionerna:
1. Gx(s), sd att X(s) = Gx(s)U(s).
2. G(s), sd att Y(s) = G(s)U(s).
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b)

\ 4
9)
N

(s)_ G X(s) Ga >

Go

N

Figure 9.19a

Genom att sdtta samman 6verforingsfunktionerna i Figur har man

funnit att 549
Y(s) =G(s)U(s) dar G(s) = .

52

Skriv systemet G(s) pa en valfri tillstdndsform

y(t) = Cx(t).

Det vill sdga, bestdm matriserna A, B, och C. Ar din valda tillstandsform
en minimal realisation? (Motivera ditt svar.)

Bestam en tillstandsaterkoppling for systemet ovan,
u(t) = —Lax(t) + lor(t),

s& att slutna systemets poler hamnar i {—1,—1} och si att det slutna
systemets statiska forstarkning fran r(¢) till y(¢) blir 1.

(Om du inte kunde svara pa uppgift b), gor sjilv ett lampligt val av A
och B.)

Designa en observerare for systemet ovan sa att observerarens egenviarden
hamnar i {—10, —10}.

(Om du inte kunde svara pad uppgift b), gor sjilv ett lampligt val av A
och C.)



11 Implementation

11.1 If you “translate” the compensator

s+b
s+ bN

Us) = KN(=L2 ) B(s)

with Tustin’s formula you get a controller of the form
u(t) = fru(t = T) + are(t) + age(t = T)
What are the values of aj, as, and B9, if T = 0.1, N = 10, b = 0.1, and

K =27

11.2 Consider the system
y(t) = u(t)

Suppose it is controlled with a computer, so that the control signal is constant
over the sampling interval, that is,

u(t) =ug, kKT <t<(k+1)T

a) Introduce the notation y, = y(kT) and derive a relation between yj1,
Yk, and uy.

b) Suppose we use the proportional feedback
up = —Kyg

and that y(0) = yo. What are the values of K, for which the closed loop
system is stable?
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Figure 11.3a

11.3 Consider the system in Figure which illustrates sampling with prefilter-
ing. Suppose we are sampling with the sampling period T" and that u = ug+uq,
where ug is an “interesting” low frequency signal in the frequency interval
0 < w < /T and that u; is a sinusoidal control signal

. ™ ™
u1(t) = sinwat, T <wy < T

Since the sampling causes aliasing, the output will be
y(t) =yo +
where yq is interesting and y; is a disturbance signal
y1(KT) = Asin(wi kT + ), w <7/T

a) What are A, wy and ¢?

b) It is clear from a) that the choice of T affects the amplitude of the dis-
turbance signal y;. What is the smallest amplitude you can get if you do
not want to damp any frequencies in uy more than /2 times?

11.4 2011-01-13 Upg. 1d
Genom att approximera en Pl-regulator med Euler bakiat med samplingsinter-
vall T'= 1 fas den tidsdiskreta regulatorn

u(t) =u(t —1) +2e(t) —e(t—1)

Ange parametrarna K och T; for motsvarande tidskontinuerliga PI-regulator

u(t) = K {e(t) TR /Ot e(T)dT}

I



Z c) Antag att spanningen i Uppgift b) ges av uy, = —K,yi. For vilka K,
ar det slutna systemet asymptotiskt stabilt? (Om du inte kunde 16sa
Uppgift b) kan du anta yj1 = sy, + sug.)

Figure 11.5a

11.5 2011-06-10 Upg. 5
En kula ar placerad pa en bom enligt Figur En elektrisk motor kan
rotera bommen och ddrmed fa kulan i rullning. Kulans rorelse modelleras av
differentialekvationen

J .
<m + 2) % = —mgsin 6 + mz02,
r

dér m ar kulans massa, J dess troghetsmoment och r dess radie. Kulans
position pa bommen ges av z och bommens vinkel av 0, enligt Figur

Bommens vinkelhastighet dr proportionell mot den elektriska spénningen u
o6ver motorn, d.v.s. § = Ku, dar K &r en konstant.

a) i) Skriv ovanstdende modell pa tillstdndsform med tillstanden 6, z och
%, och

ii) linjarisera sedan modellen kring en jamviktspunkt daru = 0 = 2 = 0,

och skriv ekvationerna pa formen # = Az + Bu. Du kan anta att

m 5

m+J/r2 T
b) Vi fokuserar nu pa reglering av enbart bommens vinkel 8. Lat darfor
y = 6 vara utsignal. Om spdnningen 6ver motorn kommer fran en

D/A-omvandlare sa ar den konstant 6ver varje samplingsintervall och ges
av u(t) = uyg, for kKT <t < (k+ 1)T dér heltalet k anger sampelnummer
och T samplingsintervallet.

Lat yr, = y(kT) vara den samplade utsignalen, och uttryck yp4q i vari-
ablerna y; and wuyg.
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2

2.1
2.2

2.3

2.4

2.9

2.11

2.12

2.13

Dynamic Systems

Start with J = —ff + M and try to write M as a function of  and u using
Kirchhoff’s voltage law.

What is the relationship between the response of the system and the pole
locations?

Separate the pure delay and the dynamic response. Use the final value theorem
to find the steady state gain and calculate the time constant by estimating the
time to reach 63% of the final value (neglecting the time delay).

Identify the coefficients wy and ¢ in the system description

W@
$2 + 2Cwos + w3

G(s) =

See Glad&Ljung.

a) Consider what you can control, what is uncontrollable and what is desired.

b) Consider the relationship between the signals.

a) Use mass balance and assume that the densities are equal.
b) Consider the change in mass and change in component A.
c) Assume that all the other independent variables (g1, g2, ca,2) are con-

stant.

a) Use mass and component balance.




3 Feedback Systems

3.1 a)

=3

o A
— = =

32 a)
b)

Consider the three blocks; tank, valve, and PID. What is the input and
the output from each block? Connect the blocks and consider v as a
disturbance.

For the tank model use the fact fchat the flow into the tank is x — v and
the amount of liquid changes as h - A.

Consider the final value and the time constant.

Put F(s) = K and express the closed loop poles as a function of K.

Use the final value theorem.

Put F(s) = % in the expression for the error, and use the final value
theorem.

Use the expression for the poles from Problem (3.1

Put F(s) = Kp + Kps in the expression for the closed loop system from
Problem [3.1] The relative damping is defined in Glad&Ljung.

3.3 Start with deriving an expression for the transfer function from the disturbance
fe to the error e.

2)
b)

3.5 a)

b)

Use F(s) = K and the final value theorem.

Use F(s) = K1 + K2/s and the final value theorem.

The characteristic equation is
s(s+1)(s+3)+K(s+2)=0
which gives P(s) = s(s+ 1)(s+2) and Q(s) = s + 2.
Characteristic equation:
s(s2+25+2)+ K =0

P(s) = s(s?+25+2), Q(s) = 1.

c)

Characteristic equation:
s(s =1)(s+6)+ K(s+1)=0
P(s) =s(s—1)(s+6), Q(s) =s+ 1.

3.6 Derive the general closed loop transfer function by first deriving the transfer
function for the inner loop.

3.7

3.8

a)

a)

Let a = 0. The characteristic equation is then
s(s+2)+4K =0

Compute the poles explicitly as a function of K.
The characteristic equation is

s(s+2)+4K(1+s)=0
Characteristic equation:

s(s+2)+4K(1+5/3)=0

Characteristic equation:

$2+2s4+4+4as=0

Derive the transfer function from wpes to w.
The characteristic equation is
(s+10)(s+4)(s—3)+10K(s+1)=0
Derive the closed loop transfer function by first deriving the transfer func-
tion for the inner loop. The characteristic function is
s((s+1)(s+10)+ K1)+ K2 =0

We get two principally different root loci when there are complex starting
points, and when all starting points are equal. Treat the cases separately.



3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

a)

b)

0

The characteristic equation is
(s+1)(s—1)(s+5)+K=0
Characteristic equation:
(s+1)(s—1)(s+5)+K(1+0.55)=0
Characteristic equation:
s34+ 25 +a(s*+2s+6)=0

First check for which a the system is stable and the steady state require-
ment is fulfilled. Then use that “sinusoid in” gives “sinusoid out” after
transients.

Check the root locus to find which K-values gives a stable/unstable system,
more/less oscillative system.

Investigate the starting points and end points of the root locus.
Find the open loop transfer function and use the Nyquist criterion.

Since G(s) has no poles in the RHP, the closed loop system is stable if the
Nyquist path of KG, does not encircle —1. Note that the K will only modify
the distance to the origin, not the shape of the curve.

Study the amplitude and phase of G(iw).

Draw the complete Nyquist path and use the Nyquist criterion. (Note
that Go(—iw) is the mirror image of G, (iw), mirrored in the real axis.)

Use the final value theorem, and that G,(0) is known from the Nyquist
path.

Apply the Nyquist criterion to %G(s)

The system oscillates when the open-loop gain is equal to —1 (check
Ke “TG(iw)).

3.18

3.19

Try to find the w that gives arg F'(iw)G(iw) = —180°.

The Nyquist curve for small w determines if the system may have an integrator
or not. Also check if the system is unstable for some K (from the Nyquist
diagram).

3.24 Check the steady state error, the relative damping, etc.

3.25

3.30

3.31

3.32

3.33

a)

b)

To compute the closed loop transfer function combine

and
U(s) = F(s)(Oret (s) — 0(s))

The control error can be computed using

1

B = 1 Feans)

oref (5)

To find the steady-state error, use the final value theorem.

See b).

Consider what you can control, what is uncontrollable and what is desired.

Use mass and energy balance for both the tank and the heating system.

Compute the poles of the system.

Note that the system has negative sign in the numerator.

Check the pole for the closed loop system.

Use Newton’s force equation F' = ma to derive the transfer function for the
astronaut.



4 Frequency Description

4.1 Determine the angular frequency w of the signals using the figure. Use the
relationship saying that when u(t) = Asinwt the output becomes

y(t) = |G(iw)| Asin(wt + arg G(iw))

to determine |G(iw)| and arg G(iw).
4.2 a) For K = 0.5 the open loop system is given by

B B 0.05(1 + 5/0.02)
Gols) = F()Gr()6s(s) = T3 7601y + 5/0.05) 1 + 5/0.1)

Use the rules in Glad&Ljung to make the Bode plot.

b) What can be said about the phase and gain margin when the output of
the closed loop system oscillates with constant amplitude?

¢) When the reference signal is A sin ot the output signal becomes
y(t) = |Ge(iw)| Asin(at + arg G (iw))

The Bode plot of the open loop system can be used to compute G (iw).

4.3 a) Check the behavior of G(iw) when w — 0 and w — oo respectively. See
also if the absolute value and the argument decrease monotoneoulsy or
not.

b) Translate the behavior of the amplitude and phase curves to a pole-zero
diagram.

4.4 Check the final values of y(t) against the static gain G(0). Check also the
overshoots of y(t) against the height of the resonance peaks in G(iw). Check
the frequency of the oscillation in y(t) against the resonance frequency in

G(iw).

4.5 Use MATLAB, in particular the command bode.

4.6 Recall that for stable, linear systems “a sinusoid in gives a sinusoid out” after
initial transients.

4.7 Recall that for stable, linear systems “a sinusoid in gives a sinusoid out” after
initial transients.

4.11 a) Use the rules in Glad&Ljung to make the Bode plot.

b) What can be said of the phase and gain margin when the output of the
closed loop system oscillates with constant amplitude?

4.12 a) What is the stability criterion in the Bode plot?

b) What is the current phase margin? Is a lead really necessary?



5 Compensation

5.1 Try a lead-lag design.

5.2 a) Glad&Ljung gives a good description of how Bode plots can be drawn by
hand.

b) A proportional controller does not affect the phase curve.

¢) Try lead compensator.

5.3 a) Draw asymptotic Bode plot (see 5.1) by hand or use MATLAB.
b) Start with calculating the controller and then use the final value theorem.

¢) Try a lag compensator.

5.4 Start with drawing a Bode plot for the open loop transfer function. The final
value theorem is a good tool in this exercise.

5.5 Check for signs of dominating poles, pure integrations, resonance frequencies...

5.6 Draw asymptotic Bode plot using the guidelines in Glad&Ljung. See the
discussion on lead-lag compensators in Glad&Ljung.

5.7 Use values of |G(iw)| and arg G(iw) to plot the Nyquist curve G(s).

5.8 The time delay alters the phase curve but not the amplitude curve. Use the
Nyquist stability criterion.

5.9 Check steady state level and rise time. Modify Figure using Ga(s) and

adapt a lead-lag compensator. You can use two lead compensators to acchieve
a big phase advance.

5.10 Start by adjusting Figure [5.10D] to obtain the Bode plot of G.

5.11 b) It is possible to derive limits on K using either the Bode plot or the
Nyquist curve.

c¢) Use the final value theorem.

d) A time delay is described by the transfer function e =57

5.12 Think of all possible phase curves, for example originating from time delays,
and think about the corresponding Nyquist curves or Bode plots.

5.13 See “Introduktion till CSTB” and previous exercises in this section.

5.14 Try a lead-lag compensator.

5.17 Study Go(iw) and Ge(iw) at low frequencies and around the cross-over fre-
quency of Go(iw).

5.20 c¢) What open-loop property has to be doubled to make the closed-loop system
twice as fast?

d) Look at the phase margin.

e) What open-loop property do we have to maintain constant to have the
closed-loop system approximately with the same overshoot?

h) Can it disturb our previously designed phase margin?



6 Sensitivity and Robustness

6.1 The sensitivity function is the transfer function from v to y.

6.2 Derive the relative model error

GO(s) = G(s)

Cals) =77

Make a simple plot of G, (iw) using the information in the problem formulation.
Compare with the inverse of the relative model error.

6.3 Convert the condition that the amplitude of y is larger than the amplitude of
v to the condition
114+ Go(iw)| <1

What does this inequality say about the distance between the Nyquist curve
and the origin?

6.4 Compute the transfer function of the closed loop system. Apply the robustness
criterion using the given upper bound of the relative model error.

6.5 a) Derive the relative model order

and plot 1/ |Ga(iw)].

b) Determine the level that |G, (iw)| cannot exceed.

6.6 a) Use the robustness criterion and check the condition for G/(iw) when w —
0.

b) The characteristic equation of the closed loop system is

s%(2 4 25a0) + 55(2 + 25a) +25 =0

6.7 a) The characteristic equation becomes

s+ 1) +a(s®>+s+4)=0

6.8

6.9

6.10

6.11

6.12

6.13

b) Derive the relative model error

GO(s) — G(s)

Gals) =71

Check where the absolute value of the inverse of the relative model error
intersects |G.(iw)| given in the figure. It is sufficient to check the low
frequency asymptote.

¢) What can be said about the necessity and sufficiency of the stability con-
ditions in a) and b)?

Check where the absolute value of the relative model error intersects |G (iw)|
given in the figure.

Derive the closed loop equation relating y(¢), r(t), v(t), and n(¢) using Y (s) =
V(s) + Go(s)(R(s) — N(s) — Y(s)). Then use the fact that the sensitivity
function S(s) and the complementary sensitivity function 7'(s) are related as
S(s) 4+ T(s) =1. (Here T(s) coincides with the closed loop system.)

a) The relative model error is given by

b) Use MATLAB and results from previous exercises.

Recall that for stable, linear systems “a sinusoid in gives a sinusoid out” after
initial transients.

Create the loop gain transfer function and use its Bode plot to check stability.

The sensitivity function is the transfer function from v to y.



7 Special Controller Structures

7.1 a) Derive the transfer function from w to 6, which then implies the open
loop transfer function

0.9
(15 5/0033) (115033155 &

O(s) =

Draw the Bode plot using the rules from Glad&Ljung.

b) Draw the Bode plot using the rules from Glad&Ljung.

7.2 a) Use the relationship

1) = 4 (1557500 - V)

b) Derive the transfer function from V to H when both feedforward and
feedback are used.

7.3 a) Use Y(s) = (Gu(s)Ft(s) + Gy(s)) V(s).

b) Recall that for stable, linear systems “a sinusoid in gives a sinusoid out”
after initial transients.




8 State Space Description

8.1 Define x; = 0, 25 = 0, and utilize the differential equation for the motor.

8.2 For the nonlinear equation @5 = fo(x1,x2,u), the linearized equation is given

by
&2 = fo(x1,0, 22,0, %o)
dfo
—=(x1.0,T2.0,%0) (1 — T
+8x1( 1,0, 22,0, Uo) - (21 1,0)

+ 67:;(151707962,0,“0) (2 — 562,0)
0 f2
+ %(901,0,302,0,1&0) (u — o)

8.3 Define z; = y, 3 = 6, and z3 = 2. Use block diagram algebra to find
expressions for s- X;(s), then use the inverse Laplace transform.

8.4 Use canonical forms.

8.5 Take the Laplace transform of g(¢).

8.6 G(s)=C(sl — A)~'B.

8.7 w(t) = eAt=t0)p(ty) + ftto eAt=") By (1) dr

8.8 a) Insert the control signals and take Laplace transforms. Use the final value
theorem.

b) Examine the difference uq(t) — ua(t) for arbitrarily small constant e.
8.9 Check controllability.

8.10 The controllable subspace is spanned by the linearly independent columns of
S. The unobservable subspace is spanned by the null space of O.

8.11 b) Compare what happens to the states as ¢t — oo, to the transfer function
poles.

c¢) Check if det S and det O are nonzero.

8.12 The system is minimal, compute the transfer function.

8.13 a) For small deviations around 0, sin(¢) = ¢, cos(¢) ~ 1. Take Z as input.
b) detS=21(1-1)2

8.15 a) Combine mass balance with the given equation for reaction speed.

817 a) Uset=0and u=1.
b) G(s)=C(sI — A)~'B

8.18 a) A stationary point fulfills f(zg,up) =0, y = h(zo,uo).
b) Use



9 State Feedback

9.1 a) The closed loop system & = Ax + Bu, y = Cx, u = —Lx + yer has
characteristic polynomial det(sI — A+ BL) = 0.

b) The observer poles are given by det(sI — A + KC) = 0 and should be
placed to the left of the closed loop poles.

9.2 a) Write the system in state space form by introducing three state variables
corresponding to the outputs of the three left-most integrators in the
figure (2 = output). Design a state feedback controller u = —Lx + yyef
and place the poles in —0.5.

¢) Design an observer with poles to the left of the closed loop poles.

9.3 a) The constant /y can be found by using that 6 =& =0 at steady state.

b) Introduce the integrated control error as an auxillary state.

9.4 Decompose the system into two subsystems, one controlled by u; and one by
ug, and check the controllability.

9.5 Is the system observable?
9.6 Is the system observable?

9.7 e Is the system controllable?
e Z(t) converges to zero as p(t)e~ " if (A — KC') has a double eigenvalue in
—au.
e Check the observability of the system.

9.9 Study the phase margin of the open loop system.

9.11 Use the initial value theorem.

9.12 Compute the transfer function from u(t) to z(t) = L&(t), that is, the loop
gain, and check the stability margin given a certain time delay T

9.13 e The closed loop poles are given by det(s] — A+ BL) =0

9.17 a) The closed loop system @ = Az + Bu, u = —Lx has the characteristic
polynomial det(sI — A+ BL) = 0.

b) Check oberservability.

c¢) Introduce a new state.



11 Implementation

10
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1 Mathematics

1.1 a) A step has Laplace transform %. 1.6
deciBel (dBgg) | Definition Amplification F
b) A ramp has Laplace transform s%. 20 WlogF=20 = |F=10" =10
— —— — 10-3/20 ~ L
¢) Sj-Q 3 20logF=-3 = | F=10 ~0.708 = -
0 WlogF =0 = |F=10"=1
d) oo 10 20log F =10 = | F =10°° = /10 ~ 3.16
—-10 20logF=—-10 = | F=107%% = %ﬁ ~ 0.316
e) sU(s) —u(0)
f) sU(s). (u(0) =0 is a common assumption in the course.) 1.7 Multiplication of the two matrices gives the unit matrix.
g) s*U(s) — su(0) —u(0)
1.8
h) s2U(s). (u(0) = @(0) = 0 is a common assumption in the course.)
1
i) A time delayed signal has Laplace transform, e 57U (s). M=3 o =]1
—2
1.2 a) limy oo y(t) =5/2 1
A=—-1 va=|0
b) Y(s) = S}_2 U(s) 2 2 ;
1.3 Th  solution is given b 1
. e general solution is given by =4 w=|o0
3 2
y(t) = Cre " + (Cy + Czt)e™" — m(cos(%) + Tsin(2t))
L —t 1,-2t Y
14 a)yt)=5—et+35e7%, t>0 1 1 -1
b) y(t) =1 —0.5e~t +0.5sint — 0.5cost =11 -1 0
1 0 1
1.5 a) V21
1.10 A basis for the null space is for example
b) \1/—056_1%”
0
c) 1++/3i 1
-1
d) =5 1




A basis for the range space is

—= W O N
O = =
=W =N

The rank of the matrix is hence 3.

111 a) f(t)=1—e"% 1.
b) f(t) = —0.5e~¢ + 0.5¢!; oo.
c) f(t)=et-t; 0.

1.12 y® 425+ 25 +y =
Yy ]




2.1

2.3

2.4

Dynamic Systems

a) Differential equation

where

b) Transfer function

¢) Step response

—(L/V)s
G(s) = 1061-|r3s

a) a<1
b) b=2

0+ —-0=Fky-u
T

L_Rfthbe ke
T JR, " JR.
0 k

Gls) = 2L _ Ko

2.5 A-B, B-F, C-A, D-C, E-E, F-D.

2.6

’ System H T \ T \ M \ poles
Ga 33 | 47 | % -1,-1
Gp 1.2 | 13.6 | 52% | —0.2+10.98
Ge 10.6 | 14.6 | 0% —4.8,-0.2
Gp 1.7 | 54 | 16% | —0.5 £i0.87
Gg 08 | 26 | 16% | —14il.73

2.7 a > 0 gives overshoot, a < 0 gives undershoot.

2.8 y(t) = L7HG(s)

® =

)

29 a

—

5

b ~ 26%

22

)
) M~
o) T,
d) T

22

2.10 G1-C, G5-B, G4-A, G5-D

2.11 a) The signals can be classified as

o Disturbances signal: Acid process flow (unknown pH and flow)
¢ Control signal: NaOH solution

¢ Measured and controlled signal: The pH of the outflow

b) A block diagram where the control strategy is based on feedback could
look like Figure

Acid flow

ref NaOH
+@—» F Tank

Figure 2.11a

outflow pH

212 a) ¢* = 1.5m?/min and ¢} = 2.0 kmol/m?3.



b) The model is nonlinear since the model is described by the following non-
linear equations

d(pV) _
dt - P(an qout)
d(Ve
(th) = q1CA,1 T q2cA 2 —qCcA

¢) ko = 2.0 kmol/m?, ky = 0.13 kmol/m?, and 7 = = = 0.67 min.

2.13 a) The model is given by

9t
vi= 1+ (a—1)a;
M,
=Lia+Vinn—-Li -V,
aQ 1+ Vi
dIi
Mi-4 = Liz (i1 —x3) + Vigr i1 — i) + Vi (2 — yi)

b) The linearized model is given by

dCL"A
M} d:f =Li 1zia+Viyiria — Lizia — Viyia

+x; Licia +yi 1 Viei,a — 21 Lin — y; Via
o
Yin = — 5 LA
B Lo

214 A - v, B—14, C— 4 and D — 7is.




3.1

3.2

3.3

3.4

Feedback Systems

() Flo) P auls) P2 aus) .

T_

Figure 3.1a

Transfer function of the tank G(s) = 1. Block diagram see Figure

ky=2T=5

H(s) _ _Gus)Gu(9)F(s) H(s) _ __ _ Gi(s)
Hrai(s) — 14Gu(s)Gu(s)F(s)* V(s) T+ (s)Gn (5 F (5)
K < 0.05
1

2K
0

—0.1 £ +/0.391
Kp > 1.7

—a/K
0

For small values of Kp the step response is slow, well damped and the
steady state error is large. For increasing Kp the step response becomes
faster but more oscillatory, while the error is reduced. For large Kp the
amplitude of the oscillations increases, that is, the closed loop system
becomes unstable.

The integrator in the regulator eliminates the steady state error. A too
small value of K7 gives a large settling time while a too large value gives
an oscillatory (finally unstable) closed loop system.

c¢) Using the (approximate) derivative of the error in the regulator increases
the damping of the closed loop system. Increasing Kp too much, how-
ever, gives that an oscillation with higher frequency appears in the step
response and finally (approximately when Kp > 65) the closed loop sys-
tem becomes unstable.

Imag Axs
9

Figure 3.5a

3.5 Root loci are shown in Figure

b) Intersection with the imaginary axis for K = 4, w = ++/2.

¢) Intersection with the imaginary axis for K = 7.5, w = £+/1.5.

Conclusions about the step response of the corresponding systems:



Imag Axis

Imag Axis

a) Asymptotically stable all K > 0.

Small K: No oscillations, larger K gives faster system.
Larger K: Oscillations. Larger K gives more oscillations.

b) Asymptotically stable for 0 < K < 4. Oscillating all K > 0.

Small K: larger K gives faster system.

Larger K: larger K gives more oscillating system. Unstable for large K
(> 4).

¢) Asymptotically stable for K > 7.5. Unstable for K < 7.5. Stable and

oscillating for K > 7.5. Larger K gives faster system, until the real pole
becomes dominating, then larger K gives a slower system.

Imag Axis

Imag Axis

5 -4 -3 -2 -1 o 1 2 =) 25 2 15 - 05 [ 05 1

Figure 3.6a

3.6 General characteristic equation:
s(s+2)+4K(1+as)=0

The root loci are shown in Figure

a) Asymptotically stable for all K > 0, oscillatory for large K.
b) Asymptotically stable for all K > 0, not oscillatory for any K.

c) Asymptotically stable for all K > 0, no oscillations for small and large
K, faster for large K.

d) Asymptotically stable for all & > 0. Oscillatory for small a. Larger «
gives more damped system.

With the tachometer feedback we can make the system both fast and well
damped. The tachometer feedback is equivalent to the D-part in a PID con-
troller.

3.7 a) The system is unstable so w will grow to infinity.

b) The root locus is shown in Figure The system is asymptotically
stable for K > 12.

Imag Axs

Figure 3.7a

¢) No. When K = 12, s = 0 is one pole but the other two are complex.



3.8 a) Starting points: s = —5.5 £ 1/5.5%2 — 10 — K. The starting points are all
real for Ky < 20.25, while we have complex starting points for K7 > 20.25.
The two principal root loci are shown in Figure The system is
asymptotically stable for 0 < K5 < 11K + 110.

9
imag A

aaaaaaaaaaaaaa

Figure 3.8a

b) A larger K gives stability for larger K.

3.9 Root loci in Figure

a) The system is unstable for all K.
b) Asymptotically stable for K > 5.
3.10 a) The root locus is shown in Figure The system is asymptotically
stable for a > 1.

b) The smallest amplitude is 0.1.

Figure 3.9a

k% 25 2 s 1 05 o 05 1 15 2
Real Axis

Figure 3.10a

3.12 The poles of the system all tends to points in the LHP or to —oo for large K.

3.13 The system is stable for K/A < .

3.14 a) The closed loop system is stable in (i), (ii), and (iv).



b) Stable when: (i) K < 2.5, (ii) K > 0, (iii) K < 1/2, and (iv) K < 1/4 or
K >1/2.

3.15 The Nyquist curves are shown in Figure
a) b)

4 Im A Im

Figure 3.15a

316 a) K <2/3

¢) K <2/3

3.17 7 =1.69
T =3 —arctanT = 0.53
Ty =7 — 2arctan 5 = 1.74

3.18 K <2

3.19 Root locus 1.

I = by=b =0
D = b =02=0

321 a)

15 il

Imag Axis
)
I

Real Axis

Figure 3.21a

The root locus with respect to Kp is shown in Figure When Kp
increases the two complex poles move towards the imaginary axis, that is,
the closed loop system becomes more oscillatory. Finally, for Kp =~ 6.2,
the poles cross the imaginary axis and the closed loop system becomes
unstable. This result is in accordance with Problem 3.4l For small values
of Kp the properties of the step response are mainly determined by the
real pole close to the origin. For larger values the complex poles start
to dominate and when the complex poles cross the imaginary axis the
amplitude of the oscillations in the step response increases and the system
becomes unstable.

Note, however, that the root locus alone does not give sufficient informa-
tion to tell how the steady state error changes with the parameter.

The root locus with respect to K is shown in Figure For small
K7 the response of the closed loop system is dominated by the poles on
the real axis close to the origin. When K7 increases the poles become
complex and move towards the imaginary axis, that is, the closed loop
system becomes more oscillatory. Finally, for K1 =~ 1.5, the poles cross
the imaginary axis, that is, the closed loop system becomes unstable. As
can be seen in Problem [3.4] a small value of K, that is, a pole close to
the origin, gives a slow step response. When K7 increases the dominating



3.22

a)

05 q

Imag Axis
o
7
i

b 4

15 L L L L I L L L L

Real Axis

Figure 3.21b

poles become complex and the step response becomes oscillatory.

A large settling time will typically follow if the system is slow or has poor
damping. Here, the large settling time for small K7 is due to the system
being slow. That the steady state error is eliminated cannot easily be
seen in the root locus.

The root locus with respect to Kp is shown in Figure When Kp
increases the complex poles closest to the origin move towards the origin
and and at the same time the damping of the poles is increased. When
Kp increases even more the second pair of complex poles moves towards
the imaginary axis giving a high frequency oscillation which finally gives
instability.

The Nyquist curve is “far away” from the point —1 for all frequencies
and the step response of the closed loop system is well damped. As Kp
increases the Nyquist curve grows in size and for Kp = 6.2 the Nyquist
curve reaches —1 and thus is the limit of stability.

For low frequencies the Nyquist curve is now far away from the origin
since the integrating part makes |G(iw)| large for low frequencies. The
Nyquist curve now passes closer to —1 which results in a more oscillatory
closed loop system. The system becomes unstable around Ky = 1.44.

3.23 a)

Imag Axis
o
T

2k

-3

-2 -1.5 -1 -0.5 0 0.5 1 15 2
Real Axis

Figure 3.21c

The Nyquist curve is now further away from —1 which corresponds to
an improved damping of the closed loop system. The system becomes
unstable around Kp = 66.

we = 0.38, wp, = 1.1, o = 94° and A,, = 3.1.

The closed loop system is now much more oscillatory due to the reduced
phase and gain margins.

Kp =3.1.

3.24 A-iii, B-i, C—v, D—i.

3.25 a)

Kp small = Both poles on the real axis, but one pole very close to the
origin = Slow but not oscillatory system.

Kp = 1/(47%ko) = Both poles in —1/(27), that is, faster than in (1) but
still no oscillations.

Kp large = Complex poles with large imaginary part relative to the real
part, that is, oscillatory system.



b) If the reference is a step,

et =0
If the reference is a ramp,
i A
tligloe(t) o kaoT

326 Ge = 192
327 a) G, =FG
b) G. = 15?(;
c) Gny = —If—gG
d) Gre = 175G
328 a) 34

b) F(s) =1 (for example)

¢) Poles in —2, —2. No zeros.

3.29 A-4, B-2, C-3, D-1.

Ft,in7 Tt7in

Tref Fc,iny Tc,in Tt
O 2

Figure 3.30a

3.30 a) See the block diagram in Figure There, the signals are classified

as:

10

¢ Input Fein and T¢in
o Output Tt

¢ Disturbance F} ;, and T i

b) The model is given by

dT; U
WE = Fy(Tem —Tt) + Tzinpt (T. = Tt)
dT. U
V;:i:FcTc.in_Tc_iTc T
= Fllun—T) — (T~ T)

_ 32
c) Teals) = (5+3.675)(s+0.185) Fen(s)

d,e) The root locus for a P controller is shown in Figure [3.30b

A Im
N
1 —
K = 0.0952
X>— ‘*/ — X
-3 -2 -1 Re
-1
Y

Figure 3.30b

3.31 a) The system has a pole in —3.
b) The system is stable for K < —3.



332 K>p

3.33 K2 <1and K; = 200/K3.

3.34

11



4 Frequency Description

4.2 a) See figure in the solution. w. = 0.025, ¢, = 31°, 4,,, = 2.5.
b) The period time will be 108 seconds, K = 1.25.
¢) B=28° g =0.02rad/s and ¢ = —42°.

4.3 a) Figure[1.3a]in Solutions.
b) Figure in Solutions.

44 A-B,B-C, C-D, D-A.

45 a)
’ System H G(0) \ wB \ Wy \ M, ‘
Ga 1 0.64
Ggp 1 1.5 1 2.5
Go 1 0.21
Gp 1 1.27 | 0.7 | 1.15
Gg 1 254 | 1.4 | 1.15

b) The bandwidth of a system is (approximately) inversely proportional to
the rise time. The damping is inversely proportional to the height of the
resonance peak. A large peak implies low damping and large overshoot.

4.6 y(t) = %5 sin(2t —1/2 — 4 — 5 — arctan 2).

47 a) 0.45sin(2t — 1.1)
b) Unstable system.

c¢) 0.11sin(2t —2.4)

12

d) 0.45sin(2t — 2.1)

4.8 a,b)
w |G (iw)] arg G(iw)
1 1 = 0 dByg —02rad = -—-11°
5|08 = —19dBy | —0.9rad = —52°
10|05 = —6dBy | —-1l.6rad = —92°
20102 = —14dBy | —2.2rad = -126°

c) See Figure in Solutions.
49 G1-B, Go-D, G3-A, G4—C, G5-E.

4.10 Bode gain—step response pairs: A-D, B-C, C-A, D-B.

Bode Diagram

Magnitude (abs)

Phase (deg)
|
@
&

i
107 107 10° 10' 10°
Frequency (rad/sec)

Figure 4.11a

4.11 a) The bode digram of the system is shown in Figure

b) K = =

o191 — 014




412 a) K <5.04

— 100541
b) F(s) = 158100k

413 a)B-a-1-ITandA-b-2-1L
by B-b-1-Tand A-a—-2-1IL

13



5 Compensation

1 — _
— 074 >
30525 0.5= === I
T 03- X Z
0.2 : ‘ ¥y
1 1
0.1 S i \‘ X
0° ‘ [ |
= ¢ : : $
3 -90° R M EH
T -130° —fF=f=A=——F—t=1—=H Im
% -180° | | ~5¢ vz
i | | %
—2700 ‘ T ‘ T ‘ T
0.03  0.05 0.07 0.1 0.2 3 0.5
we = 0.079 0.145 wp, =0.28 w [rad/s]
Figure 5.2a

5.1 For example, the following controller fulfills the requirements:

6.255+1 (31.25s+1)
F(s) = 0.96
() 1.565 + 1 (31.255 + 0.1)

5.2 a) See Figure[5.2a]

b) Largest crossover frequency: 0.14 rad/s.

¢) One controller that fulfills the requirements is the lead compensator (with

gain adjustment)
s+ 0.106

F(s)=19.721 220
(8) = 197 =067

5.3 a) See Figure[5.3a

b) Smallest value of ramp error 0.067 and crossover frequency 150 rad/s.

- m b
2 E g
1= A 1 %l
= 0.5 : S~ S —
202 ! B <\ S
T 014 ;
0.05 =1 — -\
0.02 i i N
0.01 — T : I T <
90" —
E) o | &
O -180° t— -ve
go i i i o
< | | |
. 1|l
-270 T T T
10 20 50 100 200 500 1le+ 03
wea = 204 wp = 150 w [rad/s]
wep = 15.2
Figure 5.3a

¢) One controller that fulfills the constraints is

5.4 Omne controller which fulfills the requirements is

s+6.7 s+1.33

F(s)=1.12-4- :
(5) s+27 s+0.15

55 A-E-C, B-C-E, C-A-B, D-D-D, E-B-A.

5.6 One controller which satisfies the demands is

s+ 8.0 s+ 1.8

F(s)=1.2-5 :
() s+5-80 s+1.8/84



5.7 The system is stable when 0 < K < 0.2 or 1.67 < K < 5.

58 a) T <0.698s
b) 0.1s<T < 0.279s

G (iw)|

07— e~ ; ,,,,,, R S
? \-\42;777(;111 I e T

= [ 1T ~ < - NN
S -180° i > T - 1.3
= A x’\;;* I i I
fffffff B i m |- H\‘K; °

-270°
1072 107! 10°
we =0.078  we,qa =0.40 w [rad/s]
Figure 5.9a

59 a) ka =0.25 and a = 0.5. The Bode plot is given in Figure

b) One controller that does the job is

B (s+02) \°
F(s) =10.6- <4m)

5.10 The following compensator fulfills the requirements:

s+0.53 )2 s +0.105

F(s)=44- (4
() (3-1-0.53-4 s +0.105/195

5.11 a) See Figure

15

Figure 5.11a

b) Asymptotically stable for 0 < K < 10.
c) limy ,0e(t) =5

d) T<04

5.12 a) Impossible to determine.

b) Tt is stable.

5.13 a) we=brad/s, w, =9.5rad/s, A, = 3.5 and ¢, = 27°.

b)-d) See solution.

5.14 The following controller will do:

. 1 1
_39798+ 50s +

F =
(s) 55+ 1 50s

515 a) eg =0, e; = %, provided K < 4000. Larger K results in an unstable
system.



b) The following controller will do:

0.0277s+1 0.1s+1

F(s) =121 :
0.0036s + 1 0.1s+ 0.18

5.16 a) The maximum cross-over frequency is w, = 0.27 rad/s and it is acheived
for K = 2.86.

b) The steady state error is approximately 1.75.
¢)

(44s+1)  (37s+1)
(0.7-4.4s + 1) (37s + 0.1)

F(s) =2.39

5.17 The combinations are: A - III, B- I, C - II, and D - IV.

5.18 a) One possible solution is p = 1, n = 2, and m = 0.
b)
(0.92s +1) (3.3s+1)
(0.92-0.13s + 1) (3.35 4+ 0.036) "

F(s)=3.6
519 A — i, B— i, C —iand D — iv

520 a) Go(s) = @0
b) we

) K =3.33
d)

we = Irad/s, @, = 50°; yes, because ¢, > 0°.

The phase margin has decreased, which in the time domain means that
the overshoot increased for the closed-loop system.

e) $=0.18, 7p =1.18s, K =14

f) e(t = 00) = 0.17; to decrease the error, F'(0) has to increase.

g) v=0, F(0) = o0

h) v=0.048, 7; = 5s. If 77 is too small, the phase margin decreases more; if

77 is too large, the steady state value is only reached in practice at very
small frequencies.

16



6 Sensitivity and Robustness

6.1 The gain of the sensitivity is:

V2

SWI= e

and the requirement on K becomes K > 2.
6.2 The maximum bandwidth is wg = 1.
6.3 See the solution, Figure
6.4 Yes.

6.5 a) See the solution, Figure
b)

’ F(iw)G (iw)
2

1+ F(iw)G(iw)

6.6 a) No, stability cannot be guaranteed when G(s) = 1.

b) a > —2/25. This is not contradictory since the robustness criterion is a
sufficient but not necessary condition.

6.7 a) Asymptotically stable for @ > 3. See the solution, Figure
b) a >4

¢) The robustness criterion gives a sufficient but not necessary condition.

6.80<vy< g

17

6.9 y(t) = J=sin(t — Z) — sin(¢)

b) Stability cannot be guaranteed for F'(s) = 1, while it can be guaranteed
for the regulator from Problem

6.11 The amplitude of the steady state error will be 0.2.

6.12 The controller also stabilizes the system for the stirring speed 400 r/min.

6.13 K > v396 =~ 19.9



7.1

7.2

7.3

7.4

Special Controller Structures

a) See Figure in the solution. w,. and ¢y, are undefined and A, = 43.5.

The stability requirement gives K7 = 21.75 which implies

lim e(t) = 0.0487-a

t—o0

where a is the size of the step.

b) See Figure in the solution. w. and ¢y, are undefined, and A, = 16.

The requirement gives K; = 8 which implies

lim e(t) =0.111-a

t—o0
a) Fi(s) =1, and h(t) = — (1 — e 2").

b) Zero steady state error.

P __@__3(54—3)
PTG 2(s+4)

b) The amplitude of the control signal is 3.

¢) lim o0 y(t) = %(214::1/(28

_ 4(s+1)
a) Fi(s) = — 3510679

b) lim;— . y(t) = —0.012

¢) limy oo y(t) = — 3555

d) y(t) doesn’t have a final value.

18



8 State Space Description

8.1

8.2

8.3

8.4

T1A = T2A
. 2
ToA = WHT1A + UA

YA = T1A

.’El(t) = KQ.’EQ(t) + M](t)
Ig(t) = 7!171(0 + Ig(t)
.i‘g(t) = —Kgl‘g(t) + Kli(t)

@1(t) = za(t)
t) = a3(t)
£) = —621() — 1laa(t) — Gas() + 6u(t)
)

1(t) = —z1(t) + x3(t) + 4u(t)

Eo(t) = —3z1(t) + 2u(t)

&3(t) = =bw1(t) + z2(t) + u(t)
y(t) = 1 (t)

¢)
i1 (t) = —221 () — u(t)
i‘g(t) = —3],‘2(t) + 3u(t)
y(t) = 1 (t) + 22(t)
8.5
Lﬂl(t) = 7‘%1(75) + QU(t)
da(t) = —daa(t) + 3u(t)
y(t) = z1(t) + 22(t)
8.6 G(5) = (roitersy
8.7

to+T
z(to+T) = e Ta(to) + (/ eAlto+T=s) ds)) Buy
to

8.8 a) The state space description of the closed loop system

b,c) The state space description of the closed loop system with noise

-3 1 1 -1
x(t) = (—1 0 0) x(t) + (—1) n(t)
-1 0 O 0

h(t)=(1 0 0)=z(t)

19



8.9 Yes, since the system is controllable.

8.10

8.11

a) Dimensions: 2 and 1. Subspaces: {(1 -1 2)T, (—2 3 —6)T} and
{0 -1 2"}

b) Dimensions: 2 and 1. Subspaces: {(0 4 -2)", (0 -8 8)T} and

{001}

Controllable, not observable.

Unobservable growing state = simulation collapses.

8.12 Poles: 1 +1iv/2. Zeros: —1.

8.13

8.14

a)

Tl = T2
1 U
X9 = —T1 — —
(0% (0%
.’b3:$4

b) detS = 25 (1 — )2 Thus, the system is controllable except for the case
a = 1, that is, when the two pendulums have the same lengths.

a)

20

8.15

8.16

b) u = 75331 + X2 + 3.2r

¢) V(s) = 2222 R(s)

a) The model is given by

d

V% = —Vkic} + qeam — qea
deg _ Vhic}
dt 3

b) The linearized model is given by
i caA _ 7(173‘];102\/
dt \cB,A kici
CA,A
=(0 1 '
y=0 1 (22

B P G I
k21 _k12 K

y:(O 1);10

CAA &
%) (@) +(8)

with

Tr = (.’131 $2)T

b) The poles are s =0 and s = — (k12 + k21).

¢) The system is observable when koy # 0. If ko = 0 we are not able to
observe state x; by measuring .

d) The nonlinear state space is given by

R Vinax®2
= —]{ _
1 2t T+
. Vmax-r2
=———+k + K
2 Ky + 29 2101 u



Vmaz T " """/ -0/ 00000—

Vinaer _|

|
I
I
I
i
i
i
|
I
K T2

Figure 8.16a

e) The relation is shown in Figure

f) Linearization gives

—koq Zx[r%ax
A=Jplwo,uo) =1, = W |

4K

#=(%)= (&)

With o = * — g and ua = u — ug, the linear approximation of the
system around xg, ug is given by

and

ian = Aza + Bua.

g)
—ko1 k12 0 0
= kot —(ki2a+ks2) ko |+ |K|u
Yy = (O 1 0) T

h) The determinant of O can be expanded along the first row to obtain
detO = k21k23(k23 — le).

21

I.e. the system is observable unless ko1 = 0 or kog = 0 or kog = ko1. The
first two cases mean that the corresponding state, x1 and x3 respectively,
do not influence x5 and would then not be visible in the output. In the
third case, ko3 = ko1, 1 and x3 do indeed influence x5 but they do it in
the exact same way and we can therefore not distinguish between them.

8.17 a) The stationary point is

T
2o = [ Filkiatks) Ky
0 ka1ko ka ) *

k1k21

G(s) = .
(s) (s + ko1)(s + k12 + ko) — k12kas

lim y(t) = i

t—o0 o k2 ’

Since the output is defined as y = x, it approaches the stationary point
1’072.

8.18 b)



9 State Feedback

9.1 a) State feedback. Poles in { =3, —5} gives the state feedback
u = —6x1 — 1423 + Yret
Poles in { —10, —15} gives the state feedback

u = —23x1 — 14925 + Yret

b) Observer poles in —20 gives the observer gain

38
K= (—399)

9.2 a)
0 Ky O
t=10 0 1]z+1{| 0 Ju
0O 0 O K
b) u= —781(}}(23:1—%332—%363

c¢) Observer gain K™= (6 12/K, 8/K3)

- __2 p_ 1 _2_
93 a) u= om0 — W+ et
- __2 p_ 1 _2_ _C24
b) u= ozl — sowt abier — 283

9.4 State feedback gain L = (6 72). Observer gain K™ = (16 9).

9.5 The system is observable and the poles of the observer may be placed arbi-
trarily.

9.6 a) Yes, since the system is controllable.

b) Closed loop poles in —3 gives

u = —31’1 — 5%2 - 4(E3 + Yref

22

¢) The system is observable with the sensor at z; or x3. The sensor at x;

and observer poles in —4 give K™ = (6 14 14).

9.7 Xa(s) = LU (s) + L2 X (s)

z(t):/o h(s)ds=2=nh

9.9 T < aetan2ee — (655

9.10 a) K™= (—13 38)
b) The transfer function from v to #; is

13s — 12

— I-A+KO) 'K =—-—"_"~
Cils +KC) 52 4+ 155 + 50

where C] = (1 O).

9.11 a) The initial value theorem gives

. p?
0 = ——

9(0) = ——

and hence §(0) decreases as « decreases.

b) No, since the zero is not affected by the feedback.



9.12 A very fast closed loop system:

9.14

9.15

implies that the poles are far into the LHP which implies a need for
generating large input signals.

easily becomes unstable in case of model uncertainties.
becomes sensitive to measurement noise.

has a sensitivity function with a large peak.

L=(1 0)

r(t) = roe” o

29 =y (motor angle) and x; = ¢ (angular velocity).

The pole locations give similar rise and settling times. With complex

poles the maximum value of the input is lower.
Larger weight on the motor angle gives faster response.
Increasing weight on the input makes the system slower.

Increasing weight on the velocity makes the system slower.

Yes the system is controllable.
Poles in —0.1 gives the state feedback

It is desirable that the estimation error converges to zero faster than the
dynamics of the system. Thus, we should place the eigenvalues of the
observer to the left of the poles of the closed loop system. To avoid large
amplification of the measurement noise the poles of the observer should
not be placed too far into the left hand plane.

Observer poles in —0.1 gives the observer gain

0.45
K= (033)
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9.16 Are the specifications 1-4 fulfilled?

9.17

9.18

M

=

=

a)
b)

c)

The bandwidth requirement is not fulfilled.
The system is stable despite the model errors.
The gain is different from 1 when x # 1

Both measurement and process noise are amplified for some frequency.

u =4x1 + 9

Yes! It is essential that the input w is known since u is required in the
observer design to get an asymptotically vanishing state estimation error.

Yes, by introducing a third state z3 = w. This new system is observable
hence a observer can be designed to estimate w.
The poles are pure complex and thus the system doesn’t have a well

defined stationary error or speed of response.

A linear combination of r and x5 is given by
u = lo’l" — ZQIQ
with this controller the poles can be placed with [, as

—l, 24
.
ST 1

and by setting Iy = 1 the stationary error will be zero when w = 0. If
w # 0 and [y = 1 then there will be stationary error of size low.

Designing a observer with the following observer gains k; = —11, ko = 6,
and k3 = —8. Let the control law be u = lgr — lx@s — I325. With I3 = I
and [y = 1 there will be no error. Place the poles to the closed loop with
ls.



11 Implementation
11.1 p; = 0.905, @1 = 19.14, and g = —18.95.

11.2  a) ygy1 —ye = Tug

b) 0<K <2
11.3 a)
1
A=
1 + ((.UQTl)Q
_ 2

w1 = T w2

@ =7+ arctan w1
b) Ty =T/w gives A = L

1+ (woT/m)2 "
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1 Engelsk-svensk

actuator

amplitude
attenuation
bandwidth

bond graph

closed loop system
control law
controllability
controller
convolution
correlation analysis
credibility
crossover frequency
damping

damping ratio
describing function

discrete event systems
distributed parameter models

disturbance rejection
eigenvalue

feedback

feedforward

flow

gain

gain crossover frequency

gain margin
impulse response
initial value

loop gain
lumped models
magnitude
observability
observer
open-loop system

stélldon

amplitud

dampning

bandbredd

bindningsgraf

slutet system

styrlag

styrbarhet

regulator

faltning

korrelationsanalys
trovardighet

skérfrekvens

dampning

relativ ddmpning
beskrivande funktion
héndelseorienterade system
fordelade parametriska modeller
storningsundertryckning
egenvarde

aterkoppling

framkoppling

flode

forstéarkning
(amplitud)skarfrekvens
amplitudmarginal
impulssvar
begynnelsevirde
kretsforstarkning, 6ppna systemet
aggregerade modeller
amplitud

observerbarhet

observator

oppet system, kretsforstédrkning

overfit

overshoot
parsimonious

peak frequency
peak resonance
phase crossover frequency
phase lag

phase lead

phase margin
ramp function
rank

reset windup
resonant frequency
rise time

root locus (pl. loci)
sensitivity function
sensor

settling time
sinusoidal

stability robustness
state

state feedback
static gain

steady state

step function

step repsonse
subspace

time delay

transfer function
unit step

unstable

validity

whitening filter

Overanpassning
Overslang

sparsam
resonansfrekvens
resonanstopp
fasskérfrekvens
fasretarderande
fasavancerande
fasmarginal

ramp

rang
integratoruppvridning
resonansfrekvens
stigtid

rotort
kénslighetsfunktion
givare
insvangningstid, 16sningstid
sinusformad
stabilitetsrobusthet
tillstand
tillstandsaterkoppling
statisk férstarkning
stationart tillstand
steg

stegsvar

underrum
tidsfordréjning
overforingsfunktion
enhetsteg

instabil

giltighet
blekningsfilter



2 Svensk-engelsk

(amplitud)skarfrekvens
aggregerade modeller
amplitud

amplitud
amplitudmarginal
bandbredd
begynnelsevirde
beskrivande funktion
bindningsgraf
blekningsfilter
ddmpning

egenvéirde

enhetsteg

faltning
fasavancerande
fasmarginal
fasretarderande
fasskérfrekvens

flode

framkoppling

fordelade parametriska modeller
forstarkning

giltighet

givare
héndelseorienterade system
impulssvar

instabil
insviangningstid, 16sningstid
integratoruppvridning
korrelationsanalys
kretsforstarkning
kénslighetsfunktion

gain crossover frequency
lumped models
amplitude

magnitude

gain margin

bandwidth

initial value

describing function
bond graph

whitening filter
damping, attenuation
eigenvalue

unit step

convolution

phase lead

phase margin

phase lag

phase crossover frequency
flow

feedforward

distributed parameter models
gain

validity

sensor

discrete event systems
impulse response
unstable

settling time

reset windup

correlation analysis

loop gain, open loop system
sensitivity function

observator
observerbarhet
ramp

rang

regulator

relativ ddmpning
resonansfrekvens
resonansfrekvens
resonanstopp
rotort

sinusformad

slutet system
skarfrekvens
sparsam
stabilitetsrobusthet
stationdrt tillstand
statisk forstarkning
steg

stegsvar

stigtid

styrbarhet

styrlag

stalldon
storningsundertryckning
tidsférdrojning
tillstand
tillstandsaterkoppling
trovardighet
underrum
aterkoppling

Oppet system
Overanpassning
overforingsfunktion
overslang

observer
observability

ramp function
rank

controller

damping ratio
peak frequency
resonant frequency
peak resonance
root locus (pl. loci)
sinusoidal

closed loop system
gain crossover frequency
parsimonious
stability robustness
steady state

static gain

step function

step repsonse

rise time
controllability
control law
actuator
disturbance rejection
time delay

state

state feedback
credibility
subspace

feedback

open-loop system, loop gain
overfit

transfer function
overshoot
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1 Inledning

Denna skrift dr en kort inledning till hur MATLAB och Control System Toolbox
(CST) anvénds i kurserna i Reglerteknik.

2 System

I Control System Toolbox finns datastrukturer for att hantera s k LTI-objects, dvs
linjara tidsinvarianta system, pa ett bekvamt sédtt. Vi kommer inledningsvis framst
att arbeta med system pa Gverforingsfunktionsform, men senare dven med system
pa tillstandsform. Ett objekt som representerar ett system pa overforingsfunktions-
form skapas med funktionen tf. Detta kan goras pa tva olika sétt, och det forsta
alternativet visas i exemplet nedan.

Betrakta overforingsfunktionen

4

Gls) = s(s?+2s+4)

Mata in systemet och ge objek- >G=tf(4, [12401])
tet namnet G. Argumenten till

funktionen tf utgors av radvek- Transfer function:
torer innehallande téljarens re- 4

spektive ndmnarens koefficien- =~ -————=——————————-
ter. s 3 +2s82+4s

Med det andra alternativet kan man mata in 6verforingsfunktionen pa symbolisk
form genom att forst skapa ett objekt bestdende av symbolen s. Dérefter kan
man t ex addera och multiplicera med denna symbol pad samma siatt som gors med
Laplace-variabeln s vid handrakning.

Skapa ett objekt bestaende av
symbolen s. Bilda 6verférings-
funktionen genom att anvinda
vanliga rdkneoperationer.

>> s = tf( ’s’ );
> G=4/ (s *x (872+ 2%s +4 ) )

Transfer function:

s 3+ 2s72+4 s

En finess med 6verforingsfunktioner representerade som LTI-objekt &r att man kan
multiplicera och addera overféringsfunktioner pa ett rattframt satt.

Skapa en ny oOverforingsfunk-
tion G2 genom att seriekoppla
G(s) och overfoéringsfunktionen

1
s+ 1

> G62=G6*x1/ (s +1)

Transfer function:

s + 3s"3+6s2+4s

3 Poler och nollstallen

Poler och nollstéllen till 6verforingsfunktioner berdknas med funktionerna pole
respektive tzero. Poler och nollstdllen kan &ven ritas med funktionen pzmap.

Berékna polerna till G(s). Sys-
temet har en reell pol i origo
och tva komplexa poler.

Berdakna nollstdllena till G(s).
Eftersom téljaren i 6verforings-
funktionen &r konstant saknar
systemet nollstéallen.

>> pole( G )
ans =
0

-1.0000 + 1.7321i
-1.0000 - 1.7321i

>> tzero( G )
ans =

Empty matrix: O-by-1



Rita in systemets poler och >> pzmap( G )
nollstillen i1 det komplexa >> axis([ -2 0 -221)
talplanet. Poler markeras med

kryss och nollstéllen, i de fall . | Folrzeromep
de férekommer, markeras med «
ringar. 150

Imaginary Axis
o
=) o -
T T T

|

o

5
T

1k

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6
Real Axis

4 Aterkoppling

I kursen behandlas aterkopplade reglersystem enligt figur

: |

R ~(3)—{ Fls) v G@)—»C)AHX

Figure 1. Reglersystem

Med systembeskrivningen

och aterkopplingen

ges det aterkopplade systemet av

dar
__F(s)G(s)
Gols) = 1+ F(s)G(s)
och
S(s) 1

T 1+ F(s)G(s)

Overféringsfunktionerna for det dterkopplade systemet kan berdknas med funktio-
nen feedback.

Generera overforingsfunk- > F =+t£f( 0.7 )

tionen fér en proportionell

regulator med forstarkning Transfer function:

K, =0.71. 0.7

Berdkna overforingsfunktionen >> Gc = feedback( F * G, 1)

for det aterkopplade systemet.
Transfer function:
2.8

sT3+2s"2+4s + 2.8
Berdkna  kénslighetsfunktio- >S=1/(C1+F=x*G)
nen.

Transfer function:
sT3+2s2+4s

sT3+2s"2+4s + 2.8

I exemplet ovan hade vi kunnat berdkna Gc pa motsvarande sédtt som S berdknades,
dvs Ge=F*G/ (1+F*G). Med denna metod far dock téljaren och ndmnaren i Gc ett
antal gemensamma faktorer som kan férkortas bort. Genom att anvinda funktio-
nen feedback undviks detta. De gemensamma faktorerna i det forsta alternativet
kan elimineras genom att anvinda funktionen minreal (Gc) Testa sjilv och jamfor.



5 Nyquistdiagram

Nyquistkurvor for en eller flera 6verforingsfunktioner ritas med funktionen
nyquist. Eftersom funktionen nyquist graderar axlarna automatiskt kan dia-
grammet ibland bli svarlast. Lésbarheten kan forbattras genom att man sjilv
véljer axlarnas gradering med funktionen axis. Man kan fa ut mycket information
ur figuren genom att anvinda vénster respektive hoger musknapp. Med vénster
musknapp kan man t ex markera en punkt pa kurvan och fa ut motsvarande virde
pé w samt nyquistkurvans viarde i denna frekvens. Med héger musknapp far man
en meny med olika operationer som kan goras med figuren.

Rita nyquistkurvan for det >> nyquist( F * G )

Oppna systemet di systemet >> axis([ -11-111)

G(s) styrs med en proportionell

aterkoppling med forstarkning | Nauit Dizgram
Kp = 0.7. Justera axlarnas

gradering och markera punk-
ten dar nyquistkurvan passerar osf
negativa delen av reella axeln.

081

041

System: untitied1

Real: -0.349

Imag: -0.000867
Frequency (rad/sec): -2

0.2

Imaginary Axis
o
f

Real Axis

6 Bodediagram

Bodediagram for en eller flera overféringsfunktioner ritas med funktionen bode.
Aven i detta fall kan man lisa av punkter i figuren genom att markera med vénster

musknapp. Med hoger knapp far man en meny dar man t ex kan vélja att markera
frekvenserna dar stabilitetsmarginalerna ldses av.

Berdkna frekvensfunktionen for >> bode( G )

systemet G och rita upp den

i ett bodediagram.  Notera " Bodo Diagram
att amplitudkurvan graderas

i decibel. Anviand hoger 0
musknapp och ldgg in rutnéit i
figuren samt markera var fas-
och amplitudskarfrekvenserna
ligger.

Magnitude (dB)
|
a
3

-100

-135

-180

Phase (deg)

—-225

-270
107"

Frequency (rad/sec)

For att bestdmma skérfrekvenser samt fas- och amplitudmarginal kan man &ven
anvinda funktionen margin, vilken férutom att rita upp amplitud- och faskurvorna
dven skriver ut dessa virden. Gm och Pm betecknar amplitud- respektive fasmarginal.




Berdkna frekvensfunktionen for >> margin( G ) Berékna frekvensfunktionerna >> bode( G, G2 )
systemet G och rita upp den i for systemen G och G2.
1 Bode Diagram Bode Diagram
ett bOdedla'gra’m' Gm =6.02 dB (at 2 rad/sec), Pm =50.3 deg (at 1.13 rad/sec) 100 T T T
50 T T
50 q
0 8
g s 0
° E
é -50 5 50
g =
=
~100 -100
-160
-160 1 | -
-1351 g < -180F g
= 3
5 ]
=180 B @
§ T _o70 .
-225 q
_asol ‘ ‘ ‘
—270- . . = 107 107" 10° 10' 10°
107" 10° 10' 10° Frequency (rad/sec)

Frequency (rad/sec)

Skalan pa frekvensaxeln kan viljas genom att som sista argument i funktionsan-

For att t ex kunna gora jamforelser mellan tva frekvensfunktioner kan dessa ritas . ) .
ropet ange storsta och minsta frekvensviardet mellan krullparenteser .

i samma diagram.




Berakna frekvensfunktionen for >> bode( G, { 0.1, 10 } )
systemet G fran 0.1 till 10rad/s
och rita upp den i ett bodedia-
gram.

Bode Diagram

Magnitude (dB)

—270L L J

107 10° 10
Frequency (rad/sec)

7 Simulering

7.1 Stegsvar

Den vanligaste typen av simulering &r att berdkna ett systems stegsvar. Detta
kan utféras med funktionen step, med vilken man bdde simulerar systemet och
ritar dess stegsvar. I likhet med tidigare kan man liasa av enskilda vérden i figuren
med vénster musknapp och fa en meny med olika val med héger knapp. Genom
att t ex véllja Peak Response fran Characteristics markeras tidpunkt och virde
for overslingen. Placera markoren 6ver punkten i diagrammet visas tillhérande
numeriska vérden.

Antag att systemet G styrs med proportionell aterkoppling med forstarkning K, =
0.7.

Berdkna och rita upp det >> step( Gc )

aterkopplade systemets
stegsvar. Markera stegsvarets » Step Response
overslang. '

Amplitude
1)
©

o
o

0.4

0.2

Time (sec)

I normalfallet viljs simuleringstiden automatiskt, men genom att ange ett extra
argument kan man vilja simuleringstiden sjélv.




Berakna det aterkopplade sys- >> step( Gc, 15 )

temets stegsvar under femton

sekunder och rita upp resul- Step Response
tatet. 14

Amplitude

Time (sec.)

7.2 Allman insignal

For att simulera linjdra system med allménna insignaler kan man anvinda funk-
tionen 1sim(G,u,t). Indata till denna funktion &r ett (eller flera) system G, en
insignalvektor u och en tidsvektor t.

Antag exempelvis att vi vill studera reglerfelet for det aterkopplade systemet ovan
da referenssignalen dr en ramp. Vi vet att sambandet mellan referenssignal och
reglerfel ges av kénslighetsfunktionen

dar

Skapa en tidsvektor mellan 0 >t =(C0:0.1:10).7%;
och 10 med steget 0.1.

Simulera det aterkopplade sys- >> 1sim( S, 0.5%t, t )

temet da referenssignalen &r en

ramp med lutning 0.5. Re- o8 near Simufaton Resuts
glerfelet gar i detta fall mot

0.71. Funktionen ritar &ven
insignalen, men den kan vilja
bort pa menyn som nas via
hoéger musknapp.

Amplitude
o o o o o o
N w IS @ > S
T T T T T T
I I I I I I

o
s
T
L

o

Time (sec)

For att skapa sinus- och fyrkantsignaler kan funktionen gensig anvindas.

8 Rotort

For att avgora hur rétterna till ekvationen
P(s)+ KQ(s) =0

ror sig i komplexa talplanet d& K gar fran noll och mot odndligheten kan man
rita ekvationens rotort med funktionen rlocus. Indata till funktionen &r en 6ver-
foringsfunktion med polynomet Q(s) som téljare och polynomet P(s) som ndmnare.
Med hoger musknapp kan man markera relevanta punkter i figuren, sasom t ex da
rotorten passerar imaginiraxeln.




Rita upp rotorten for det >> rlocus( G )
aterkopplade systemets karak-

teristiska funktion da systemet . Roottocts ‘ ‘

G styrs med en proportionell System: G
aterkoppling. Markera dar 3t Pele: 506739 + 2011
indraxeln.

Imaginary Axis
)
i

1 4

2 4

-5 -4 -3 -2 -1 0 1 2
Real Axis

For att t ex kontrollera for vilken férstarkning polerna har viss ddmpning kan man
med hoger musknapp lagga in ett nét vilket markerar polplaceringar med samma
avstand till origo respektive samma ddmpning.

9 SISO Design Tool

Ett ytterligare anvindbart verktyg dr SISO Design Tool, vilket ar ett anvindar-
granssnitt med vilket man enkelt kan studera ett system ur olika aspekter sdsom
stegsvar, bodediagram, poler och nollstéllen, etc. Verktyget SISO Design Tool star-
tas genom att skriva sisotool. Automatiskt kommer de skapade LTT-objekten att
finnas tillgéngliga for analys. I figuren nedan visas ett exempel pé vilka figurer
som kan visas samtidigt. Testa dig fram!

Root Locus Editor (C)

Open-Loop Bode Editor (C)

T 50

-100

G.M.:6.02dB

Freq: 2 rad/sec
Stable loop

3+

-180f— = — = =

P.M.: 50.3 deg
Freq: 1.13 rad/sec

-2

Real Axis

0 2 107 10°

Figure 1. SISO Design Tool.

10 10

Frequency (rad/sec)



10 TillstAndsbeskrivning

I Control System Toolbox finns &ven en datastruktur for att hantera system pa
tillstandsform
#(t) = Az(t) + Bu(t)

y(t) = Cu(t)
For att skapa ett system pa denna form anvinds funktionen ss, med vilken man

kan skapa ett system pa tillstandsform fran boérjan eller konvertera ett system fran
overforingsfunktionsform.

Overfor systemet G till till- >> G =ss(G)

standsform.
a =
x1 x2 x3
x1 -2 -2 0
x2 2 0
x3 0 1 0
b =
ul
x1 2
x2 0
x3 0
c =
x1 x2 x3
yi 0 0 1
d =
ul
yi 0

Continuous-time model.

Matriserna A, B,C och D i tillstandsbeskrivningen ingar nu i datastrukturen G.
For att komma at matriserna kan man referera till dem direkt genom att skriva
G.a, G.b etc.

Berdkna egenvirdena till ma- >> eig( G.a )
trisen A i tillstAndsmodellen
ans =

0
-1.0000 + 1.7321i
-1.0000 - 1.7321i

Denna mojlighet dr anvindbar t ex nér man skall berdkna polplacerande tillstands-
aterkoppling pa formen

u(t) = —Lx(t) + r(t)

vilket kan goras med funktionen place (och i special-fall med acker).

Bestdam en tillstandsaterkop- >> L = place( G.a, G.b,

pling som placerar det aterkop- -2 % (1+ [-0.0000.01017))
plade  systemets poler i

ndrheten av —2. Légger man L =

alla polerna exakt i —2 kan

aterkopplingen inte berédknas 2.0000 1.9999 1.9998
med hjélp av place, sa polerna

sprids ut en aning. For att

fa alla polerna exakt i —2

kan acker anvindas, men

den funktionen har sa daliga

numeriska egenskaper att den

alltid bor undvikas till f6rman

for place.

Det aterkopplade systemet

i(t) = (A — BL)x(t) + Br(t)

y(t) = Ca(t)

kan nu skapas t ex med funktionen ss.




Generera tillstandsbeskrivnin- >> Gc = ss( G.a - G.b *x L, G.b, G.c, 0 );
gen for det aterkopplade sys- >> eig( Gc.a )

temet. Kontrollera att polerna

placerats pa onskat sétt. ans =

-2.0200
-2.0000
-1.9800

Det aterkopplade systemets stegsvar kan nu berdknas och ritas upp med funktionen
step.

Berdkna och rita upp det >> step( Gc )
aterkopplade systemets steg-
svar. Step Response

0.5

0.45r

0.4

0.35¢

0.3r

0.25¢

Amplitude

0.2r

0.15f

0.1r

0.05F

Time (sec.)

Pa detta sétt ser vi endast den utsignal som definieras av vektorn C. Vill vi
studera samtliga tillstand kan detta goras genom att lata C vara en enhetsmatris
med dimension lika med systemets ordningstal.

Skapa det aterkopplade sys- >> Gc = ss( G.a - G.b * L, G.b, eye(3), 0 );

temet pa nytt, men med >> step( Gc )
samtliga tre tillstand som utsig-
naler. Step Response
0.03 T T
= 0.02 b
g 0.01 q
g

Amplitude
To: Out(2)
o
o
S
.

0 L L L L L L
0 1 2 3 4 5 6 7

Time (sec)

For att berdkna linjarkvadratisk tillstandsaterkoppling kan funktionen 1qr anvén-
das.



11 Sammanfattning av komman-

don

11.1 Anvindbara kommandon i Control System

Toolbox

tf

ss

pole
step
tzero
feedback
nyquist
bode
bodemag
sigma
margin
rlocus
1sim
place
1qgr
ctrb
obsv
ltiview
pzmap
minreal
sisotool

System pa overforingsfunktionsform
System pa tillstandsform

Poler

Stegsvar

Nollstéllen

Aterkoppling

Nyquistdiagram

Bodediagram

Bodediagrammets amplitudkurva
Generalisering av bodemag
Bodediagram och stabilitetsmarginaler
Rotort

Simulering med godtycklig insignal
Polplacerande tillstandsaterkoppling
Linjérkvadratisk tillstAndsaterkoppling
Styrbarhetsmatris
Observerbarhetsmatris

Startar LTI Viewer
Pol-nollstéllediagram

Forkortning av gemensamma faktorer
Grafiskt granssnitt

10

11.2 Anvandbara MATLAB-kommandon

abs
eig
conv
det
diag
imag
inv
real
roots
grid
hold
loglog
plot
cd

dir
clear
load
save
who
helpdesk

Absolutbelopp

Egenvérden

Polynommultiplikation

Determinant

Diagonalmatris

Imaginardel

Matrisinvers

Realdel

Rotter till polynom

Nét i figurer

Frysning av figur

Diagram i log-log skala

Diagram i linjar skala

Byte av bibliotek

Listning av bibliotek

Radering av variabler och funktioner i arbetsminnet
Inlésning av variabler fran fil
Lagring av variabler pa fil

Listning av variabler i arbetsminnet
Startar HTML-baserad hjalpfunktion
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