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1.1

1.2

Mathematics

a) A step has Laplace transform %.

b) A ramp has Laplace transform S%.

o
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) s+2

(o]

)
) sU(s) —u(0)
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ls)

) sU(s). (u(0) =0 is a common assumption in the course.)

) s2U(s) — su(0) — u(0)

=]

) s2U(s). (u(0) = u(0) = 0 is a common assumption in the course.)

—

A time delayed signal has Laplace transform, e 57U (s).

a) Insert y(f) = 0 och u(t) = 5 directly into the differential equation =
y(t) = 5/2. Tt is also possible to solve the differential equation and let
t — 00, or to use b) and the final value theorem.

b) Use Laplace transform on the differential equation Y'(s) = S_%U (s). The
denominator coincides with the characteristic polynomial of the differen-
tial equation. Note that we also have assumed y(0) = 0.

1.3 The general solution is given by

14

y(t) = Cre ™" + (Cy + Cst)e™" — %(cos(%) + 7sin(2t))

a)

y(t) = 3 et + 56_%, t>0

b) The Laplace transform of the input

u(t) =1+sint

1.5

a)

yields

1 1
U(s) ==+ ——
(5) 5+52+1

The differential equation

9(t) +y(t) = u(t)

may be represented by the transfer function

Y (s) 1
G = =
(5) U(s) s+1
Hence, the Laplace transform of the system output is given by
1 1 1 1
Y(s) = =- .
(s) s s+1+s+1 s2+1

Y1 (5) YQ(S)
Rewriting the first term using partial fractions leads to
1 1 1 1

Y = - = - —
1(5) s s+1 s s—+1

with inverse transform

y(t)y=1—¢7"
Rewriting the second term using partial fractions leads to
1 1 0.5 0.5s 0.5

Y- = . — _
2(s) s+1 s24+1 s+1 52+1+32+1

with inverse transform
yo(t) = 0.5¢7" — 0.5cost + 0.5sint
Hence, the system output is

y(t) =1—0.5e" +0.5sint — 0.5 cos t

The abolute value is |1 +i| = v/2, and the argument is arctan
45°. Hence, the polar form is



b) The absolute value is and the corresponding eigenvectors (v) are given by the equation (A\[—A)v = 0.

|1 +1i| V2 1
s ey 5o n=s w=
1+ V@ -2
The argument is Ny = 1wy = (1)
a ( LR ) arg (14 1) — arg 5i — arg (1 + v/3i) ’
rg( ————— | =ar i) —arghi —ar i
& \5i(1 + v3i) & & & —1
o o o o )\3 =4 U3 = 0
= arctan 1 — 90° — arctan v/3 = 45° — 90° — 60 9
= —105°
Hence, the polar form is
1.9
@e_i%ﬂ ! 1 -1
10 T=11 -1 0
1 0 1
c) 265 =2cosF +2isinF =1+ /3i
d) 5e™'" = 5cos(—m) + bisin(—7) = -5 1.10 A basis for the null space is for example
0
1.6 The amplification in deciBel is computed as 10log|F|* = 20log |F|, where F 1
is the absolute value of the amplification. The amplification F' = 100 hence -1
corresponds to 201og 100 = 40 dByg. 1
deciBel (dBsgg) | Definition Amplification F A basis for the range space is
20 20logF =20 = |F=10'=10 9 1 9
-3 0lgF=-3 = |F=10%*~0708~ 7 0 1 1
0 20log FF =0 = | F=10"=1 3 1 3
10 20logF =10 = | F=10% =10~3.16 1 0 1
-10 20logF=—-10 = | F=107%% = \/%*o ~ 0.316

1.7 Multiplication of the two matrices gives the unit matrix.

1.8 The eigenvalues (\) of the matrix A are given by the equation det(A —A) = 0,

The rank of the matrix is hence 3.

1.11 a) Writing the function with partial fractions yields




The inverse transform is then computed by use of a Laplace transform which corresponds to the differential equation

table: 5
f)y=1—¢t v + 2+ 20 +y=u

This means that f(¢f) — 1 as t — co. The same result can also be obtained
by use of the final value theorem, that is, by computing lims_,o sF'(s).
b) Writing the function with partial fractions yields

0.5 0.5

F(s)=—
(S) s+1+s—1

The inverse transform is then computed by use of a Laplace transform
table:
f(t) = —0.5e~" + 0.5¢

This means that f(¢) will grow without bound as ¢ — oo. Here, the final
value theorem cannot be used since f(t) lacks a final value.

¢) The inverse transform can be computed by use of the relation
L7HG(s +a)} =e " -g(t)
Here, G(s) = & and a = 1. The inverse transform of G is g(t) = t, so
1
ty=LH{——}=e""t
f(t) = £ ) = ¢

which tends to 0 as ¢ — oo. This result can also be obtained by use of
the final value theorem.

1.12 The relation between inflow and water level is given by the transfer function
Y(s) = —=2(s)
s) = S
s+1
and the relation between control signal and inflow may be written as
1
—U
s2+s+1 (5)

This means that the Laplace transforms of the control signal and water level
are related by

Z(s) =

1 1 1

Yis) = (s+1) (32—|—3—|—1)U(8): s3+2s2+2s+1

U(s)



2 Dynamic Systems

2.1 a) We start from the equations c¢) Suppose that u is a unit step, that is,
Jo=—f0+M (2.1) 0. t<0
M = kyi (2.2) YY1 >0
v = k:vé
that is
Voltage equilibrium gives U(s) = 1
S
Qi
u— Ryi— Lad—z —v=0 (2.4) This gives
where L, = 0. Equation (2.2)) in (2.1) gives 0(s) = G(s)U(s) = ko L (ko kot 1
. . s(s+1/7) s s s+1/7) s
JO+ f0 = kai (2.5)
Inverse Laplace transformation gives
From (2.4) and (2.3) we get
: 0(t) = kot — kor?(1 — ™ ¥/7
i = (u— ke)/R, (t) = kort — ko*(1 —e™"/7)
which in @) gives that is, 6 will grow unlimited when ¢ increases.

JO+ £6 = ko(u — ky0)/R.
2.2 (1) Asymptotically stable system. Monotonic step response, that is, real

that is
s Rof + kaky ks poles: K =0.1.
0+ 0= u
JRa JRa (2) Very oscillative system. Poles close to the imaginary axis: K = 2.5.
Let
1 Raf+ kaky ko — ka (3) Unstable system. Poles in the right half plane: K = 3.
T JRa. " JR,
. . (4) Asymptotically stable system. Oscillative step response, that is, complex
which gives o1 poles in the left half plane: K = 0.5.
0+7'9:k0u (26)
T

b) Laplace transformation of (2.6) gives 2.3 The inverse Laplace transform gives the step response

2 1 — s
(5% + ~-8)0(s) = kU (s) dl(t)p{ 8 1}5(1et/T>

I . 1+sT s
and this gives the transfer function

0(s) ko For the final value, we have

CU(s)  s(s+1/7) di(t) = B, t — oo



2.4

The figure gives 5 = 10. At the time t = T, the system time constant, the
step response has reached 63% of the final value, that is,

d1(T) =0.63-10
The figure gives T' = 3, which gives the total transfer function

10
1+ 3s

G(s)

If we measure the signal ds(¢) we introduce an additional time delay of % time
units. The total transfer function then becomes

10e~v*
G(s) = ——
() 14 3s
Answer: .
10e~v?®
G(s) = —
() 14 3s
Use the system description
2
G(s) = |

s + 2Cwos + wd

In the first figure wg =1 and ¢ = 0.5.

a) For the system
1

G = ——

() s2+as+1

we have wy = 1 and ¢ = 0.5a. The step response is more oscillative than
in the case ¢ = 0.5, that is, ( < 0.5. This gives a < 1.

b) For the system
b2
G(s) = 5—F——
(s) 52 + bs + b2
we have wy = b and ¢ = 0.5. The step response is in this case pure time
scaling compared to the case wg = 1. The figure shows that the step
response is twice as fast as in the case wg = 1. This gives b = wg = 2.

2.5 The pairs of plots that belong to the same system will be written in the form

2.6

pole-zero-letter—step-response-letter.

Pole-zero diagram B has a single pole in the origin which gives a ramp as
step response, that is, B—F. Pole-zero diagram D also has a pole in the origin
which gives an infinitely growing step response, D—C. Pole-zero diagram F
has complex poles which gives an oscillative step response, F-D. Pole-zero
diagram A has a zero in the origin which gives final value zero, A-B. Pole-
zero diagram C cannot be step response E, since two real poles and no zeros
give no overshoot. Hence C-A, and step response E is the only alternative left
for pole-zero diagram E.

Answer: A-B, B-F, C-A, D-C, E-E, F-D.

a) Enter the systems. >> s = tf( ’s’ );
>>GA =1/ (872 + 2%s + 1 );
> GB =1/ (82 + 0.44s + 1 );
> GC =1/ (872 + 5%xs +1);
> G =1/ (s™2+s+1);
>>GE =4/ (872 + 2%xs + 4 );
Compute and plot the step >> step( GA ); grid

response.

Step Response

Amplitude
o
&

Time (sec.)

The systems Gg(s), Geo(s), Gp(s), and Gg(s) can be simulated in a sim-
ilar way. The values of T}, Ts, and M for the different step responses can
be found by a right click in the figure and selecting “Characteristics” and
then selecting the desired property. Use the “Properties...” menu item



(of the right click menu) to change the interval for the settling time. (The
default interval is 2%, while we use 5% in the course.)

Compute the poles. >> pole( GA )
ans =
-1
-1

The other systems are handled in the same way.

The results from a) and b) can be summarized in the following table.

’ System H T \ T \ M \ poles ‘
Ga 3.37 | 4.74 0% -1,-1
G 1.21 | 13.7 | 52.7% | —0.2 £1i0.98
Gc 10.5 | 14.6 0% —4.8,-0.2

Gp 1.65 | 5.29 | 16.3% | —0.5 £1i0.87
Gk 0.824 | 2.64 | 16.3% | —14il1.73

Using this table we can draw the following conclusions. (i): The speed of
the step response (mainly) depends on the distance between the poles and
the origin. Poles further away from the origin give a faster step response
and shorter rise time. (ii): The damping of the system depends on the
relationship between the imaginary part and the real part of the poles.
Poles with large imaginary part relative to the real part give a poorly
damped (oscillatory) step response.

Remark: We see that even though the distance to the origin is nearly the
same in system G o and G the rise time is almost 3 times faster in system
B. Note that speed is not only rise time, also the settling time should be
considered! Look at the following system

wp
G =

() s2 4+ 2Cwps + Wi

The poles of this system are given by s = wo(—¢ *+ iy/1—-¢?) =
wo(—cos ¢ + isin¢) where cos¢ = (. The parameter ¢ is called rela-
tive damping and 0 < ¢ < 1. We see that wq is the distance from the
origin to the poles and in Figure the step responses for different ¢
are shown when wy is constant. We see clearly that the rise time is faster
when ( is small but when ( is small the settling time is big!

1.8

0.8 |

0.6

04 |7

0.2

2.7 Enter the system. Here we
consider the case a = 2, that
is the system has a zero in
—0.5.

8 10 12 14 16 18 20

Figure 2.6a

>> s = tf( ’s’ );
>> Gl =(2xs +1 ) / (872 + 2%s + 1 );



2.8

2.9

Plot the step response. >> step( G1, 10 ); grid

Step Response

Amplitude

0 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Time (sec.)

A zero located close to the origin on the negative real axis causes an overshoot
in the step response. A zero on the positive real axis causes the step response
to initially move in the negative direction. This means that in some cases the
zeros of the system can have significant influence in the system properties.
Systems with zeros in the right half plane normally imply extra difficulties for
the design of control systems.

The Laplace transform of a step is U(s) = % The step response is hence given
by

If G(s) is a rational function the inverse Laplace transform can be computed
by first doing a partial fraction expansion and then using a transform table.
When the system is available one can let the input u(t) be a step and measure
y(t).

a) The steady state value is 1.5.

b) The output signal almost reaches 1.9, which is slightly less than 0.4 over

the final value. The overshoot is hence ?—:g ~ 26%.

c¢) Find the time points where the output is 10% (0.15) and 90% (1.35) of the
steady state value. The rise time is the difference between these values,
here approximately T, ~ 1.5 s.

d) Find the earliest time such that the output then lies within +5% of the
steady state value. Here, the interval is [1.425, 1.575], and the settling
time is T ~ 7.8.

2.10 G1—C: G; is poorly damped, which gives an oscillatory behavior.

2.11

2.12

Gy: Can be excluded since it is the only system having static gain %, and

among the step responses there is always more than one match for each of the
present final values.

G'3—B: This case has the shortest rise time, and some overshoot due to the pair
of complex poles. The static gain is 2.

G4—A: The pole in —2 dominates, which gives slower step response than sys-
tems G3 and G5. The static gain is 1.

G5—D: The dominating pole is in —3, which is slower than for Gs but faster
than for G4. The static gain is 2.

Gg: Can be excluded due to instability.

a) The signals can be classified as

¢ Disturbances signal: Acid process flow (unknown pH and flow)
¢ Control signal: NaOH solution

¢ Measured and controlled signal: The pH of the outflow

b) A block diagram where the control strategy is based on feedback could
look like Figure

a) At steady state the inflow is equal to the outflow (constant volume). From
mass balance

P g = pidi + p3gs



Acid flow

ref NaOH outflow pH

F Tank

Figure 2.11a

Assuming the densities are equal (p = p1 = p2) gives ¢* = ¢ + ¢5 =
1+ 0.5=1.5m?/min. From component balance for component A

A = diCAn Tt d2CA
which gives ¢} = 2.0 kmol/m?>.

The amount of mass in the tank is given by pV (assuming p is constant).
The change in mass is given by the mass coming in subtracted by the
mass going out of the tank

d(pV
V) — g o) (2.)
where g, = ¢1 + g2 and ¢ous = ¢. Assuming that the volume is constant
gives d(gtv) which means

G1+q=q (2.2)

The amount of component A contained in the tank is given by Vea. The
change is then given by

d(VCA)

T + q2ca,2 — gea (2.3)
Constant V and ([2.2)) gives
de
dizAfA =qi(ca,1 —ca) +q2(ca2 —ca) (2.4)

The model (2.1)), (2.3 is nonlinear since it contains products between
variables. Assuming volumes and flows to be constant gives a linear model.

Assume that all the other independent variables (g1, g2, ca 2) are constant.
Take their values from a). Equation (2.4]) then gives

V—=qi (cai(t) —calt)) + ¢ (CZ,Q —ca(t)) = —1.5ca(t) +ca,i(t) + 2

213 a)

The equation can be written

dCA
— =—1. t 2
ar 5CA( )+3

for ¢ > 0. The corresponding Laplace transform equation is
1
s(Lea)(s) — (Lea)(0) = =1.5(Lea)(s) + 3.2;

1 3.2 1 11
L = 24— | =2 3.2 -
(Lea)(s) s+1.5( * s) s+15 TP 15

which transforms back to

or

3.2
ca(t) = 2e 150 4 15 (1—e ')

Rearranging yields

3.2 3.2 3.2 e
Q-4 9_ 2= —1.5t:2_ 2= 1— o=
15 ( 1.5) ¢ ( 1.5) ( «

where the sought constants can be identified: kg = 2.0 kmol/m3, k; =

0.13 kmol/m?, and 7 = = = 0.67 min.

The equilibrium equation is

ax;
= 2.1
YT T (a— Day (2.1)
Mass balance gives
dM;
=L 1+Vigan—-L; =V (2.2)
dt
Component balance gives
—— =M i = Li—1zi—1 + Vigayitr — Liz; — Viys (2.3
a 1 +x 1 1Zi—1 T Vit1Yit1 z yi (2.3)
Combining (2.2))—(2.3]) gives
dz;
M; dﬁ =—x; (Lic1 +Vig1 — Li = Vi) + Lic1izi—1 + Vigryiv:r — Lizs — Viys

=Li—1 (xic1 — @) + Vigr (g1 — i) + Vi (x — yi)
(2.4)



The dynamic model for M;(t) and z;(t) is described by (2.1)), ([2:2)), and
2.

b) The stationary point for (2.2) gives L; ; + V| — Lj —V;* = 0. Introduce
the difference variables

Tin = Ty — X} Tit1,A = Ti41 — fff+1 Yinh = Yi — Y
* * *
Yio1,A =Y%i-1—Yi1 Livia=Lipn—Li, Viaa=Via -V,
Lin =L; — L Via=V; =V

The assumption that the change of mass on the plate is zero gives

dM;a
dt

which means that
Lia+Vipn—Li—V;=0

this will simplify (2.4) to

dxi
Frk Li—vzi—1 + Vitryivr — Lizi — Viyi (2.5)

Linearization of (2.5)) gives

M;

« dx-A «
M; d:f =L yxiia + Viiitr,a — Lizia — Viyia (2.6)
+ai g Licia + Y Viena — 21 Lin — yiVia
Linearization of (2.1) gives
o
Yin = Ql.iA (27)

(1+ (o — D)a?)

7

The linearized model is described by ([2.6)—(2.7).

2.14 B and C are faster than A and D = Higher wg = B and C < 4,4, A and D
> 4it,70. A and C are more oscillatory than B and D = Lower ( = A and C
< 1,50, B and D < 1,7ii.

Answer: A — v, B4, C— 4 och D — .

2.15 Fran blockdiagramet fas Y (s) = Ga(s)[Fa2(s)Y (s) + G1(s)U(s) + F1(s)U(s)],
Y(s) _ Ga(s)(Gals) + Fi(s))
U(s) 1— F5(s)Ga(s)

vilket ger Overforingsfunktionen

2.16 D: En integrator vars stegsvar dr en ramp. Ger 1. B: Nollstdlle i hogra
halvplanet vilket ger ett stegsvar som initialt gar at fel hall. Ger 5. A:
Polerna till A och B &r samma, vilket ger samma relativa ddmpning. Ger 2.
C: Polerna har relativ dimpning ¢ = 0.15 vilket &r mindre &n alla andra. Ger
4. F: Polerna har relativ ddmpning ¢ = 1 och snabbhet wg = 3. Inget annat
system ar sa snabbt. Ger 3. E: Enda systemet kvar. Ger 6.

Svar: A-2, B-5, C-4, D-1, E-6 and F-3



3 Feedback Systems

3.1 a) To begin with, the transfer function for the tank system is derived. The
mass balance equation is, assuming that the bottom area of the tank is
1 m?

h(t) = z(t) — v(t)

that is (note that all initial conditions are zero when deriving transfer

functions)
sH(s) = X(s) = V(s)
Hence
H(s) = Gi(s)(X(s) = V(s))
where .
Gyi(s) = B

The block diagram becomes like in Figure
b) The transfer function for the valve is

ky

Gols) = 175

With the input taken as a unit step signal, that is,

1

U(s) = -

()=
it follows that L )
X(s) = A -
(s) 1+Ts s

The final value theorem gives

tlglgo x(t) = glg(l) sX(s) =ky
The time constant T is the time it takes for the step response to reach
63% of its final value. From the plot it follows that T = 5 and k, = 2,
that is

10

(B B | Gl PO Gl !

Figure 3.1a

¢) By using the controller F'(s), the closed loop system shown in Figure
is obtained. From the block diagram, the following equations are obtained:

E(s) = Hyet(s) — H(s)
H(s) = Gi(s)(F(s)Gy(s)E(s) = V(s))

This leads to

H(s) = Gi(s) (Gy(5) F(s) [Hes(5) = H(s)] = V(5))

e
H(s)(1+ Gu(5)Gy(5)F(5) ) = Guls) (Guls) F(s) Hret(s) ~ V(5))
<~
_ G(s5)G(s)F(s) B Gi(s) 5
) = G o FE ) " T ama e Fe ~ @
Ge(s) —G+v n(s)

That the expression for the output is a sum over all inputs, with each
term given by a rational transfer function multiplied by the input, is no
coincidence; this will always be true of any transfer function between
points in a block diagram with rational transfer functions and summation
points. In particular, the output is a linear (dynamic) function of the
inputs. This leads to a conclusion that will be used frequently hereafter:
When computing the transfer function from one input to the output, all
other inputs may be set to zero. The reader is encouraged to try this by
taking Hyef(s) = 0 in the first equation above.



Inserting the expressions for Gi(s) and Gy(s) in the equation above, it

follows that G is given by
H(s) 1+5s

V(s)  s(1+5s)+2F(s)

and G. by
H(s) 2F(s)

Hyet(s)  s(145s) + 2F(s)

Assume F(s) = ?‘;EZ; with Fy(s) and F,(s) polynomials, then the char-
acteristic polynomial becomes p(s) = s(1 + 5s)F,(s) + 2Fy(s) in both

cases.

Proportional feedback
F(s)=K
gives
H(s) 04K
Hyet(s)  s2+0.2s+ 04K

The closed loop poles are given by
s>+ 0.25 + 0.4K =0

That is
s =—-0.1+iv04K —0.01 if K > 0.025

The closed loop poles belong to the pre specified region provided that
[Re| > |Im| or
0.01 > 0.4K —0.01

Hence K < 0.05.

When v is a unit step signal we have

1
Vi(s) = -
(s) = 1
The control error e = hyet — h = —h  (hyer = 0) is given by
0.2 1
B(s) = —H(s) = 5o

524025+ 04K s
The final value theorem gives (the system is stable for K > 0)

. . 1
Jim e(t) = limysB(s) = 57

11

f

32 a)

A PI controller, that is,
K K
F(s) = ~E2 P
s
gives
s(s+0.2) 1
E(s) = — Lz
s2(s+0.2) + 0.4(Kps+ K1) s

when v is a unit step signal. The final value theorem gives (provided that
the closed loop system is asymptotically stable)

tlirgo e(t) = il_r% s(—H(s))=0

The closed loop poles (from Solution are given by
s=-0.1+iv0.4K —0.01

K =1 gives
s =—-0.1+iv0.39
PD control
F(S) = Kp + Kps
and using the expressions derived in Solution [3.I] this results in

)= @59 + 280 ) = 202+ 0aKp)s + 0k )

The characteristic polynomial is
524+ (0.2 +0.4Kp)s + 0.4Kp = 0
Compare with the standard form
s2 + 2Cwps +wi =0

where wy denotes the fundamental frequency and ¢ denotes the relative
damping. Assume Kp = 1 and determine Kp so that { > 1/\/5 A
comparison with the standard form then gives

W = v0.4
(- 0.2 4+ 0.4Kp N 1
2,04 V2

which gives Kp > 1.7.



3.3 We shall determine how the control error e(t) = e (t) — y(t) depends on the
disturbance signal f.. We can assume that y,.r(t) = 0, since the size of the
error as a function of f. is sought for.

E(s) = Yiet(s) — G(s) - (Fe(s) + F(s)E(s))

where )
G(s) = ———
() ms? + ds
gives
G(s)
E(s) = ——— 2 __.F,
)= Tramre @
fc(t) is a step disturbance, that is
a
FC(S) = g
a) Proportional control, F'(s) = K, gives
1 a

E - - .=
(5) ms2+ds+ K s

Using the final value theorem it follows that (provided that K is chosen
such that the closed loop is asymptotically stable)

lim e(t) = lim sE(s) = —a/K

t—o0 s—0

b) Proportional-Integral control

gives
E(s) =

C ms3 +ds2 + Kis+ Ko s
The final value theorem in this case gives (provided that K; and K5 are

chosen such that the closed loop is asymptotically stable)

lim e(t) = lim sE(s) =0

t—o0 s—0

12

3.4

a) Enter the system. >> s = tf( ’s’ );
> G6G=0.2/ ((s2+s+1)* (s+0.2))
Generate a proportional >>F = 1;
regulator.
Generate the closed loop >> Gc = feedback( F * G, 1 );
system.
Compute and plot the step >> step( Gc, 30 ); grid
response.
Step Response
0.7
06
%
1‘5 2‘0 2‘5 30
Time (sec.)
By trying some different values of Kp the following behavior can be seen:
For small values of Kp the step response is slow, well damped and the
steady state error is large. For increasing Kp the step response becomes
faster but more oscillatory, while the error is reduced. For large Kp the
amplitude of the oscillations increases over time, that is, the closed loop
system becomes unstable.
b) Generate a PI controller >> KP = 1; KI =1;

with Kp =1 and K7 = 1. >> F =KP + KI / s;



Plot the result. >> Gc = feedback( F * G, 1 );
>> step( Gc, 50 ); grid

Step Response

Amplitude

0.8

061

04

02

0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Time (sec.)

The following effects of the integrator can be found by trying some dif-
ferent values of Ki. (i): The integrator in the regulator eliminates the
steady state error. (ii): A too small value of K gives a large settling time
while a too large value gives an oscillatory (finally unstable) closed loop
system.

C) Generate a PID controller > KP =1; KI =1; T =0.1; KD = 1;

with szl,KIZLKD: >> FP = KP;
2 and T =0.1. >> FI = KI / s;
> FD =KD xs / (s¥T +1);

>> F = FP + FI + FD;
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3.5

)

Plot the result. >> Gc = feedback( F * G, 1 );
>> step( Gc, 50 ); grid

Step Response

15

Amplitude
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Using the (approximate) derivative of the error in the regulator increases
the damping of the closed loop system. Increasing Kp too much, how-
ever, gives that an oscillation with higher frequency appears in the step
response and finally (approximately when Kp > 65) the closed loop sys-
tem becomes unstable.

The transfer function for the closed loop system is

Go(s) K(s+2)

T 14 Go(s) s(s+1)(5+3)+K(s+2)

The characteristic equation is

s(s+1)(s+3)+K(s+2)=P(s)+ KQ(s) =0

G.(s)

that is
P(s) =s(s+1)(s+3) Q(s)=s+2

o Starting points: < zeros of P(s):0,—1,-3
End points: < zeros of Q(s) : —2

¢ Number of asymptotes: 2
Directions: %[m + 2k7] = +7/2
Intersection with the real axis: 1[0+ (—1) 4+ (=3) — (-2)] = -1



i
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Figure 3.5a

o Real axis: [—3, —2) and [—1, 0] belongs to the root locus

¢ Intersection with the imaginary axis: Set s = iw and solve the char-
acteristic equation

iw(iw + 1) (iw + 3) + K (iw + 2) = —iw® — 4w? + (34 K)iw + 2K =0
(—w? +3+ K)w=0 w=K=0
—4w? +2K =0 (starting point)

This gives the root locus in Figure

Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for all K > 0. For small values of K
there are no oscillations and the speed is increasing with increasing K.
For a certain value of K the system becomes oscillating. The damping is
decreasing with increasing K.

The transfer function for the closed loop system is

_ Gol(s) K
1+ Go(s)  s(s24+25+2)+ K

The characteristic equation reads

s(s2+25+2)+ K =0

G.(s)

that is

P(s) = s(s* + 25 +2) Q(s)=1

14

Figure 3.5b

o Starting points: < zeros of P(s):0,—1+1
End points: < There are no zeros of Q(s)

¢ Number of asymptotes: 3
Directions: #[m + 2k7] = 7, +7/3
Intersection of asymptotes: [0+ (=1 41) + (=1 —1i)] = —2/3

o Part of the real axis that belongs to the root locus: (—oo, 0]

o Intersection with the imaginary axis: Set s = iw and solve the char-
acteristic equation

iw((iw)? + 2w + 2) + K = —iw® — 2w + 2iw + K =0

(—w?+2)w =0 }

w=K=0 or w==+V2
224+ K=0

(start point) K=4

This gives the root locus in Figure [3.5b

Answer: All poles are in the left half plane. That is, the system is
asymptotically stable for 0 < K < 4. The step response is oscillating
for all K. To begin with the system will be faster with increasing K.
However, for K sufficiently large the oscillating part is dominating. The
damping will decrease with increasing K and for (K > 4) the closed loop
system is unstable.



¢) The transfer function for the closed loop system is Asymptote -~~~ | m

Guls) = Go(s) K(s+1) .
N4 Go(s) s(s—1)(s+6)+ K(s+1) ‘

The characteristic equation is N
s(s=1)(s+6)+ K(s+1)=P(s)+ KQ(s) =0 o0 T 4 ) j[l =
P(s)=s(s—1)(s+6) Q(s)=s+1 B

o Starting points: < zeros of P(s):0,1,—6 -4
End points: < zeros of Q(s) : —1 fomeeE s
¢ Number of asymptotes: 3 —1 =2 Figure 3.5¢
Directions: % [m + 2k7] = /2
Intersection of the asymptotes: [0+ 14 (—6) — (—1)] = —2
=
o Part of the real axis that belongs to the root locus: [—6, —1) and
[0, 1] G(s) = 6(s) _ k-K _ 4K
Oret(s)  s(1+s7)+k-K(14+as) s(s+2)+4K(1+ as)
o Intersection with the imaginary axis: Set s = iw and solve the char-
acteristic equation: The characteristic equation is:
iw(iw — 1) (iw + 6) + K(iw + 1) = —iw® — 5w + (K — 6)iw+ K =0 s(s+2) +4K(1+as) =0
w2 _ — — — _ /3
(—w® + K2 6w =0 w=K - 0 rY Ve a) a = 0. The characteristic equation is then
—bw*+ K =0 (start point) K—=175
s(s+2)+4K =5+ 25 +4K =0
This gives the root locus in Figure |3.5¢
Answer: All poles are in the left half plane, that is, the closed loop with the solution
system is asymptotically stable for K > 7.5. For small values on K the s=-1+V1-4K
closed loop system is (as the open loop system) unstable. For K > 7.5 This gives the root locus in Figure [5:6a]

the closed loop system is stable and oscillating. As K is increasing from
the critical value both the damping and the response speed are increasing
(the time constant is always > 1/2s), until they both are beginning to
decrease. The damping is decreasing with increasing K.

Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for all K > 0.

b) a = 1. The characteristic equation is then
s(s+2)+4K(1+s)=0
3.6 The transfer function for the closed loop system is obtained from
1. 1 k
O(s) = = . .
s s 1+sT1

that is
K - (Oret(s) — asb(s) — 0(s)) P(s) =s(s+2) Q(s) =4(1+s)

15
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Figure 3.6a

o Starting points: < zeros of P(s): 0, —2
End points: < zeros of Q(s): —1

o Number of asymptotes: 2 —1 = 1.
Direction of asymptotes: % -7, that is, the negative real axis.

o Part of the real axis that belongs to the root locus: (—oo, —2] and
(717 O]

¢ Intersection with the imaginary axis: Set s = iw and solve the char-
acteristic equation:

iw(iw +2) + 4K (1 +iw) = —w? + (2 + 4K)iw + 4K = 0

w=K=0

(24+4K)w =0
(start point)

—w?+4K =0

This gives the root locus in Figure 3.6

Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for all K > 0.

¢) a = 1/3. The characteristic equation is then
s(s+2)+4K(1+s/3) = P(s) + KQ(s) =0

which gives
P(s) =s(s+2) Q(s) =4(1+s/3)

16

Figure 3.6b

o Starting points < zeros of P(s): 0, —2
End points < zeros of Q(s): —3

¢ Number of asymptotes: 2 — 1 = 1 Direction: %-71' , that is, the
negative real axis

o Part of the real axis that belongs to the real axis (—oo, 3) and [—2, 0]

¢ Intersection with the imaginary axis. Set s = iw and solve the char-
acteristic equation:

4
iw(iw +2) + 4K (1 4+ iw/3) = —w? + (2 + FH)iw +4K =0

2+ 3K)w=0 w=K=0
—w? +4K =0 (start point)

This gives the root locus in Figure

Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for all K > 0.

d) K = 1. The characteristic equation becomes
s(s+2)+4(1+as) =s>+2s +4+4as=0

that is
P(s)=s*4+2s+4 Q(s) =4s



Re

K=3+05/27 K=3-05/27

Figure 3.6¢

o Starting points < zeros of P(s): —1 £iy/3
End points < zeros of Q(s): 0

¢ Number of asymptotes: 2 —1=1
Direction: 1 -, that is, the negative real axis

o Part of the real axis that belongs to the root locus: (—oo, 0)

¢ Intersection with the imaginary axis: s = iw solves the characteristic
equation
—w? + 21w + 4 + diwa =0
w(2+4a)=0 has no solution
—w?+4=0 (o < 0 is of no interest)

To get further insights into the behavior of the closed loop system the
intersection with the real axis is determined. That is, a real valued double
root to the characteristic equation has to be determined

2+ 25+ 44 4as = (s +a)? = s>+ 2as + a®
a=2
a=1/2

Answer: All poles are in the left half plane, that is, the closed loop
system is stable for all & > 0. From d) it follows that the system will be

20 = 2+ 4«
a? =14

This gives the root locus in Figure [3.6d]
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3.7 a)

b)

Re

Figure 3.6d

more damped for larger values on « (compare b, ¢: in b) the system is not
oscillating for any value on K). For « sufficiently large, the time constant
can be arbitrary large. This is natural since the term —ab-K (D-term)
that appears in the input voltage of the motor reduces the velocity of the
axis. The effect is as if the motor has been drained with thick oil. With a
suitable viscosity a the system can be made fast and stable as in ¢). With
a =0 as in a) and K large enough, the system is not becoming faste
just less damped.

10(s + 1)

ws) _ -
=G10) G20 = g a6 -9

The open loop system is unstable (a pole in s = 3). Hence w(t) is increas-
ing when d,¢¢ (%) is a step signal. Observe that the model is valid for small
changes with respect to a large reference input 6y for the pitch, and for
predetermined values on the static and the dynamic pressure.

w(s) = Gi(s) - Ga(s) - K - (wret(s) — w(s))

*Note that altough the system does get faster with respect to risetime, this is not a very useful
notion of speed in highly oscillative systems. Rather, the settling time should be used, and this
property of a system is related to the real part of the poles, not their distance to the origin.



gives " 10
__K-Gi(s) Ga(s) 6
W)= TR () Ga(e) () 4
10K (s + 1) (5 2

= wre s e

(s +10)(s + 4)(s — 3) + 10K (s + 1) —_— -—"
The characteristic equation is L " 2
(s+10)(s+4)(s—3)+10K(s+1)=0 .
which gives - Aymptcte "

P(s) = (s+10)(s+4)(s—3) Q(s) =10(s+1)

Figure 3.7a
o Starting points: < zeros of P(s): —10, —4, 3
End points: « zeros of Q(s): —1 That is, the two remaining poles are
o Number of asymptotes: 3 —1 =2 11 11, .
Directions: 3 ( + 2km) = +7/2 DY + (?) —118=-55+94i

I i ith the real axis: 1+ [(—1 —4)4+3—(-1)]=-5
ntersection with the real axis: 5= [(~10) + (=4) + (=1} which shows that they are complex for K > 12. The answer is hence no.

o Part of the real axis that belong to the root locus: [—10, —4] and
(717 3]

o 3.8 This text serves as a workaround for an obscure bug in ITEX.
¢ Intersection with the imaginary axis: s = iw solves the characteristic

equation
(iw 4 10) (iw + 4)(iw — 3) + 10K (iw + 1) = +@—' EOGT) - L
— (5+1)(5+10)+ K1
= —iw® — 11w” 4 (10K — 2)iw + 10K — 120 =0 1
11
N (—ch—i—lOK—Q)w:O}j w:()}
— 2 — = = 1 I 1
1w? + 10K — 120 = 0 K =12 R (S| o L
This gives the root locus in Figure [3.73] I l?‘
Answer: All poles are in the left half plane, that is, the closed loop =2
system is asymptotically stable for all K > 12. Figure 3.8a

¢) The question is: Is there any K > 12 for which all poles are real valued?
For K = 12 it is known that s = 0 is a solution to the characteristic

The block diagram is given in Figure |3.8al Hence, the characteristic
equation. The other roots are given by 2) & & &

equation is s ((s + 1)(s + 10) + K1) +K> =0
(s+10)(s+4)(s —3) +10-12(s + 1) = s(s* + 115 + 118) Plo)

18



Start points: 0 and the roots to s2 4+ 11s 4+ 10 + K; = 0, that is, s =
—5.5++/5.52 10— K3

The roots are real when K7 < 20.25. (I)

The roots are complex when K; > 20.25. (II)

Root locus
T

(I) o start points: 0, —=5.5 + « s

¢ end points: missing

s
© asymptotes: 3: %, , %’“

intersection of the asymptotes: §(—11) = —1

Imag Axis
o

© parts of real axis: (—oo, —5.5 — a], [-5.5 + a, 0] 5

The root locus is given in Figure [3.8b ol

(I1) o start points: 0, —=5.5 +if b

-15 -10 -5

[
Real Axis

¢ end points: missing
o asymptotes: as in (I)

o parts of real axis: (—oo, 0]

The root locus is given in Figure

. . . . - . Figure 3.8b
Imaginary axis crossings: put s = iw in the characteristic equation =
. 2 . —
w(—w*+ 11w+ 10+ K1)+ K, =0 < 30 Set
—iw?® — 11w + 10iw + Kjiw + K2 =0 = _ 1
M R P VPR
s s—1)(s
—w? + 10w+ Kiw=0 (1)
11?2+ Ky =0 (2) With U(s) = F(s)E(s), the transfer function of the closed loop system be-
comes

w = 0 solution to (1) = in (2) K2 = 0. Gol(s)
w? = 104K solution to (1) = —110— 11K+ K5 = 0 = Ko = 11K, +110

Answer: The closed loop system is asymptotically stable when 0 < Ks < a) Here, F(s) = K, so
11K, +110

_ GF()
1+ G(s)F(s)

b) By using the inner feedback (K7 > 0) a larger value of K3 is allowed. Ge(s) = Gt UG-G 45 1 K

19
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Figure 3.8c

The characteristic equation is
(s+1)(s—1)(s+5)+K=0
which gives
Ps)=(s+1)(s=1)(s+5)  Qs) =1
o Starting points: < Zeros of P(s): —1, 1, =5
End points: < Zeros of Q(s): none

¢ Number of asymptotes: 3 —0 =3
Directions: £[r + 2kn] =, £7/3

Intersection point: %[—1 +1+(-5)]=-5/3

20

o Real axis: (—oo, —5] and [—1, 1] belongs to the root locus
o Intersection with the imaginary axis, set s = iw:
(iw+ 1) (iw— 1w +5) + K = —iw® —5w? —iw+ K -5=0

— (W +1)w =0 — w=0
5w+ K —-5=0 K=5

(A simple root!)

This gives the root locus in Figure [3.9a

K =5049
S

/
/ two poles in
0097

Figure 3.9a

Answer: There exists at least one pole in the RHP. Hence, the system
is not asymptotically stable for any value of K.

b) Here, F(s) = K(1+ 0.5s). Hence

K(1+0.55)

Ge(s) = (s+1)(s —1)(s +5) + K(1 4 0.5s)

The characteristic equation is
(s+1)(s—1)(s+5)+K(1+0.55) =0
which gives

P(s)=(s+1)(s—1)(s+5) Q(s) =1+0.5s



3.10

Figure 3.9b

¢ Starting points < Zeros of P(s): —1,1, =5
End points < Zeros of Q(s): —2

¢ Number of asymptotes: 3 —1 =2
Directions: 3[r + 2k7] = /2
Intersection point: [-1+1—5— (-2)] = —32

o Real axis: [—5, —2) and [—1, 1] belongs to the root locus
¢ Intersection with the imaginary axis, set s = iw:
(iw+1)(iw — 1) (iw + 5) + K (1 + 0.5iw) =0
—w3 +w(0.5K —1)=0
— { 5w -5+ K =0

— w=20 w? = —1, not real!
K=5 "\ K=0

This gives the root locus in Figure [3.9b

Answer: The system is asymptotically stable (all poles in the LHP) if
K > 5.

a) The closed loop system
k

s(s :ZC(S =+ CL)
Go(s) = (42
c 1+ s(s+§)a(73+a) s(s+2)(s+a)+ka

21

has the characteristic equation
s(s+2)(s+a)+ka=0

Choose k = 6, and draw a root locus with respect to a. The characteristic
equation can be written

s34+ 2% +a(s*+25s+6)=0

that is,

P(s) = s*(s +2) Q(s) =5 +25+6

¢ Starting points: 0, 0, —2
End points: —1 +iv/5

¢ Number of asymptotes: 3 — 2 = 1, direction: .
o Parts of the real axis: (—oo, —2]
¢ Intersection with the imaginary axis: s = iw
6a — w?(2+ a) +iw(2a — w?) =0
Im: w(2a —w?)=0 <= w=0o0rw?=2a
Re: 6a —w?(24+a) =0
w=0 <= a=0
w=2a <= 20—-2* =0 <= a=0ora=1
Intersection points: s =0, s = +v2
This gives the root locus in Figure
Answer: The system is asymptotically stable for a > 1

b) For y to have a stationary value of 1 the system must first of all be stable.
When the system is stable, the stationary value will be 1 when r is a unit
step since the system contains an integrator.

Next, consider

a
a+ 101

Y (1) = sin(108) = ye(t) = ’

sin(10t + ¢)



img ° Answer:
Wute /] 77777 *gil
P ,,,,, for0 3.12
a=1 G( ) Sn_l +b18n_2+"‘+bn Tnfl(s)
-2 S) = =
sl "+ arstt 4 4 ay, Ny(s)
- With a proportional feedback the closed loop system becomes
Figure 3.10a Gels) = G(s) _ Tn-1(9)
¢ 1+ KG(s) Nu(s)+ KT,_1(s)
(the expression for y¢(t) is valid after a long time, that is, when the tran- with the characteristic equation
sient has vanished). The amplitude is given by
Nuo(s)+ KT,,—1(s) =0
_ a _ 1 that is,
101~ iy e P(s) = Nuls)  Q(s) = T (s)

' o N e Starting points: The zeros of N, (s)
Now, choose a as small as possible but @ > 1 to maintain stability. The End points: The zeros of T},_1(s)
: n—

lowest amplitude is A ~ 0.1.
e Number of asymptotes: 1 since deg N, (s) —degT,,—1(s) =1
Answer: A =0.1 Direction: 7

When K tends to infinity, one root approaches —oo, the remaining roots ap-
proaches the zeros of T,,_1(s). The zeros of T,,_;(s) are in the LHP according
to the problem formulation. Hence, if K is large enough, the system is asymp-
totically stable.

3.11 When K is small the system has a real unstable pole, that is, the magni-
tude of the step response grows without bound and the step response has no
oscillations = K = 4 corresponds to step response C.

When K is larger we have an unstable complex-conjugated pole pair, that is,
the magnitude of the step response grows without bound and the step response 3.13 Since gous,a(t) = 0 we get
is oscillative. = K = 10 corresponds to step response D. q

Chalt) = (G a() ~ o (1) = ~daamalt —7)

For even larger values of K all poles end up in the LHP. As K grows the step dt A
response becomes faster since the dominating poles move away from the origin. _ K (h (t—T) - hat —T))
K = 18 corresponds to step response B and K = 50 to step response A. AV rehA A
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which gives
K —sT
SHA(S) = —¢€ (Hrcf,A(S) - HA(S))

A
The transfer function of the open loop system is hence
K 675T
GO(S) = Z . S

Now draw the Nyquist curve:

e Big semi-circle in the RHP:
s = Rel’ —m/2<0<T7/2
Since Re s > 0 we have ’e*ST’ < 1, that is,
SEL
A R

The large half circle is hence mapped onto the origin.

|Go(s)]

e Imaginary axis:

K 1
Go(iw)| = —-—
Goliw)] = ==
As w goes from 7 to R, the gain monotonically decreases towards zero
and the argument goes from —m/2 to —oo. The resulting Nyquist curve
makes a spiral motion towards the origin. The first time the curve crosses

the real axis is for wT = 7/2, that is, w = w. The absolute value is then
K/A
==

arg Go(iw) = —g —wT

e Small semi-circle to the right of the origin:

. K 1 .
GO(TelLlJ) ~ Z . ; . e*lw
The small half circle is hence mapped into a large half circle in the RHP.

This gives the Nyquist path in Figure The system G,(s) has no poles
in the RHP. According to the Nyquist criterion, the closed loop system is
asymptotically stable if the Nyquist curve does not enclose the point —1. In
this case the condition reads

K/A

s

<1

Answer: K/A<m
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- i ____ Mirror image of
*, e 1 Nyquist curve (i)

Lagecirdle (ii) v

X
Ax

Mirror imageof ____: Y K
Nyquist curve (ii) - K 5

Nyauist curve (i) ---- oA © origin®

-~ Nyquist curve (i)

Figure 3.13a

3.14 The system G(s) has no poles in the RHP. The closed loop system is asymp-
totically stable if the Nyquist curve of KGo(s) does not enclose the point —1.
In the problem, Nyquist diagrams for G(s) are given. The axes must hence be
rescaled with a factor K.

a) (i) Yes. (ii) Yes. (iii) No. (iv) Yes.
b) (i) Stable if 0.4K < 1, that is, K < 2.5.
(ii) Stable for K > 0.
(iii) Stable if 2K < 1, that is, K < 1/2.
(iv) Stable if 4K <1 or 2K > 1, that is, K <1/4 or K > 1/2.

3.15 a) G(iw) = = gives

1
|G(iw)| = ” arg G(iw) = —90°

b) G(iw) = -5 gives

—w?2

arg G(iw) = —180°

1
arg G(iw) = e

This gives the Nyquist curves in Figure



3.16 a)

Figure 3.15a

Since G(iw) = 0, w — oo, we assume that the large half circle is mapped
onto the origin. The small half circle is mapped onto the point 2. The
point —1 must not be encircled by the curve. This means that the closed
loop system is stable if 1.5- K < 1. Hence K < 2/3.

. . . 1 11
Jirm elt) =l sB(s) = s T mmey) s~ T oK

for K < 2/3 according to a.

The Nyquist criterion can also be applied to

K

= .a

~Gs)
as the open loop system. On the large half circle % ~ 0 which means that
it is mapped onto the origin even for % -G(s). On the small half circle

S=Tr-e -

we have G(s) ~ 2 and
L1
- e
s T
Hence, it is transformed by 1-G(s) to a large half circle in the RHP.

Setting s = iw in % gives the absolute value % and the argument —m/2.
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The Nyquist curve is turned 90° and “increased” by a factor % This gives

the Nyquist path in Figure [3.16a]

. . . ¢ 3
Answer: The closed loop system is asymptotically stable if 3K < 1.

This means that also in this case we have K < 2/3.

Im

-3kn=-3/2

Re

Figure 3.16a

3.17 The system
1

0=

is controlled by
u(t)=—-Ky(t—"T)

which gives the open loop system
Go(s) = Ke*TG(s)

During self oscillations the open-loop gain is equal to —1:
Ke TG (iw) = —1

that is,

. 1 .= 1 . .
1wT.76 ig e 1arctamw’r:6 im

w w22 +1

Ke™



3.18

3.19

3.20

w =1 gives
K 2
Nezsinll (2)

K= %K gives a self oscillations with w = 0.5. This gives

L2 _arctanf = -7 (3)
Ky =1 (4)

0.5+ 4/ 241

The equations (1) - (4) give 7 = 1.69 and hence

{ —T —Z —arctant = -7 (1)

T = g -arctanT = 0.53

T =m— 2arctan% =1.74

From the Nyquist curve it is seen that for w =1

arg G(1i) = —135°  |G(1i)| = 1/v2

and
arg F'(1i) = —45°

This gives arg F'(1i)G(1i)) = —180°.
asymptotic stability is achieved if

|F(1i)] = K/V2

According to the Nyquist criterion,

IFA)GAD)| = K/2<1 = K<2

Since |G(iw)| does not tend to oo as w — 0 the system does not have integrating
factor for K = 0. Thus reject root locus no 2. Furthermore, since the gain
can be increased arbitrarily without causing the Nyquist curve to encircle —1,
that is, without making the closed loop system unstable, we reject root loci 3
and 4.

Answer: Root locus no 1.

P =  by=by=0
I =  by=0b =0
D =  b=b=0

25

3.21

)

The characteristic equation of the closed loop system is given by
(s +s5+1)(s+0.2)+ Kp-02=0

that is,
P(s) = (s> +s+1)(s +0.2)

Enter P(s) and Q(s).

Q(s) =0.2

>> s = tf( ’s’ );
>P=(s82+s+1) *x (s+0.2);
>>Q = 0.2;

Draw the root locus. Click >> rlocus( Q / P )
in the figure to determine
the imaginary axis cross-

ings. 2r

25
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When Kp increases the two complex poles move towards the imaginary
axis, that is, the closed loop system becomes more oscillatory. Finally, for
Kp =~ 6.2, the poles cross the imaginary axis and the closed loop system
becomes unstable. This result is in accordance with Problem [3.4l For
small values of Kp the properties of the step response are mainly deter-
mined by the real pole close to the origin. For larger values the complex
poles start to dominate and when the complex poles cross the imaginary
axis the amplitude of the oscillations in the step response increases and
the system becomes unstable.

Note, however, that the root locus alone does not give sufficient informa-
tion to tell how the stationary error changes with the parameter.

The characteristic equation of the closed loop system using the PI con-
troller with Kp =1 is given by

s((s* +5+1)(s+0.2) +0.2) + K;-0.2=0



that is, Enter P(s) and Q(s). >>P = (0.1%s + 1) * ...
P(s)=s(s>+12s* +1.2s+04)  Q(s) =0.2 (574 + 1.2%873 + 1.2%572 + 0.4%s + 0.2 ]

>> Q = 0.2%s72;
Enter P(s) and Q(s). >>P =35 % (873 + 1.2%s72 + 1.2%s + 0.4 );

> Q = 0.2;
Draw the root locus. Click >> rlocus( Q / P )
in the figure to determine
the imaginary axis cross-
ings.

15

\—/

Draw the root locus. By >> rlocus( Q / P )
changing the axes or using >> axis([ -2 2-441)
the function zoom the region
of interest can be seen more
clearly (there is also a fifth 3
/’\‘ pole which is of less inter-
est since it is located on the

R negative real axis, far away
-1 -0.8 -0.6 -04 -0.2 Rea‘DAXiS 0.2 0.4 0.6 0.8 1 fI‘Om the Or]g]n)

Imag Axis
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For small K7 the response of the closed loop system is dominated by the
poles on the real axis close to the origin. When K7 increases the poles
become complex and move towards the imaginary axis, that is, the closed
loop system becomes more oscillatory. Finally, for K1 ~ 1.5, the poles
cross the imaginary axis, that is, the closed loop system becomes unstable.
As can be seen in Problem a small value of K7, that is, a pole close to
the origin, gives a slow step response. When K7 increases the dominating
poles become complex and the step response becomes oscillatory.
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A large settling time will typically follow if the system is slow or have
poor damping. Here, the large settling time for small K7 is due to the
system being slow. That the steady state error is eliminated cannot easily
be seen in the root locus.

Using PID control with Kp = 1, K1 = 1 and T' = 0.1 the characteristic

equation of the closed loop system is given by When Kp increases the complex poles closest to the origin move to-

(0.1s 4+ 1)(s(s* + 5+ 1)(s +0.2) +0.2(s + 1)) + Kp -0.2s* = 0 wards the origin and and at the same time the damping of the system
is increased. When Kp increases even more the second pair of complex
poles moves towards the imaginary axis giving a high frequency oscillation
P(s) = (0.1s 4+ 1)(s* + 1.2 +1.252 + 045 + 0.2)  Q(s) = 0.25> which finally gives instability.

that is,

26



3.22 a) Enter the system and the >> s = tf( ’s’ ); b) Generate a PI controller. > F =1+ 1/s;
regulator. Plot the Nyquist > G6G=0.2/((s"2+s+1)* (s +0.2); Plot the Nyquist curve of >> nyquist( F * G )
curve of the open loop sys- >>F = 1; the open loop system. >> axis([ -2 2 -221)
tem. >> nyquist( F * G )
Nyquist Diagrams
Nyquist Diagrams 2
The Nyquist curve is “far away” from the point —1 for all frequencies For low frequencies the Nyquist curve is now far away from the origin
and the step response of the closed loop system is well damped. As Kp since the integrating part makes |G(iw)| large for low frequencies. The
increases the Nyquist curve grows in size and for Kp = 6.2 the Nyquist Nyquist curve now passes closer to —1 which results in a more oscillatory
curve reaches —1 and thus is the limit of stability. closed loop system. The system becomes unstable around K; = 1.44.
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¢) Generate a PID controller. >> F =1 + 1/s + 2%s / ( 0.1%s + 1 ); 3.23 a) Enter the systems and the >> s = t£( ’s’ );
Plot the Nyquist curve of  >> nyquist( F * G ) regulator. Make a Bode > G=04/(C((s"2+s+1)*(s+0.2))
the open loop system. Here >> axis([ -2 2 -221) plot of the open loop sys- > F = 1;

tem when the regulator and >> margin( F * G )

with the parameters Kp =
the system are put in se-

1, KI = 17 KD = 27 and

Nyquist Diagrams

T=0.1 ries. This giVeS We = 0387 ’ Gm=31 (alHvad/seBc()x?eP[r’iagr:TZ(!eg (at0.377 radisec)
10 ; . ;
] wp = 1.1, pom = 94° and
A = 3.1. |

Magnitude (abs)
3
T

Imaginary Axis

Phase (deg)

Real Axis _o70l . .
107 107 10° 10 10

Frequency (rad/sec)

Plot the step response. >> Gc = feedback( F * G, 1 );
>> step( Gc, 50 )

Step Response

Amplitude

The Nyquist curve is now further away from —1 which corresponds to an
improved damping of the closed loop system. The system becomes unstable o5 10 15 20 25 w0 3 40 45 50
around Kp = 66. Time eee)
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c) Increase the gain to 3.1, >> F = 3.1;
ulator. Make a Bode plot. >> margin( F * G ) that is, the value of A, >> margin( F * G )
in a). Both the gain and
Bode Diagram

The crossover frequency wc
has increased while wy, is the ) Gm =124 (a1 1.1 radsed . P 12 e (1089 rads) phase margin are at the G =1 (1.1 o) P~ Q00032 c (1.1 raise)
same, since only the ampli- " ‘ ‘ ‘ limit between what would

tude curve is changed when wl l give an stable or unstable
the gain is changed. Both closed loop system. Any

the gain and phase margins " 1 further increase of the gain
have decreased. ol | will give an unstable closed

loop system.

b) Increase the gain in the reg- >> F = 2.5;

10° T T T

Magnitude (abs)
3
T
Magnitude (abs)

Phase (deg)
Phase (deg)
Lo
2 ©
3 8
—

|
o
M
&
T

o0k . . T . T
10% 10 10° 10' 10 " 107 10° 10' 10
Frequency (rad/sec) Frequency (rad/sec)

|

I

3
T

3,

Plot the step response. The >> Gc = feedback( F * G, 1 );
output now oscillates with >> step( Gec, 50 )
constant amplitude.

Step Response

15 T T T T T T T T

Plot the step response. The >> Gc = feedback( F * G, 1 );
closed loop system is now >> step( Gec, 50 )

much more oscillatory due i 1
to the reduced phase and
gain margins.

Step Response

Amplitude

05F

. . . . . . .
0 5 10 15 20 25 30 35 40 45 50
Time (sec.)

Amplitude

Time (sec.)
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3.24 The top row gives a steady state error = K1 = 0. Left column less oscillative
than the right one = Kp # 0.

Answer: A—iii, B-i, C—iv, D—ii.

3.25 a) The motor transfer function is (from Solution 2.1)))

ko
Cos(s+1/7)

Feedback control
U(s) = F(s)(Orer (s) — 0(s))

where F(s) is the control law transfer function and 6, is the reference
signal. The closed loop transfer function is given by

0(s) F(s)G(s)

Gels) = Gis) ~ T+ F(5)G(5)

Proportional feedback F'(s) = Kp and G(s) according to above give

Kpky
2+ s/T+ Kpko

G(s) =

The poles of the closed loop system are given by
2+ s/T+ Kpko =0

that is,
—1++v1- 47’2ka)0
S =
2T

(1) Kp small = Both poles on the real axis, but one pole very close to
the origin = Slow but not oscillatory system.

(2) Kp =1/(47%ky) = Both poles in —1/(27), that is, faster than in
(1) but still no oscillations.

(3) Kp large = Complex poles with large imaginary part relative to the
real part, that is oscillative system.

30

b)

The transfer function from the reference signal to the tracking error e =
Oret — 0 is given by

1 s(s+1/1)

= maref(s) = S(S T 1/7_) n ka‘o 9ref(s)

E(s)

The reference signal is a step

0, t<O0
Oree(t) = {A t>0

which gives
eref ( S ) =

The final value theorem gives

4
S

. . s(s+1/7) A
1 t) = lim s- = =0
A et = s e Koke s

The reference signal is a ramp

0, t<0
9ref(t>:{At t>0

which gives
A
gref(s) = 572

The final value theorem gives (the closed loop is asymptotically stable for
all Kp according to a))

. ) s(s+1/71) A A
lim e(t) = lim s - =
A elt) = i s e Koko 52~ Kokor

The error can be decreased by selecting Kp large, but according to a) the
system becomes very oscillative for large Kp.

PI controller
t
u(t) = Kpe(t) + KI/ e(r)dr
0

that is 1
F(S) =Kp + KI;



3.26

3.27

gives

1 s2(s+1/71)

B = 1660 ™) T St 1) + hoKes + )

gref (3)

When 6.t is a ramp according to b) we get

lim e(t) = lim sE(s) =0

t—o0 s—0

Comment: The final value theorem can only be used when the denominator
of G(s)U(s) has all zeros in the left half plane or at the origin. G(s) is the
system transfer function and U(s) is the input signal.

The transfer function for the loop gain is G,.

The transfer function from the reference signal R to the output Y is obtained
by using the block diagram and observing that

Y =Go(R-Y)

Solving this equation for Y gives

G,
Y = R
14+ G,
that is, the transfer function for the closed loop system is G, = lf—&o

a) The loop gain, G,, is FG.

b) The influence of the disturbance (N = 0) can be neglected. Use the
solution to problem Solution The transfer function from R to Y is
Ge = 1585, that is, Y = G.R.

¢) The influence of the reference signal can be neglected. (R = 0). The block
diagram gives

Y=FGE=—-FGY +N)

FG

which implies that the transfer function from N to Y is Gy = —1175-

31
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3.28 a)

329 e

The influence of the disturbance can be neglected (N = 0). The block
diagram gives
E=R-Y=R-FGE
Solving for E gives
1
14+ FG

that is, the transfer function from R to F is G, =

R

_1
1+FG*

The transfer function from reference signal to error signal is (see Solu-
tion [3.270)
1 1

R(s) = ———F—R(s) =
1+ FG L+ e

(s+1)(s+3)
(s+1)(s+3)+ K

R(s)
r(t) step = R(s) = %. The steady state value of the error is given by
the final value theorem

(s+1)(s+3) 4 3A
3+ K

A elt) = lim sEs) = I o 3+ &

In order to make the steady state error equal to zero the regulator has to

contain an integrator. Using, for example, F(s) = % one gets
lim e(t) = Ii I A 0
im e(t) = lim = lim =
t—o0 s—0 1+ F(s)G(s) s=01+ 1 !

s (s+1)(s+3)

Notice though, that the integrating feedback normally has to be combined
with proportional feedback.

The transfer function from R to Y using F(s) =1 is

_ FG 1 - 1 1
1+ FG (s+1)(s+3)+1  s2+4s+4  (s+2)2

Ge(s)

The system has two poles in —2 and no zeros.

The four step responses are characterized by, for example, that A and D
have a steady state error, while C and B do not. Further, A shows better
damping than D, and C shows better damping than B. It can also be
noticed (although it is not as apparent as the other characteristics) that
the error decays more slowly in C than in B.



e The four regulators are characterized by, for example, that regulators 1
and 4 don’t have any integral action. Regulator 2 has more integral action
than 3, and regulator 4 gives better damping than 1.

e The derivative part in the regulator improves the damping, while integral
action eliminates the steady state error and reduces the damping. Besides,
for small values of K7j, the error will decay slowly to zero.

Answer: A-4, B-2, C-3, D-1.

Ft,in> Tt,in

Tref +( :T_> F Fc,in7 Tc,in G Tt

Figure 3.30a

3.30 a) See the block diagram in Figure There, the signals are classified
as:

o Input Fe i, and Tt i
o Output T}

o Disturbance Fj 5, and T in

b) Assume prefect mixing in the tank. Mass balance for the tank

d(ps V4
% = pt,inFt,in — Pt Ly
Assume py in = py and that pg is constant which gives
d(ps V4
(pdtt ) =0=Ku—-F = FR=IIun

Assume that there are no heat losses to the surroundings. The energy
balance for the tank is

d (PtVtCE(Tt - Tref))

dt
= ptFt,inCEin(Tt,in - Tref) - ptFtCE(Tt - Tref) + U(Tc - Tt) (31)

32

where U is a heat transfer constant. Assume that ¢}, = ¢{ is constant
and that Tyer is constant. This means that (3.1)) can be simplified to

dT; U
— = Fi (Tt 0 — T4 — (T, — T, 2
Vi " 2 (T, t)+ctppt( t) (3.2)

Mass balance for the heating system
d(pcVe)
dt

Assume pin = pc and that p. is constant which gives F, = F¢ ;. Assume
that there are no heat losses to the surroundings. The energy balance for
the heating system is

- pc,inFc,in - chc

d (PchCg(Tc - Tref))
dt
= chc,inCEin(Tc,in - Tref) - chccg(Tc - Tref) - U(Tc - Tt) (33)
Assume that c? = ¢f;,, is constant. This means that (3.3) can be simplified
to

dT, U
ditc = Fc(Tc,in - Tc) - CSpC
The dynamical model is described by (3.2)) and (3.4).

¢) Linearization of (3.2)) and (3.4) (assuming p. = p; and c? = ) gives

(Tc - Tt) (3'4)

*thA * U *

G = () T s
U " .
+ TcA + (Tt,in - Tt ) FtA
C Pt
AT A U

% =—(F+—— | T, FXT. i

T qt ( t T CEPt) At e de, A

b
t
U " *
+ P TCA + (Tc,in - Tc ) FCA
Ct Pt

d) With numerical values for the stationary points and assuming that Fy,
T in, and T¢ i, is constant, the linearized model is

dT;
dittA — —0.26T, 5 + 0.16T0 0 (3.5)
dT,
T@A = —3.6T.a + 1.6T, o + 200F, (3.6)



Taking the Laplace transform of (3.5) and (3.6) gives

sTon(s) = —0.26T; A (5) + 0.16Ts o (s) (3.7)
STea(8) = —=3.6TcA(S) + 1.6T1A(S) + 200F A (S)
1.6 200
T = —7T —F .
= Tea(s) = o TA(s) 4 o) (39
Combining (3.7) and (3.8) gives
0.256 32
sTia(s) = —0.26T3 A (s) + 5136 ta(s) + 5736 ea(s)
32
=T = F
) = 36T 1018y 2
A Im
A
1 —
K =0.0952
-3 -2 -1 Re
1
3%

Figure 3.30b

e) The transfer function for the closed loop is

32K

G.(s) =

The characteristic equation is

52 + 3.865 + 0.68 + 32K

s +3.86s +0.68 + 32K =0

33

with the solution

s=—1.9341/1.932 — 0.68 — 32K

This gives the root locus in Figure

3.31 a) The system Go(s) = 32_;272_3
the system is unstable.

has one pole in —3 and one pole in 1, hence

b) The closed loop is given by

-K

A P

The poles of the closed loop are given by

s=—1£vV14+3+K

For K < —3 the closed loop will have all its pole in the LHP.

3.32 Given § = py+u and u = K(r —y) we have y = (u — K)y + Kr. This system
converges when the pole (1 — K) is in the LHP, that is, when K > u.

3.33 The dynamics of the astronaut is given by
F=ma

where m = 100, F' is the control signal v and a = §. This gives the model
100y = u

and
1

V() = 15027 )

The control law is given by
u=Ki(r—y) — KiKsy = K1((r —y) — K29)

or

U(s) = K1(R(s) =Y (s) — K2sY (s))



3.34

The transfer function from r to e is given by

82 + 0.01K1K25

E =
(5)= &7 0.01K, Kas + 0.01K,

R(s)

When r(t) = ¢t we have

The final value theorem then gives (provided that K; and K5 are chosen
such that the closed loop is asymptotically stable) (also note that the transfer
function from r to e must have at least one zero at the origin for the final value
to exist, but this is satisfied regardless of the choice of K7 and K»)

lim e(t) = ll_r{(l) sE(s) =Ko <1

t—o0

The transfer function from r to y is given by

Y (s) 0.01K,
~ R(s) s24+0.01K;Kys+0.01K;

The standard form for the characteristic equation
82+ 2¢wops + w2 =0
gives with ¢ = 1/v/2 =~ 0.7
5%+ V2uwp +wi =0

A comparison with
s+ 0.01K1Kos +0.01K; =0

gives wo = 0.14/K;. We hence obtain

200

K =22
1 K22

Answer: Choose Ky < 1 and K; = 200/K3.
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Figure 3.34a

a) The closed loop system

G(s)K K(s+2)

G.(s)

T14G()K  (s+1)2+K(s+2)

has the characteristic equation
(s+1)*+K(s+2)=0
which gives
P(s)=(s+1)? Q(s)=s+2

e Starting points <= Zeros of P(s): -1,-1
End points <= Zeros of Q(s): -2



e Number of asymptotes: 2 —1=1
Direction: 7
Intersection point: —1—-1+2=0

e Real axis: (—oo0, —2] belongs to the root locus

e Intersection with the imaginary axis, set s = jw:
(jw+1)2+ K(jw+2) =0
Im: w2+ K)=0
Re:—w’+1+2K =0

1
:WZO,Kzfg

which does not meet K > 0.

Intersection with the real axis, set s = jw:

(jw+a)? = (jw+1)* + K(jw +2)
— (K=0,a=1),(K=4,a=3)

This gives the root locus in Figure[3:34a] The system is asymptotically stable.
K =4 (pole position —3) gives the fastest step response without fluctuations
since it does not have any imaginary parts.

With a similar approach as in a), the closed loop system is
F
Gots) — _OWF()
1+ G(s)F(s)
where F(s) =4+ %, G(s) = (ssjf)Q. The characteristic equation is

1+ F(s)G(s) =s(s+1)2+(4s+ Kr)(s+2) =0
which gives
P(s) = s(s+1)% +4s(s +2) = s(s + 3)* Q(s) = Kr(s+2)

e Starting points <= Zeros of P(s): 0,-3,-3
End points <= Zeros of Q(s): -2
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Figure 3.34b

e Number of asymptotes: 3 —1 =2

; ion: & 3™
Direction: 7, =

Intersection point: % = -2
e Intersection with the imaginary axis, set s = jw:
jw(jw+ 32+ K(jw+2)=0
Im: w(—w?+Kr+9)=0
Re : —6w”® + 2K, =0
54
— (w=0,K=0),w =K +9,K; = -7 < —9) : not real

which does not meet K; > 0.

This gives the root locus in Figure[3:34b] The system is asymptotically stable.



Step Response

4 T
K=4, P—controller
- — — KP=4, K|=4’ Pl-controller

Amplitude

Time (sec)

Figure 3.34c

¢) The P-controller of a) gives a faster step response than the PI-controller of
b) since the dominant pole [—2,0] is slower than —3. However, there is the
stationary error of P-controller, see Figure
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4 Frequency Description

4.1 If we let u(t) and y(¢) denote the actual temperature and the measured tem-

perature, respectively, we can divide the temperatures into their mean values
and variations as follows:

a(t) = ug + u(t)
and

y(t) = yo +y(t)
where ug = yo = 30 °C.

The thermometer is modeled as the following first order linear time invariant
dynamic system with
Y(s) a
= G fr—
U(s) () s+b

Based on the assumption that the thermometer has been calibrated so that
yo/uo reflects the static gain of the system, it would be possible to conclude
that |G(0)] = 1, that is, a = b. However, we will be able to find enough
equations to determine both a and b without using a = b, allowing us to
avoid this additional assumption. (Using this assumption leads to slightly
different estimates for a and b, depending on which additional equation we use
to determine the common value. That the estimates are not the same no matter
which equations we use is explained by the uncertainty in the equations.)

Since
u(t) = Asin(wt)

it follows that after the transients have vanished (that is, in steady state)
y(t) = |G(iw)| Asin(wt + @)

where
¢ = arg(G(iw)) = — arctan(w/b)

From the relationship w = 27 /T and from the figure the following is obtained:

1. w= % rad/s = 0.33 rad /s

2. (b — —0032‘16 2rrad = —1.12 rad

3. |G(iw)| = 33 = 0.45

37

Hence 0.33
w .
an(@) = =3 2.066
and a
Gliw)=—— = a=0.16
COIl= T
Answer: 0.16
G(s) s+ 0.16
4.2 The equation .
w=1

and

give the transfer function

K 0.1

T s(1+Tws)  s(1+s/0.01)

Gs(s)

The transfer function of the rudder machine is

1 1

Gil(s) = 1+sTy 1+s/0.1

and the controller has the transfer function

7K1+s/a

F(s) = o 145/0.02

1+s/b ~ 1+s/0.05

a) K = 0.5 gives

B B 0.05(1 + 5/0.02)
Gols) = F(s)Gr($)Go(s) = SA 75 01) (1 7 5/0.05) 1 £ 5/0.1)

It thus follows that

_ 0.05\/1+ (553)°
wy/T+ (5501 + (5821 + (57)?

|G0(iw)‘



with low frequency asymptote ]
10 = i
0.05 = s
|Go(iw)] = —, w—0 3 ) B s
“ S = Ji
and EE=== pa
0.1 = ! )
— _—  _90° — R _— e TTTT 77T TTTT
arg G, (iw) = arctan 0.02 90° — arctan 501 — arctan .05 — arctan — 01 o0 |
T NN 7
— = i
The gain is drawn approximatively based on a known gain at some point 3 > S{il? . L 7; I
of the low frequency asymptote, |g 005‘ = 10, and the breakpoints and B -180° ! }3 < -
slopes of the asymptotes: & | ; SQ &
Frequency [rad/s] 0.01 0.02 0.05 0.1 . } ~_
Slope -1 -2 -1 —2 -3 -270 TTTT T I TTTT
The phase shift is drawn based on a couple of samples: 0.001 0.01 0.026 0-1 1 frad /s
wWe = U, w |[rad/s
Frequency [rad/s] | 0.005 | 001 | 0.02 | 0.04 | 0.08 wp = 0.06
Phase —111° | —125° | —142° | —163° | —194°
The Bode plot in Figure gives: w. = 0.026 rad/s, ¢ = 32°, Ay = Figure 4.2a
4.2,
The system starts to oscillate if K is chosen so that arg(G, (iw.)) = —180°. where . ) .
This gives the crossover frequency w, = w, = 0.06 rad/s. This implies |Go(i0.02)] = 1.44 arg Go(10.02) = —142
that the gain should be amplified 4.2 times. Therefore, choose K = That is
0.5-4.2=2.1. G,(i0.02) = —1.135 — i0.886
27 27 which gives
=2r/T = T=—=—=105
w=2m/ we 006 i
G.(i0.02)| = 141 =1.61 B=2g8°
Answer: The period time will be 105 seconds, and K = 2.1. |G (10.02)] = V01352 + 0.8862 = o
and
U, (t) = Asin(at)
. o o 0.886
gives arg G(10.02) = —142° + 180° — arctan(o 135) = —0.76 rad
U(t) = Bsin(ft + ¢)
A : B=28° 3 =0.02rad/s and ¢ = —0.76 rad.
where A =5°, a=0.02, 8 = a, B= A|G.(ia)| and ¢ = arg G.(ia). The nswer P rad/s and e
transfer function for the closed loop system when K = 0.5 is
Go(s) 43 a) As w — 0, |G(iw)] — oo and arg G(iw) — —90°. The gain is first de-
Go(s) = 15 a.(5) B) creasing (low frequencies). It then increases, and finally decreases again
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(approaching zero for high frequencies). The phase shift is increasing at
low frequencies. As the frequency becomes higher the phase shift is posi-
tive in an interval until it decreases towards —90°. This gives the plot in

Figure

b) A system with a Bode plot as the one shown above must have one pole
in the origin since arg G(iw) — —90° as w — 0. Then two break points
appear (up), since there is a positive phase shift. After that, there must
be two break points (down), since the phase shift should approach —90°.
Hence, the plot in Figure [£.3D]is possible.

10
ey 0
3 10
S
102 h:
60° - HA
3 30° RSSOt
3 || E i h
= 0°
$) HE-1-FHEHEZ
w0 —30° et \
—
5 g0 iEmasd N
i ~
—-90° —

107t 10° 10! 102 10® 10* 10°
w [rad/s]

Figure 4.3a

4.4 From the final value of step response B (the only one greater than 1) and static
gain in Bode gain C (the only one greater than 1), the step response-Bode
gain pair B—C follows. Step responses C and A have approximately the same
overshoots but different fundamental frequencies. Bode gains B and D have
equal resonance peaks but D has a lower resonance frequency. This gives the
combinations C-D and A-B. The remaining combination is D—A, which is a
good match with small overshoot (resonance peak) and final value (static gain)
1.
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Figure 4.3b. Pole-zero diagram. Not accurate in scale; the diagram shall only be inter-
preted as a right to left ordering of poles and zeros, with the first pole at the origin.

4.5

a) Enter the system and make >> s = tf( ’s’ );

a Bode plot. >>GA =1/ (82 + 2xs +1);
>> bode( GA )

Bode Diagrams

Phase (deg); Magnitude (dB)
4

i
107 10° 10

Frequency (rad/sec)

Use, for example, curve handles and “Characteristics” in the right click
menu to find static gain, bandwidth, resonance frequency, and resonance
peak. The other systems are treated in the same way. The results can
be summarized in the following table. (Note that gain values may be
presented in dBgy in MATLAB.)



[ System [ GO0) | wg [ w: | M, |

Ga 1 0.64
Gg 1 1.5 1 2.5
Go 1 0.21
Gp 1 1.27 | 0.7 | 1.15
Gg 1 2.54 | 1.4 | 1.15

b) Using the results in a) and in Problem the following observations can
be made. (i): The bandwidth of a system is (approximately) inversely
proportional to the rise time. High bandwidth implies a short rise time
and hence a fast system. (ii): The damping is inversely proportional to
the height of the resonance peak. A large peak implies low damping and
large overshoot.

4.6 From the frequency responce interpretation of the transfer function (“a sinu-
soid in gives a sinusoid out”) and the input being

u(t) = 2sin(2t — 1/2)
it follows that the output is
y(t) = 2|G(i2)|sin(2t — 1/2 + arg G(i2))

Here G(s) and hence

6—25
= s(s+1)?

1 1
22 +1 25

arg G(i2) = —4 — g — arctan 2

G(i2)] =

4.7 The input is a sinusoid with amplitude 1 and angular frequency w = 2 rad/s.

a) 0.45sin(2t — 1.1).

(Gain: iQ}H‘ = % ~ 0.45, phase: —arg(i2+1) ~ —1.1rad = —63°.)

b) The system is unstable. Hence, the system output will tend to infinity,
and the system will not reach a steady state. To be more precise, the
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4.8

a)

b)

general form of the solution to the differential equation describing the
system output is y(t) = Coe’ + % sin(2t — m + arctan 2), and any initial
state y(0) # % sin(—m + arctan 2) will lead to a solution that tends to
infinity. This will almost always be the case in practice.

0.11sin(2t — 2.4)
(Gain: (i2+1)1(i4+1) ’ = \/Bi/ﬁ ~ 0.11, phase: —arg(i2+1) —arg(4di+1) =
—2.4rad = —139°.)

0.45sin(2(t — 0.5) — 1.1) = 0.45sin(2t — 2.1).
Similar to problem a), with an extra time delay of 0.5 s.

To determine the phase difference, ¢, given a diagram with two sinusoids,
sin(wt) and K sin(wt + ¢), one possibility is to consider the time points
when the two curves pass 0. Determine ¢; and ¢ such that
sin(wt;) =0
K sin(wty +¢) =0

This gives that wt; = wty + ¢, that is,

27 rad
T

t
¢ =—wtan = — ta = — 297 1ad
T
where tA = to — t; and T is the common period time. Here, the last
expression may be interpreted as the delay expressed in parts (%) of
a whole revolution (27). For example, consider the second graph where
ta ~ 0.18 sand T =~ 1.25 s (which can either be read from the figure, or, in
this problem, computed using w = 5 rad/s). Hence, ¢ = —?:;g 227 rad =
—0.9 rad. This results in the table below, where the answer to part b is

also included.

w |G (iw)] arg G (iw)

1 1 = 0 dBQ() —0.2rad = —11°
5108 = —19dByy | —0.9rad = —52°
10|05 = —6dBy | —1.6rad = —92°
201102 = —14dByy | —2.2rad = -—126°

Just evaluate the decibel formula to obtain the values in the table above.
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¢) A Bode plot of the system is given in Figure

4.9 Answer: G1-B, G>-D, G3-A, G4—C, G5-E.

e The Bode plot B has static gain 1 and no resonance peak, and hence
G1-B. It can also be seen that the Bode plot B decays by one decade
(20 dBgp) when the frequency increases by a factor of ten (“the slope is
—17) and that G has one pole.

e The Bode plots A and C have both infinite gain for when the frequency
tends to zero, that is, they correspond to systems containing an integrator
= systems G3 and G4. The Bode plot C decays more rapidly for high
frequencies = the relative degree (number of poles — number of zeros) is
higher. Hence G3-A, G4—C.

e The Bode plots D and E have peaks = systems Gy and G5. (For Gs
the peak is caused by the zero where the curve “turns up” at w = 1.)
The Bode plot E has larger slope than D for high frequencies, that is,
E corresponds to a system with higher relative degree. (G2 has one pole
more than zeros, G5 has 2 poles, and hence Go—D, G5—E.
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410 e

411 a)

In step response A and D the step responses tend to one, that is, they
correspond to Bode gain A and C. Step response D has larger overshoot,
that is, it corresponds to Bode gain A, and consequently step response A
corresponds to Bode gain C. This gives the Bode gain—step response pairs
A-D and C-A.

Step response B has no overshoot, which implies that it corresponds to
Bode gain D, which has no peak. This gives the combination D-B.

The remaining combination is B-C. Step response C has an overshoot
which can be related to the peak in the Bode gain plot. It can also be
seen that this pair belongs to the fastest system.

The system can be rewritten as

1.7

A Al P T S E )

It thus follows that

. 1.7
G| = : :
\/1+W2\/1+ (m) \/1+ (5)
and
rg G(iw) = —arctanw — arctan _ _ arctan —
ue 1.43 2

The gain is drawn approximatively based on a known gain at some point
of the low frequency asymptote, |G(i0)] = 1.7, and the breakpoints and
slopes of the asymptotes:

Frequency [rad/s] 1 1.43 2
Slope 0 -1 -2 -3
The phase shift is drawn based on a couple of samples:
Frequency [rad/s] 0.1 0.5 1
Phase —12.7° —59.9° —106.6°
Frequency [rad/s] 2 3 10
Phase —162.9° | —192.4° —244°

The bode plot in Figure gives: w, = 0.874rad/s, ¢y = 83.8°,
Am = 5.14, and wp, = 2.51 rad/s.
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Figure 4.11a
b) The phase is —180° at wy, = 2.51 where the amplitude is 0.1946. To make

a)

the pH oscillate with constant amplitude one has to choose K = ﬁ =
5.14.

The phase is —180° at w, = 0.334 where the amplitude is 0.1984. To keep
the reactor stabile one has to choose K < m = 5.04.

This is a lead-lag design task. The amplitude and phase of G at weq =
0.1 is 0.6325 and —100°. Thus we have a phase margin of 80° which is
sufficient, and hence no lead controller is needed. To remove the steady-
state error we need a lag controller with v = 0. This results in the

controller structure
s+ 1

F(s)=K
TIS
——
Flag
Chose 771 = 10/wc7d = 100 (a smaler value of 71 makes the error go to

zero faster) and K = \G(iwc,d)éag(iwc,dﬂ = 1 = 158 This gives the
controller F(s) = 1.58 1(1%%-2-1.
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413 a)

The closed loop system a has a peak resonance, corresponding to an os-
cillatory system as in step response 1. An oscillatory system also means
a system with small phase margin and complex poles.

Answer: B-a—-1-ITand A-b-2-1.

Step response 1 is faster than step response 2, that is, has a higher band-
width and higher crossover frequency. Thus, it matches the closed loop
system b and the open system B. A faster step response has the dominant
pole further into the left half plane.

Answer: B-b—-1-Tand A—-—a—2-1I

4.14 Ansitt G(s) = -2 (med a > 0 och b > 0).

s+a

Utsignalen ges av (ekvation 4.2 i boken)

y(t) = |G(iw)| sin (wt + arg G(iw)), w =2
Gliw)| =~y =2
W) = ———= =
w? 4 a?
arg G(iw) = argb — arg (iw + a) = — arctan Yo —%.
a

Och alltsa for w = 2 fas @ = 2 och b = 4v/2, samt initialvirdet
yo = 2sin(0 — 7/4) = —/2.



5 Compensation

5.1 The compensator is constructed using lead-lag design. “Twice as fast” is in-
terpreted as a doubling of the bandwidth, which, in turn, is approximated by
a doubling of the gain crossover frequency. “Same damping” is interpreted as
maintaining the old phase margin, which is accomplished using a lead compen-
sator in the controller. The error in static reference following is controlled by
adjusting the static gain of the open loop system, which is accomplished using
a lag compensator in the controller. Sensitivity to measurement disturbances
is given by the complementary sensitivity function, 1 — (14 G,)~!. Tt is small
where the open loop gain is small. Thus, to make it small at high frequencies,
the high frequency gain of the controller should be kept as low as possible.

First, the open loop system when F(s) =1 = G, = G is examined in
order to quantify the requirements.
0.4
(s +0.1)(s+0.5)(s? + 0.4s + 4)
2
(14+s5/0.1)(1+5/0.5)(1+2-0.1-5/2+ (s/2)?)

G(s) =

which implies that

Gliw)| = :
VI ()14 (8Z)2/1 = (9)2)2 +4-0.01(%)?

with low frequency asymptote

|G(iw)] = 2, w—0

and

no

G(iw) + w ; w ; 2-0.12
ar iw) = —arctan — — arctan — — arctan ———=
& 0.1 0.5 1-(2)

The gain is drawn approximatively based on a known gain at some point of
the low frequency asymptote, 2 (at any point), and the breakpoints and slopes
of the asymptotes:

Frequency [rad/s] 0.1 0.5 2
Slope 0 -1 -2 —4
The system has two complex conjugated poles which implies that the ampli-
tude curve has a resonance peak. The approximate amplitude curve must be
modified at the resonance peak. An exact calculation of the gain gives
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Frequency [rad/s] 1 1.5 2 2.5

Gain 0.12 | 0.09 | 0.12 | 0.025
The phase curve is drawn based on a couple of samples:
Frequency [rad/s] | 0.01 0.1 1 1.5
Phase —7° —57° | —155° | —177°
Frequency [rad/s] 2 2.5 10
Phase —253° | —322° | —354°
- E
'z ) Ian
S E o Iz
Nat \ o0
9 N —
0.01 =
0.001 T T i T T T
0° T \ \ S
= T T B
° S iy g s B A
3 -108° -90 Y Il
= (e}
(bbo -180° i N
fn | | [o’e}
= -270° L X °
\“\
-360° TTTT TTTT 1 H_ f
0.01 0.1 1 10
we = 0.16 wp = 1.6 w [rad/s]
we.q = 0.33
Figure 5.1a

The Bode plot in Figure gives
we=0.16rad/s Ay, =10.6 argG(iw.) =—78° — pp = 102°

and hence
wWea =0.32rad/s @py,q = 102°

The phase of G at the w.q is —108°. Hence, in order to obtain the desired
phase margin of 102° = —78° — (—180°), a phase advance of approximately



(—78°) — (—108°) = 30° is required. We suspect a lag compensator will be
introduced later, as we have low frequency requirements. A lag compensator,
if designed according to the prescribed recipe, will decrease the phase by at
most 6° in the designed gain crossover frequency. Therefor, we require an
additional 6° phase advancement and end up in 36° . To accomplish the phase
advancement, we introduce a lead compensator.

Tps+ 1
Btps+1

See the discussion of lead compensators in Glad&Ljung! To keep the high
frequency gain of the controller as small as possible, 5 should be chosen as
large as possible (but less than 1). The desired phase advance is obtained
with 8 = .25. This phase lead is obtained at the desired crossover frequency if

1
™D = —F=
tiuqd

The desired crossover frequency is obtained by adjusting the gain of the open
loop system by introducing a factor, K, in the controller. Due to the choice
of 7p, the gain of Fiead(we,q) evaluates to K/+/B.

FEMIZ

=6.25

K
1 = |Fleaa(i0.32)G(10.32)| = 7 052 = K =096

With

and wyet(s) = A/s, where A is constant, it follows that (using the notation
e(t) = wrei (t) — w(t))

. . L 1 A
Am e(t) =l sB(s) =l s 5isamy 5

A
- < 0.05A.
1+0.96-2- Flag(0) —

This is equivalent to
Fag(0) >9.90

Hence, if the low frequency gain is increased approximately 10 times the sta-
tionary error will be smaller than 5%. Our lag (phase-retarding) compensator
is given by

18+ 1

lag =
TS+
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Figure 5.2a

and we must have 1 > 9.90. With v = 1/9.90 we accomplish the goal with
minimal low frequency gain. The parameter 77 is selected according to the rule
10/we.a (this yields a phase loss of at most 6° in the designed gain crossover
frequency).

This gives the controller

6.255 4+ 1 (31.255+ 1)
1.565 + 1 (31.255 + 0.1)

F(s) = - Fiead(s) - Flag(s) = 0.96

5.2 Let G denote the heat exchanger’s transfer function.

a) Draw the Bode plot using the given table. From the diagram in Figure[5.2a]
it follows that

we = 0.079rad/s ¢, =88° A, =50
b) A proportional controller does not change the phase curve. According to

Figure the phase curve crosses —130° at the frequency 0.15 rad/s.
A gain crossover at this frequency will yield exactly the required phase



5.3

a)

margin, and any higher crossover frequency will yield one that is too
small ]

Twice as large crossover frequency is desired:
we,d = 0.30rad/s  @m,q = 50°

At the frequency 0.30 rad/s the phase margin is —5°. Hence, a phase
lead of 55° is needed. To this end, use the lead-compensator Fieaq, where
Flead(s) = K(mps+1)/(Bms+1). Set § = 0.1 (according to the diagram
in Glad&Ljung) in order to achieve the required phase lead. To obtain
the maximum phase lead at the desired crossover frequency, let

1
™= "=
wc,d\/B

Finally, K is chosen so that w.q is obtained. From the data, we have
|G(i0.3)] = 0.18

= 10.54

K
1= Pl (i) Gliwea)] = 72 |Gl & K = % — 176

Answer:
(10.54s + 1)

Fls) =116 G 0545+ 1)

20
G(s) = s s
5(14+2-0.1- 155 + (155)%)
which implies that
. 20
G(iw)| =

wy/(T=(3%5)?)? +4-0.01- ()?

with low frequency asymptote

|G (iw)| — %, w—0

*The controller gain that yields the desired gain crossover frequency can be computed as

1 1

K=—— =— =19
|G(0.151)]  0.525

45

and 5
arg G(iw) = —90° — arctan .

The gain is drawn approximatively based on a known gain at some point
of the low frequency asymptote, |%| = 1, and the breakpoints and slopes
of the asymptotes:

Frequency [rad/s] 150
Slope -1 -3

The system has two complex conjugated poles which implies that the
amplitude curve has a resonance peak. The approximative amplitude
curve must be modified at the resonance peak. An exact calculation of
the gain gives

Frequency [rad/s] | 100 | 150 | 200

Gain 0.35 | 0.67 | 0.12
The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 10 50 100 150 200
Phase —91° | —94° | —103° | —180° | —251°

In addition, one can also use

arg G(iw) - —90°, w — 0
arg G(iw) — —270°, w — oo

The Bode plot with the gain curve labeled “A” in Figure gives

we=20rad/s ¢n =88° An=1.5

If K would be chosen to the gain margin, A, = 1.5, the new gain margin

would be 1. Thus, if
A

m
2
the resulting gain margin becomes 2. With this amplification the final

value theorem gives the ramp error

K= =0.75

= 0.067

. . . 11
Jim elt) = lim sE(s) = iy s = 07520

Note that the system is stable by construction (the new gain margin is
greater than 1).



9 ] i g with low frequency asymptote
_ 0%2 = -~ A <] 10
2 o024 B <\ 2 Gliw)] = T w =0
) 0.13 T NG
0.05 P IERES and
0.02 = | N arg G(iw) = —90° — arctan Y arctan ——
0.01 ] T : I T 10 100
_900 L L —t — 1 S — — — _— — ‘EG
I N I The gain is drawn approximatively based on a known gain at some point of
3 - i % the low frequency asymptote, |%| = 10, and the breakpoints and slopes of the
O -180° i X -8 asymptotes:
&0 | | | °
s || 1 Frequency [rad/s] 10 100
970° i 1|l Slope -1 -2 -3
- T \ T . ) . .
10 2 50 100 200 500 1e+ 03 The phase curve is drawn based on a couple of samples:
Wea = 20.4 wp = 150 w [rad/s] Frequency [rad/s| 2 10 20 50 100
wep = 15.2 Phase —102° | —141° | —165° | —195° | —219°
Figure 5.3 In addition, one can also use

arg G(iw) - —90°, w — 0

¢) The new gain crossover frequency obtained in part b is 15 rad/s, see the arg G(iw) — —270°, w — oo
gain curve labeled “B” in Figure [5.3a] The low frequency gain of F(s)
must be increased at least 15 times. A lag-compensator with v =1/15 =
0.067 can be used. Choose, according to the rule of thumb, 77 = 10/wc 4,
where w g = 15, and hence 7; = 0.66. The choice v = 0 would satisfy the

From the Bode digram in Figure it follows that w, = 7.8 rad/s, ¢, = 47°
and A, = 11. However, these values are not used by the solution to this

blem.

performance requirement but violates the condition that the controller problett
should have finite gain in all frequencies. Figure [5.4b] (the figure can also be found in Glad&Ljung) gives that the over-
Answer: shoot is acceptable if ¢ > 0.58. Choose for instance ( = 0.6. This results
) (0.66s + 1) in a desired phase margin ¢, 4 = 60°. According to Figure (the figure
F(s)=0.75- (0.665 + 0.067) can also be found in Glad&Ljung), this also implies a desired gain crossover

frequency:
T -133 = 1.33 1.33 13.3
We,ddr = 1. We,d = = S = .
5.4 We begin by drawing a Bode plot of the system. T, 0.1

Gls) — 10 At 13.3 rad/s the phase is 29° and a phase advance of 31° is needed in order to
(5) = s(1+3%)1+ 135) get the desired phase margin. We suspect a lag compensator will be introduced
hich imolies th later, as we have low frequency requirements. A lag compensator, if designed
which implies that according to the prescribed recipe, will decrease the phase by at most 6° in
G (iw)| = 10 the designed gain crossover frequency. Therefor, we require an additional 6°
n w\/l + ()2 \/1 + ($%5)? phase advancement and end up in 37°. To this end, we use a lead compensator
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with 8 = 0.25 and 7p = ——~= = 0.15. K is adjusted to get the desired gain

wc,d\/l§

crossover frequency:

K
1 = |Fead (iwe.a) G (iwe.a)| = 7 0448 = K =112

The transfer function from the reference input to the control error is given by

1
= T EGae

When 6,.¢(t) is a step signal, the final value theorem gives

tlggo e(t) = ll_l)% sE(s) =0
even without a lag compensator thanks to the integration in G. The final value
theorem may be used since the system by construction is stable.

In order to handle errors for ramp references, introduce a lag compensator in
the controller. Then |Fl(0)| = 1/7, and if O,e¢(t) = 10- ¢, that is, if

10

eref(s) - 872

47

one obtains

1 1 1
lim e(t) = lim sE(s) = lim s 0_ 0

— 0.1
t— 00 5—0 s—0 1+ F(S)G(S) 52 ko - K/’Y <

which gives v < 0.1K = 0.112. Take v = 0.112 to avoid excessively high low
frequency loop gain. According to the rule of thumb, let 7; = 10/wc q = 0.75.

Answer:
1 1 . 1
F(s) = 1.12 0.15s + ) 0.75s +
0.0376s+1 0.75s +0.112
¢m [°] 100 \ 10 dByo M,
M [%] \
80 8 dB2o
/
M
M,
60 \ \ 6 dB2g

i
40 \ 4 dBao

20 \ 2 dByo

\
0 B 0 dBao
0 02 04 06 08 1

Figure 5.4b. Relations between overshoot, M, phase margin, ¢, resonance gain, My,
and relative damping, (, for a second order system with no zeros and static gain 1.

5.5 Notation. The notation “A — B — C” is used to say that the system with open
loop Bode plot in row A has its closed loop Bode plot in row B, and its step
response in row C.

A good start is often to look at the static gain and the final value of the step
responses. The static gain of the open loop system and the closed loop system

are related as |G¢(0)] = %. Systems with the same static gain can



1.6
we
1.4
/
/
1.2 —
1 /
0.8
1
We /wB _—
0.6
0 0.2 0.4 0.6 0.8 1

Figure 5.4c. Relations between gain crossover frequency, w., bandwidth, wg, raise time,
Ty, and relative damping, ¢, for a second order system with no zeros and static gain 1.

then be separated by looking at stability margins, resonance peek, overshoot,
bandwidth, and speed. Three of the combinations are easy to identify:

A — E — C: Finite but non-zero open loop static gain matches non-zero closed
loop static gain less than 1. Infinite stability margins matches step response
without overshoot.

B — C — E: Infinite open loop static gain matches closed loop static gain equal
1, which in turn matches a step response that settles at amplitude 1.

C — A — B: Zero static open loop gain matches zero closed loop gain, which in
turn matches a step response that settles at amplitude 0. It is also possible to
relate the Bode plots by their high frequency gains.

The remaining open loop Bode plots are D and E. These should be matched
with the closed loop gain curves B and D, and step responses A and D. Both
open loop Bode plots show a static gain near 1, which will make it hard (albeit
possible) to use that feature for identification. Easier is to approximately locate
the (closed loop) resonance frequency, which will be near the frequency where
the Nyquist curve minimizes its distance to —1. That is, the magnitude shall
be near 1, and the phase near —180° in the open loop Bode plot. This happens
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at a lower frequency in open loop Bode plot D than in E. The resonance peak
in the closed loop gain curve B is located at a higher frequency than that in
D. Finally, a higher resonance frequency gives faster oscillations in the step
response, and the oscillations in step response A are much quicker than those
in D. Alternatively the bandwidth’s relation to response speed may be used;
the bandwidth is higher in closed loop B than in D, and step response A is
quicker than D. Anyway, the last two combinations are D-D-D, E-B—-A.

10
s(1455)(1+ 55) (1 + 155)

G(s) =

gives
10
T+ (ST F ()2 /T + (125)°

with low frequency asymptote

|G(iw)] =

|G (iw)| — %, w—0

and
w

arg G(iw) = —90° — arctan ;—0 — arctan 4% — arctan 100

The gain is drawn approximatively based on a known gain at some point of

the low frequency asymptote, H—g! =1, and the breakpoints and slopes of the
asymptotes:
Frequency [rad/s] 20 40 100
Slope -1 -2 -3 —4
The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 10 20 50
Phase —136° | —173° | —236°

In addition, one can also use
arg G(iw) = —90°, w =0

arg G(iw) — —360°, w — oo

The Bode plot in Figure gives that w, = 8.9rad/s, ¢, = 48° and
An = 3.9. However, it is only the gain crossover frequency which directly
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Figure 5.6a

interests us here; an increase of the speed with a factor of two and a preserved
damping imply weq = 18rad/s and ¢m.d4 = ¢m. From the figure, we have
oa = arg G(iw,) — arg G(iwe,a) = 35°. We suspect a lag compensator will be
introduced later, as we have low frequency requirements. A lag compensator,
if designed according to the prescribed recipe, will decrease the phase by at
most 6° in the designed gain crossover frequency. Therefor, we require an
additional 6° phase advancement and end up in 41° To this end, use a lead
compensator (with standard notation of the parameters) with 8 = 0.21 and
™ = - 1 75 =0.12. K is adjusted to get the desired crossover frequency:
c.,d

K VB

|G (iwe,q) Fiead (iwe,a)| = |G (iwe,a)| i 1 = K=0=12
The transfer function from the reference input to the control error is given by
1
E(s)

. S—Y
T3 F(5)G(s) ()
When 6,.¢(t) is a step, the final value theorem gives

tlgglo e(t) = ll_)r% sE(s) =0
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A Im - 'Ar"IHL

-5 v \\1
L— L, .
L >
/ / Re Re

Figure 5.7a. Nyquist curve in two scales. Left: small scale. Right: big scale.

even without a lag compensator thanks to the integration in G(s). Here, the
final value theorem may be used since the system by construction is stable
(the phase margin is positive).

In order to handle errors for ramp references, introduce a lag compensator

(with the usual notation of parameters) in the controller. Then |Fi,.(0)| = 1/7,
and if O,¢(t) = 10 - ¢, that is, if

10
Oret(s) = 2
one obtains
1 1 1
lim e(t) = lim sE(s) = lim s——————— 0_ 10 < 0.01

s=0 1+ F(s)G(s) 82 km-K

which gives v < 0.01K = 0.012. Take v = 0.012 to avoid excessively high low
frequency loop gain. According to the rule of thumb, let 71 = 10/wc q = 0.56.

t—o0 s—0

Answer:
0.12s +1 0.56s + 1

0.21-0.125 +1 0.56s + 0.012

F(s)=1.2

Based on the Bode plot we plot the Nyquist curve, see Figure[5.7a] The system
is stable when the point —1 is not encircled by the Nyquist curve. This gives
1 1 1

K<. RNy P
<5 % 06 " 02



5.8 A time delay of T seconds changes the phase curve with —wT rad at frequency
w. The amplitude curve is not affected.

a) The crossover frequency is w = 1 rad/s and the phase margin is 0.698 rad.
This gives the stability condition

0.698 rad — 1 rad/s-T > 0
that is, T' < 0.698 s.

b) Plot the Nyquist curve as in Figure The point —1 is not encircled if
the phase is decreased at least 40° at w = 7 rad/s but not more than 80°
at w = 5 rad/s. This gives the following conditions

7rad/s-T > 40° =0.698 rad and 5rad/s-T < 80° = 1.396 rad
that is, 0.1 s < T < 0.28 s.

—100°
Figure 5.8a
5.9 a) The step response of G, is
_ ka ka

y(t) = LHY(s)} = " (1—e ) — P t— o0
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From the figure it is seen that ka/a = 0.5. At time t = 1/a we have
_ ka -1y — — —
y(1/a) = “2(1 —e 1) = 0.5-0.63 = 0.315 = y(2)
a

Thus a = 0.5, which gives kx = 0.25:

0.25
s+ 0.5

Gals) =

which is rewritten to make apparent the amplitude and phase

0.25
Vw2 +0.25

The corresponding Bode plot is shown in Figure[5.9a] To see how G4 mod-
ifies the Bode plot of G, consider for instance the frequency 0.1 rad/s.
When computing the new gain, the logarithmic scale in the diagrams is
used to do directly obtain the logarithm of the product of the two systems’
gains:

—iarctan 2w

Gal(iw) =

|G (0.1i)] = 1010
|GA(0.1i)| = 107931
|G'A(0.11) G (0.11) | = 10%25 . 107031 = 100-15+(=0:31) — 1(=0.16

The new phase is obtained by adding the arguments of the two transfer
functions:

arg G (0.1i) = —135°
arg Ga(0.1i) = —11°
arg G (0.11) Gy (0.11) = arg G (0.1i) + arg Gy (0.11) = —146°

Carrying out the procedure of “adding Bode plots” at a range of selected
frequencies results in the Bode plot in Figure where G, = GAGh.

b) In Figure it can be seen that the crossover frequency is 0.078 rad/s.
Hence, let we q = 0.4 to obtain a 5 times as fast system. At the desired
crossover frequency, the phase must be advanced by 68° to maintain the
phase margin. To this end, employ two equal lead compensators (using
standard notation of the parameters), each advancing the phase by 34°;

ke 5 =0.2 =—1 _ =47
take 8 = 0.28, and ™ oa B 7




|Ga(iw)]

arg G (iw)

G (iw)|

arg G(iw)

10—0.4 ~

10796 N

10—0.8

0° JRUEE DR s -

-30°

-60°

-90°

we = 0.078  we,qa = 0.40

Figure 5.9b
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The controller gain is adjusted by the factor K to get the desired crossover

frequency:
|G(iwc,d)ﬂead(iwc,d)|2 =1 =
VB
K? = = 6.
0.047 6.0
Answer: 2
4.7s +1
F(s) = (\/61.35—1- 1)
1
G(S) = gGl(S)
gives
oy |Ga(w)]
Gliw)| = =15

arg G(iw) = Gy (iw) — 90°
A P controller gives a phase margin of 40° when

arg G(iw) = —140° = argG;(iw) = —50°

From Figure it is seen (although not easily) that this occurs at wep =
0.52 rad /s, which is also the highest possible gain crossover frequency possible
to obtain with P control. The desired increase in speed by a factor of two is
thus achieved by a new gain crossover w, q = 1.05 rad/s. Figure gives

arg G (iwea) = —107° =  argG(iwgq) = —197°

A desired phase margin of 40° requires that the phase be advanced by 57° +
6° = 63°. To this end, employ a two equal lead compensators (using standard
notation of parameters), each advancing the phase by 32°; take 5 = 0.31 and
™ = - dl 75 = 1.72. The controller gain is adjusted by the factor K to get

the desired crossover frequency:

|Fead(iwea)]? - |Gliwea) =1 = K? ! 2%:1 = K=+133
’ ’ /0.31 1.05



o e N VEAL
3 &
{5’ i NG == =R 0.0242
— 10-2 i i
S
JER [ A 1 S B B O (M (IS S 1 Y N A
o RN o R
= -50° ==t raHr— A=A L L
2 90° ALl
o0 - NG T T o
: T i
-180° ir ir i
1072 107t 10° 10* 102
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Figure 5.10a

In order to handle errors for ramp references, introduce a lag compensator
(with the usual notation of parameters) in the controller. Then |Fi.z(0)| = 1/7,
and |F(0)| = K?2/v. To choose v, consider the Laplace transform of the control

error,
1

SR e e
If r(t) = A-t (a ramp), that is, if

R(s)

A
one obtains
. . . 1 A A
A elt) = lim s B(s) = i s e s 2 ~ M S F @)
B A
[F(0)] - |G1(0)]

This shows that the ramp error is inversely proportional to the static gain of the
controller. According to Figure[5.10a], the highest possible controller gain when
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using a P controller and a phase margin of 40° is required, is 8.6 w.p = 4.5
(remember that % contributes with wc% to the loop gain at w.p). Hence, to
reduce the ramp error to 1% of that of the P controller, the static gain of the
new controller has to be at least 450. Therefore, take v = K?2/450 = 0.0296,
and, according to the rule of thumb, let 71 = 10/w¢ q = 9.52.

Answer: )
1.72s + 1 9.52s + 1
F(s) = 13.3- ot ot
0.31-1.72s+1/ 9.52s 4+ 0.0296
a) The Nyquist curve is drawn based on the following observations: First,

as w — 0, |G(iw)| increases and arg G(iw) — —90°. Then, as w — oo,
|G(iw)| — 0 and arg G(iw) decreases. We also have, w. = 0.78 rad/s with
arg G(iw.) = —133°, and finally w, = 3.2 rad/s with |G(iwp)| = 0.091.
The resulting Nyquist curve is shown in Figure [5.11a]

/ A Im \

Figure 5.11a

b) The gain margin is 1/|G(iwp)| = 11, which is also the highest possible
proportional gain that preserves closed loop asymptotic stability.

¢) The Laplace transform of the control error is related to the reference as
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follows:
1

B = T xam

R(s)

With
10

r(t) =10t = R(s)= 2

and using the final value theorem (from b we have that the system is
stable), this yields

10

t—o0 s—0

For small w we have

Gs)~—- = sG(s)—1,s—0 = lime(t)=5

S t—o00

Raising the gain curve in the Bode plot by K = 2 results in

we =124rad/s ¢ = 32°

The closed loop system becomes unstable when the phase margin is eaten
up by the phase lag of the delay,

arge T = —T

so in order to get an asymptotically stable closed loop system it is thus
required that

32° 0.55 rad

CT 20 T =
wel <320 = I < g ad)s ~ 124 vad)s

=044s

For this amplitude curve we cannot say anything about the stability since
the system can contain an arbitrarily large time delay which could make
the gain margin less than 1.

It is stable, since the gain is less than 1 for all frequencies; there is no risk
that the Nyquist curve could encircle —1 under these circumstances.
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)

Enter the system and the >> s = tf( ’s’ );

regulator. Draw the Bode > G =726/ ...

plot.  This gives w. = ((s+1)* (s+25)* (s+25)
5rad/s, w, = 9.5rad/s, >> F = 1;

Am = 3.5 and ¢, = 27°. >> margin( F * G )

Bode Diagram
Gm =10.8 dB (at 9.49 rad/sec) , Pm = 26.6 deg (at 4.99 rad/sec)

Magnitude (d8)

Phase (deg)
=
&

10" 10° 10' 10
Frequency (radisec)

From a) we know that at w. 4 = 5 rad/s the phase margin is 27°. In order
to have ¢, > 60° we need to increase the phase by approximately 40°,
including 6° extra to compensate for a future lag compensator. This is
obtained using a lead compensator (using standard notation of parame-
ters) with § = 0.21. The phase compensation is located at the correct

f by taki =—1 _—0.43.
requency by taking mp oon \/E

The controller gain is adjusted by the factor K to get the desired crossover
frequency:

1 1
K —.|G@H5)| =K — -
NG |G(i5)] oo
K =10.46

1=1 =

The requirement ey = 0, that is, no steady state error for a unit step
reference signal, is achieved by incorporating a lag compensator (using
standard notation of parameters) with v = 0, and, using the rule of
thumb for the choice of 71, we take 71 = 10/5 = 2.



Generate a lead-lag regula-
tor and make a Bode plot of
the open loop system. Both
the crossover frequency and
the phase margin require-
ments are satisfied.

Plot the step response of the
closed loop system.

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

>>
>>

wc = b5;

b =0.21;

tD =1/ (wc * sqrt( b ) );
K =sqrt(b) / 1;

Flead = K¥( tD * s + 1) / (b *x th *x s + 1 );
g =0;

tI = 10 / wc;

Flag = (tI *s+1)/ (tI*s+g);
F = Flead * Flag;

margin( F * G )

Bode Diagram
Gm = 16.8 dB (at 17.5 rad/sec), Pm = 62.6 deg (at 5.01 rad/sec)

Magnitude (dB)
b
2

Phase (deg)
)

10° 107! 10° 10' 10° 10°
Frequency (rad/sec)

Gc = feedback( F * G, 1 );
step( Gc, 10 )

Step Response

Amplitude

Time (sec)

54

)

Compute the transfer func- >> Gcl = feedback( G, 1 );

tion of the closed loop sys- >> bode( Gecl, ’-’, Gc, ’-.7 )
tem for F(s) = 1. Draw
its Bode plot side by side
with the Bode plot for the
compensated system. (The
curves of the compensated
system are dash-dotted.)

Bode Diagram

Magnitude (d8)

Phase (deg)

10
Frequency (rad/sec)

Comparing the two Bode plots we see that the main difference is that
the height of the resonance peak has been reduced, that is, the damping
of the closed loop system has been increased due to the increased phase
margin. We also see that the bandwidth is approximately the same, since
we have not changed the gain crossover frequency.

Calculate the transfer function from the reference signal to the error:

1

= PO TReee

R(s)
Let

1
T 1+ F(s)G(s)

\4
\

n
1

Enter the transfer function 1/ (1+F=*xG);

S.

Create a time vector be- >t =(0:0.1:
tween 0 and 30 with step >>r =t

0.1, and a reference signal

vector r(t) = t.

30 ).7;



5.14

5.15

Plot the result. Even
though the steady state er-
ror for a step reference sig-
nal is zero (due to v = 0),
the steady state error for
a ramp reference signal is
NON-zero. os}

>y =1sim( S, r, t );
>> plot( t, y )

The amplitude and phase at w = 0.2 rad/s is 0.0162 and —140°. We need a
phase advance of 20° to obtain a phase margin of 60°. A lag part is needed to
remove the steady state error. Hence we need 6° more in phase advance, all in
all a 26° phase advance. This is obtained by employing a lead-lag compensator.
First, § = 04 and 7p = 1 = 7.9 give the required phase lead at the

Wc,d\/E

desired gain crossover frequency. Then K = 00\/1562 = 39 achieves that gain

crossover frequency. Finally, 71 = 10/w. q = 50 and v = 0 removes the steady-
state error.

The resulting controller is:

g 7-95+ 1505 +1

F(s) =392 "~
(s) 5s+1  50s

a) Combining the system’s transfer function with the controller K, the loop

gain becomes
0.25K

(t1s+ 1)(m2s + 1)s
which leads to the error coefficients
1 1 4
= - = O’ 61 = T = =
1+ limg_0 Go(s) limg_ 0 sGo(s) K

Go(s) =

€0

55

provided that G. is stable. The Bode plot shows that stability of G under
proportional control may be evaluated via the gain margin A,,, that is,
G, is stable if K < A,,. The Bode plot gives A, = 4000, so the condition
under which the error coefficients are defined is

K <4000

The problem formulation suggests the use of a lead-lag compensator.

Let wc q denote the desired gain crossover frequency 100 rad/s. The Bode
plot gives |G(iwea)| = 5-107* and arg G(iwe,q) = —175°. To obtain the
desired phase margin, a phase lead of ((—180°)+50°+6°)—(—175°) = 51°
is needed, where 6° has been added to ensure that the phase margin is
kept even if a lag compensator is used, which have reason to suspect that
it will, since we have requirements on tracking performance. To begin
with, we design a lead compensator with 8 = 0.13 to achieve the phase

advance, and 7p = L = 0.0277. The desired crossover frequency is
wc,d\/ﬁ

obtained by adjusting the gain of the open loop system by introducing a
factor, K, in the controller:

: . K 3
1 = [Fead (iwe,d)G(iwe,a)| = NG .5.107%

Since the system contains an integrator, the step error coefficient eg is
zero. The ramp error coefficient requirement is

B 1
im0 sF(s)G(s)

= K=721

< 0.001 <=

€1
— < 0.001 <~
1ims_>0 F(S)
4000 < lim F(s)

s—0

but the controller K Fioaq doesn’t fulfill this requirement since
lim Flead(s) =721
s—0

Hence, the static gain of the controller must be increased by the factor
% = 5.55. To this end, introduce a lag compensator in the controller,
T8 +1

TIs +7y

lag —
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2)

with v = 1/5.55 and 77 = 10/weq = 0.1 (see the discussion of lag com-
pensators in Glad&Ljung!).

The resulting controller is

0.0277s+1 0.1s+1
0.0036s +1 0.1s+0.18

F(s) =721

The phase curve crosses —120° at w = 0.27 rad/s and there the gain is
| Go(iw) |~ 0.35. The maximum cross-over frequency is hence w. = 0.27
rad/s and it is acheived for K = 1/0.35 = 2.86.

The reference signal r(t) = 0.5t implies that R(s) = 0.5/s2. The steady
state error can be computed using the limit value theorem, which implies

1 0.5 5
lim e(t) = lim sE(s) = lim ST 3 = - ~ 1.7
t—o0 5—0 s—0 1 4+ S(S+1.)2 S K

In order to reduce the steady state error it will be necessary to introduce
a lag compensation, but in order to maintain phase margin 60° after the
lag compensation has been included it will be necessary to introduce a
lead compensation. Introduce therefore the lead compensation

TS+ 1

., =K——.
tead(s) Btps+1

In order to guarantee phase margin 60° the phase needs to be increased
by ~ 6° = = 0.7. With w4 = 0.27 rad/s from problem a) this implies
that 7p = —1—~ = 4.44. The gain K is given by the relationship

wc,d\/E

1
Flead Z.Wc,d G iwc,d =K—035=1
| Flead(iwe,d) G(iwe,a)| NG

which gives K = 2.39

In order to reduce the steady state error we introduce
T1s+ 1

TIs+7

Flag(s) =

The requirement on the steady state error, using the same reference signal
as in b), gives
1 0.5

. . . Y
lim e(t) = lim sE(s) = 1 =2 = 15<0.175
Jim e(t) = lim s E(s) 550 T+ Fread(s)Flag ()G (s) 2 K =

56

which implies that v < 0.175- K/5 ~ 0.1. Using the rule of thumb from
Glad&Ljung implies 7; = 10/w. = 37. The entire feedback controller
hence becomes

(44s+1)  (37s+1)
(0.7-4.45 + 1) (37s 4 0.1)

F(s) = Flead(8)Flag(s) = 2.39

5.17 In B and C the gain of G (iw) tends to infinity when w tends to zero, which
means that they can be combined with I and II since these curves have steady
state gain one, i.e. G¢(0) = 1. The curve in B has higher cross-over frequency
and lower phase margin, which implies that it corresponds to I, which has
the highest resonance peak. This gives the combinations B - I and C - II

respectively.

Using the same arguments it can be seen that A has higher

cross-over frequency and lower phase margin, which means that it correponds
to ITI. Hence D corresponds to IV.

5.18 a)

The phase for low frequencies tends to —90° which implies that the system
contains an integrator, i.e. a factor s in the denominator, which means
that p = 1. For high frequencies the phase tends to —270° which means
that the difference between the order of the denominator and the order
of the numerator is three, i.e. p+n—m = 3.

Use a lead-lag compensator, i.e.

Ts+1 7s+1

F=K .
TpPBs+ 1118+

At the desired cross-over frequency wc 4 = 3 we have arg G(i3) ~ —178°
and |G(i3)] = 0.1. In order to obtain phase margin 45°, also including a
lag compensator, the phase has to be increased by 45 — 2+ 6 = 49°. This
is obtained by choosing

1
f=013, 7p=—7> =0.92.
b wc,d\/g
Take also K = 3.6 such that
K
|Eead(iwc,d| . |G’(iwc,d)| = — 01 = 1.
VB



For low frequencies the transfer function can be approximated by
G(s) = —
(s) ~
where the Bode diagram, by looking at w = 0.01, gives that A = 1.

The steady state error when r(t) is a unit step becomes

1 1 1
lim e(t) = lim sE(s) = lim s = li

— _-= —0.
t—o00 s—0 s—0 1+ FG(S) S

11m
s—=0 1 4+

2=

1
s

and the steady state error when 7(¢) is a unit ramp becomes

. . . 1 1 . 1
A ) = o) = s pe e S EL T )

By choosing
v =0.01K = 0.036,

and 10
T = == 33
We,d
according to the rule of thumb we get
(0.92s+1) (3.3s+1)

F(s)=3. .
(%) =38 595.0.135 + 1) (3.35 + 0.036)

5.19 B and C have a smaller stationary error than A and D = Higher K = B and
C > 4,41, A and D < i7i,9v. Small § = Large increase in phase margin = Less
oscillatory = A and C <« 4,47, B and D <« i4,7v.

Answer: A — i, B— 4, C—4and D — .

5.20 a)
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b) |F(iw:)G(iw.)| =1 < |G(iw.)| = 1 & w, = 1rad/s
©m = arg (F(iw.)G(iw.)) — (—180°) = —130° + 180° = 50°
The closed-loop system is stable because ¢, > 0
c¢) To have the closed-loop twice as fast, the crossover frequency needs to

be doubled. Let the desired crossover frequency be w, q = 2w, = 2rad/s.
Then,

1 1
=K=—&K=3.33

KGliweg)| =1 K= ——
[KG(iwea)l =1 G (iwe.q)] 03

d) The phase margin has decreased to ¢, , = 5°, which in the time domain

means that the overshoot increased for the closed-loop system.

e) Desired increase in phase margin: Ay, ¢ = @m.da — @m,p = 45°. This
gives 8 = 0.18 (check Fig. 5.13 in Glad & Ljung).

1
= =1.18
D= B

| Flead (iwe,a) Gliwe,a)| = 1 = K | Z22e450.3) = K = 1.4

f) lim e(t) = lim sE(s)

1
t—o0 s—0 S

_ 1 1 1 B
- ll_r)%sl+F(s)G(s) ITKG(0) — 0.17

g) lim e(t)

Jim = e = 0= F(0) = 00 F(0) =5 =7 =0

h) lim e(t) =0.01 & -

— K — —
Jim o = 001 = 1+ £G(0) = 100 = 7= 0048

T = ﬁ =0s
If 77 is too small, the phase margin decreases more; if 77 is too large, the

steady state value is only reached in practice at very small frequencies.

5.21 Systemet G(s) = S%e_o‘%s regleras med en P-regulator med K = 1/v/2.

Skarfrekvensen w, ges av

2K 2,2 _ 2 —
T_HﬁZLK =w,+1=>w.=V4K?* -1=1.
c

1= |KG(iw.)| =
Fasmarginalen ¢,, ges av
om =+ arg( KG(iw.)) = 7 — 0.25w, — arctan w. =

-1
=7 —0.25 —arctanl = SﬂT ~ 121°.
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Vi vill bestimma en lead-lag-regulator F'(s) som ger dubbla skérfrekvensen
och samma fasmarginal. Vid we ny = 2 ér fasmarginalen

Omony =T +arg G(2i) =7 — 0.5 — arctan 2 ~ 88°.
Det innebér att vi maste hoja fasen med
A, =121° —88° +6° = 39°,

med 6° for lag-link. Det ger

1 —sin(Ap.n,) L
=——— T =02 Tp=——=11
I6] 1T sln(A@m) b w(:,ny\/B
Da har vi Fleqq = 114:%?;3'

For att fa ratt skirfrekvens bestammer vi ett K’ s& att

1 1 1
1 = |K'Feqa(iwe)Giw.)| = 2K' ——re = 2K’ | — =2K' = K' = 3
B(w2py + 1) 58

Det stationéra felet maste vara mindre &n 0.05 nér referensen &r ett steg. Vi

ligger till en lag-link Fj,, = i;:;fy, dér 77 = ﬁ =5 och « bestdms s att
1 1 2K’
<0.05= 7 < S =005

1+ K Fioad(0) Fiag(0)G(0) ~ 1+ 2K/
a) Visoker F(s) = Fleqd(s)Flaq(s).

Vi bérjar med den fasavancerande linken

TS+ 1
F, =K—.
tead(s) Btps+1

Den nya skérfrekvensen ar w4 = 30 rad/s.

Eftersom ¢, = 40° och ¢,, = arg(F(iw.q)G(iw.q)) + 180° =
arg(Flead(1we,q)) + arg(Frag(iwe,q)) + arg(G(iweq)) + 180°, sa far vi

58

arg(Flead(twe,q)) = —140° — arg(Flaq(twe,q)) — arg(G(iwe,q)). Fran bode-
diagrammet har vi arg(G(iw,q)) =~ —180° och fran tumregeln om fas-
retarderande lankar, vet vi att den minskar fasen med 6° for lampliga
parameterval. Alltsd arg(Fjeqq(iweq)) = —140° 4+ 6° + 180° = 46° och
B =0.17. Med detta 3 far vi 7p = (we,qy/B) " = 0.0812.

Vi véljer K sé att weq = 30: |F(iwe,q)G(iwe,q)| = 1. Detta ger
| Flead(iwe,a)| Flag (iwe,a)||G(iwe,a)| = 1.
Fran tumregeln foljer |Fiqq(iwe q)| ~ 1, och

LS al
VB liwe,a(iwe,q + a)(iwe,q + b)|

vilket ger K = 395.17.

=1

)

Den fasretarderande lanken ges av

18 +1

Flag(s) = TIS+’77

och enligt tumregeln ska 7; = 10/w.q = 0.33. Vi vill vilja v s& att
statiska felet vid steginsignaler &r noll. Enligt slutvirdesteoremet (slutna
systemet ar asymptotiskt stabilt, se ovan)

1 1

li t) =1 E =1li -
ti>n(;loe( ) S%S (8) SIL%S]_ + Flead(s)ﬂag(S)G(s) s’

vilket ger

lim (s+a)(s+b)(s+c)(Brps+ 1)(11s +7) _
520 (s+a)(s+b)(s+c)(Brps+ 1)(rrs+ ) + Kki(tps + 1) (rrs + 1)

B abcry
abey+ Kk

Alltsa ska vi vélja v = 0.
Den resulterande regulatorn ges av

0.08125 +10.33s + 1

F :Fea Fa = A
(5) = Fieaa(s) Fiag(s) = 395 70.0137s+1 0.33s




b)

Den verkliga dppna loopen ges av F(s)G°(s) = F(s)G(s)e~T¢%. Notera
att |F(juw)GO(w)| = [P(jw)G(juw)e 77| = |F(jw)G(jw)e 77| =
|[F(jw)G(jw)|, medan arg(F(jw)G°(jw)) = arg(F(jw)G(jw)) — Tqw.
Eftersom tidsférdréjningen bara paverkar fasen tittar vi pa fasmarginalen.
Regulatorn dr designad si att ¢, = 40° = 14805077 rad. Alltsd @0 =
©m —Tqw,. Slutna systemet ér stabilt om ¢ > 0, vilket ger ¢, — Tyw, >

01Ty < ‘fu—”: = 0.0233 s.

Slutna systemets (G.) snabbhet ges av dess bandbredd, vilken dr wp =

50 rad/s. Ett lagpassfilter F,.(s) = uppfyller |F.(jw)| ~ 1 for
1

1
14+7s
w < 771 medan for w > 77! avtar forstirkningen med lutning —1 i
ett bodediagram. Approximativt géiller da att F,. bara reducerar hela

systemets bandbredd om wg > 771, vilket ger 7 > wj' = %.
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6

6.1

6.2

Sensitivity and Robustness

The sensitivity function is the transfer function from v to y. The block diagram
gives
1 s> +s
Y(s)= ——5%V(s) = 50— V()
S(s)
) wvw? +1
1S (iw)| = -
(K —w?)? 4w

For w =1 we get
V2
(K—1)2+1
The amplitude of y(¢) is less than the amplitude of v(t) if [S(1i)| < 1, that is,

V2
(K —1)2+1

|S(1)] =

<1 & 2<(E-12+1 & K>2

Determine the upper limit of the relative model error
0 _
Gals) = LT =5 = (sl —w
The stability is then guaranteed if
. F(iw)G(iw) 1
G, =l < — N
[Ge(iw) ‘ 14+ Fiw)G(iw)|  w “

No steady state error for steps implies G¢(0) = 1 and the bandwidth wg is
thus defined by the smallest value that satisfies
|G (iw)] <

1
—, w>w

V2 "
The curve 1/w crosses 1/ V2 at w = V2. Thus, the bandwidth must be less

than v/2. However, the curve |G (iw)| asymptotically approaches a line with
slope —20 dByg/decade, which implies that wg cannot be arbitrarily close to

V2.
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For example, if G_ is a first order system, then the breakpoint of the asymptote
must be 1 rad/s if it shall coincide with 1/w. The first order system with that
asymptote is %5/1, which has a bandwidth of 1 rad/s. If G would be a higher
order system, the bandwidth could be made slightly higher, but the limited
information about G, excludes this possibility.

Answer: The maximum bandwidth is wg = 1.

Figure 6.3a

6.3 The disturbance is amplified when the magnitude of the sensitivity function

exceeds one, that is, when

_— 1
‘1+G0(iw)‘ -

that is
11+ Go(iw)] <1

which corresponds to the part of G,(iw) that is within a circle with center at
—1 and radius 1, see Figure



6.4 Let
() = 0.9
g V1+w?
denote the upper bound on the norm of the relative model error. Robustness
condition:
) F(iw)G(iw) 1
T = M/
7w ‘ 1+ Fiw)Gw)| = gw) 7
Now,
s+10 1 1
F = = —
@G =——Fw -5 ~
F(iw)G(w) | | 1T | 1
1+ F(iw)G(iw)|  |iw+1| w2+l
so the robustness condition becomes
1 w?+1
Vi <
N/ 0.9

Vw: 09 <w?+1

which is satisfied.

Answer: Yes.

6.5 a) Using notation similar to that in Glad&Ljung, we have
Ga(s)=eT -1
that is, Ga(iw) = coswT — 1 —isinwT. This implies
|Ga(iw)] = V2 — 2coswT
and in particular

0, whencoswT =1

Ga(iw)] = {2

when coswT = —1

)

In Figure |Ga(iw)| " is plotted as a function of wT.
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6.6

1/v/2 — 2 coswT
w
|

0.5 —+-

Figure 6.5a

b) The robustness criterion results in

1
|Ga(iw)|

F(iw)G(iw)
1+ F(iw)G(iw)

Vw:‘

Figure therefore provides the answer.

Answer:

‘ ﬂmﬁ@0‘<;

1+ F(iw)G(iw)| ~ 2

a) First identify the relative model error:

G(s)
that is,
_G(s)
o=
The robustness criterion
1 G(iw) KG(iw)
Y = |= >
“ ‘Gﬁmﬂ ‘Gmg ‘1+KG@®




6.7

gives

|G(1CU)| < ——F o wg(wg i 25)

~ liw(iw +5) + K| 2 (25/2 — w?)? + 25w?
|Kiw(iw +5)] 25

2 [wt+ (25/2)

=%\ weerm W

Because g(w) — 2/25 as w — oo stability cannot be guaranteed when
G(s) = 1. Also note that the requirement that G°(iw)F(iw) — 0 as
w — oo fails, since G°(iw) — 1, w — oo.

When G(s) = « the closed loop system becomes

KGs)
1+ KGO%s)

K(1+4 as(s+5))
s(s+5)+ K(1+ as(s+5))

with characteristic equation
s%(2 4 25a0) + 55(2 + 25a) +25 =0
Rouths algorithm gives the condition
2425a0>0 < a>-2/25

This is not contradictory since the robustness criterion is a sufficient but
not necessary condition.

The characteristic equation can be determined for a generic nominal loop
gain. Note that you are not required to derive the generic formula — just
make sure that you are able to determine the correct polynomials P(s)
and Q(s) below. Let

Guo)— _f0FEE __ M&a  blsa
14 U o afs)(s +a) +b(s)a  als)s + (als) + b(s))a
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and has the same root locus with respect to a as the open loop system

a(s) + b(s) _ Go+1
a(s)s s

has with respect to a proportional feedback. This can be used to draw
the root locus using MATLAB. However, to draw the root locus by hand,
we use that here G,(s) = KG(s), so

b(s)=4  a(s)=s(s+1)

which lets us identify the polynomials P and @ in the characteristic equa-
tion P(s) + aQ(s) =0 as
P(s) =a(s)s = s*(s + 1) Q(s) =a(s)+b(s) =s>+s+4
o Starting points = zeros of P(s): 0 (double), and —1
End points = zeros of Q(s): —% + i@

¢ Number of asymptotes: 3 —2 = 1.
Direction of asymptote: % -7, that is, the negative real axis.

o Part of the real axis that belongs to the root locus: (—oo, —1].

o Intersection with the imaginary axis: Set s = iw and solve the char-
acteristic equation:

—w?(iw+ 1)+ a(—w? +iw+4) =0
Isolate real and imaginary parts:
—w?(14a)+4a=0
{ P +aw=0
with solutions

(a=0,w=0) or (a=3 w==V3)

The root locus is shown in Figure from which the conclusion imme-
diately follows.

Answer: Asymptotically stable for o > 3.



Im

w=+v3, a=

Asymptote

/ T 3 S >

-2 -1 1 Re

w=-V3 a=3

Figure 6.7a

b) Begin by identifying the relative model error:

OS: S @ = S L_
6 = 6(0) ;g =60 (14 s 1)
[
Gal(s)
Thus
1 _lstal  Vw?da? . fw)
|Galiw) | —s | w o

The robustness criterion Yw : |Gc(iw)| < f(w) is fulfilled if the low fre-
quency asymptote of f(w) exceeds the resonance peak at w = 2, where
|G.(i2)| = 2. This gives the condition

Va4 +a? az0

> 2
2

a> V12

Answer: a > 12

¢) The robustness criterion gives a sufficient but not necessary condition,
that is, the system can be stable even if the criterion is not satisfied.
In this case for 3 < a < +/12. With a root locus we obtain an exact
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6.8

6.9

characterization of the stabilizing parameter values, that is, a necessary
and sufficient condition.

Since the equation for G has the same “F” in the numerator and the denom-
inator, it follows that the complementary sensitivity function 7" and G, are
the same. It can be shown that both F(iw)G(iw) and F(iw)G°(iw) tend to 0
as w — 0o. The robustness criterion guarantees stability if |T'(iw)| < 1/(yw)
since

1
Yw o |Ga(iw)]
The transfer function 7" has a resonance peak at w = 1 (seen in Figure
since T' = G.) with |T'(i1)| = 35, which leads to the condition

|Ga(iw)] <yw =

B<— & y<—
~1 TS 35
Trivially, v must also be positive.
Answer: 0 <y < %
The closed loop system becomes
Y(s) = V(s) + Go(s)(R(s) = N(s) = Y(s)) =
Go(9) 1
Y(s) = ————(R(s) = N Vv
() = 15 g5y (B~ N + g Vs)
where we can identify
Go(s) 1

T = -5V =
() 14 Go(s) () 14 Go(s)
Notice that S(s) + T'(s) = 1. In the problem formulation we have Y(s) =
S(s)V(s) since the other inputs are zero. Hence, for v(t) = sin¢, we have
1 s
LTSV (t) = —=sin(t — —
(SVH0) = sint =)

and thus for n(t) = sint,

Y(s)=-T(s)N(s) = —(1=5(s))N(s) = S(s)N(s) — N(s) =



6.10

2)

Putting
1
G%(s) = G(s =G(s)(1+Ga(s
(s) ()(8+1) (s)( a(s))
gives
s 1 s+1
G =— =4 =—
a(s) s+1 Ga(s) s
Enter the system and >> s = tf( ’s’ );
the regulator from Prob- > G =725/ ...
lem B.13 ((s+1)*(s+25)x*(s+25))
>> wc = b;
>> b = 0.21;

> tD =1/ (wc * sqrt( b ) );

>> K =sqrt( b)) / 1;

>> Flead = (tDh*s +1 )/ (bx*xthx*xs +1);
>> g = 0;

>> tI = 10 / wc;

> Flag = (tI *s+1)/ (tl *s+g);

>> F = K *x Flead * Flag;

Enter the inverse relative >> IDG =- (s +1) / s;
model error and the com- >> T = feedback( 1 * G, 1 );
plementary sensitivity func- >> bode( IDG, ’k-’,

tion obtained when G(s) is T, *k-.7 );
controlled by F(s) = 1.

Plot the amplitude curve of Bode Disgram

the inverse relative model 50
error in the same diagram ux—
as the amplitude curve of

the complementary sensi-
tivity function. .

Magnitude (dB)
/

Phase (deg)

Frequency (rad/sec)

Since the absolute value of the complementary sensitivity function goes
above the inverse relative model error over a frequency interval, we cannot
guarantee that the closed loop system obtained when G°(s) is controlled
by F(s) is asymptotically stable.

3
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6.11

6.12

Enter the complemen- >> T = feedback( F * G, 1 );
tary sensitivity function >> bode( IDG, ’k-’,

obtained when G(s) is T, ’k=-.7 );
controlled by the lead-
lag regulator designed in Bode Diagram

Problem [EI3l1 Plot the
amplitude curve of the .
inverse relative model error
in the same diagram as the
the amplitude curve of the
complementary sensitivity
function.

Magnitude (dB)
’

Phase (deg)
/

10 10
Frequency (rad/sec)

In this case |T'(iw)| stays below the inverse relative model error, and hence
we can guarantee that the closed loop system obtained when the lead-lag
regulator is applied to G°(s) will be asymptotically stable.

The transfer function between the reference and the error is the sensitivity
function. When the reference signal is a sinus the error signal will also be a
sinus with the same frequency and with an amplitude modified by the gain
of the transfer function at that frequency, |S(0.1i)] = —20 dBgy = 0.1. This
gives that the amplitude of the error is 0.2.

A way to see if the controller also stabilizes the system at 400 r/min is to look
at the phase and amplitude margin of

5+0.116 s+0.02 0.02 e 2

F =35.7-
(8)G(s) = 85,7 8 e 510021+ 205

A bode plot of this system is given in Figure were it can be seen that
the phase margin is 9.54° and that the amplitude margin is 1.3. The closed
loop system is stable but the margin is small.



6.13

10!

)l
14

<§ e E
< 10° s byl
B — =
- w
w
\
107!
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-210° —
[
107t 10°
we = 0.26 w [rad/s]
wp = 0.32

Figure 6.12a

The sensitivity function is given by
1
S(s) = —————
) =TT FHeE
which in this case means
1 2

S(s) = D
(s+1)2+ K

The demand that the amplification of the sensitivity function should be less

than 1 at w =1 gives

15(1)| 2 o1
il)| = —— .
Vi+ K2~

that is, K > /396 ~ 19.9.

To illustrate, the condition is verified in MATLAB.

Enter the system and create >> s = tf( ’s’ );
the sensitivity function. Plot > G6G=1/ (s +1)°2;
with a grid. >> K = 20;
>> 8 =minreal( 1/ (1 +K *G) );
>> bode( S );
>> grid;
Bode Diagram
10
. 0
gf‘lﬂ
H
D 90
g 45
o 2 . ‘q 1 5
10° 10 10 10 10°
Frequency (rad/sec)
6.14 a) S(s) ar overforingsfunktionen fran storsignal till utsignal. For att under-

trycka en storning av frekvens w ska |S(iw)| < 1. —G.(s) &r overforings-
funktionen fran méatbruset till systemets utsignal. For att undertrycka
métbrus av frekvens w ska |G.(iw)| < 1. Vi har f6ljande samband mellan
S(s) och Ge(s)

1 G()(S)

S(s) + Ge(s) = 15 Gols)

1 + Go(s)

P4 grund av detta samband sd kan inte bade S(s) och G.(s) goras sma
oberoende av varandra. Saledes kan vi inte bade undertrycka stérningen
och matbruset godtyckligt mycket samtidigt.

S(s) ar stabil s vi kan anvinda slutvirdessatsen:

1
lim e(t) = liH(l) sE(s) = lim sS(s)— = HIr(l) S(s) = {nollstalle i origo} = 0.
S—r S—r

t—o0 s—0 S



7 Special Controller Structures

7.1 a) Derive the transfer function: 2 ‘
= e e
E B
1 — 05 = | g
0(s) = Om 3 5 w
)= G300 390 % 02 - ; I
Gra(s) =~ 0.05 ] N
O (s) = w E = g
)= T3 108) + Gra(e) " ) 002 - = o
GRra(s) = Ky =9 gives o —
0.9 -60° i i
0(s) = : W (s) =: G(s)W(s) 3 > E=
(14 5033) (1 + 553) (1 + 9) & -120° L
o I I [
Thus, %’3 ‘1500 38
0.9 -180 %
|G(iw)| = = = -210° -
VI+ (5o V1t (G5)2 VI +w? \ T \ T
with low frequency asymptote 0.020.03 0.050.070.1 0.2 03 0507 1
wp =061 w [rad/s]
|G(iw)] = 0.9, w—0 0.427
and Figure 7.1a
arg G(iw) = — arctan Yo arctan i arctan w
8 0.033 0.33
The gain is drawn approximatively based on a known gain at some point that is, K7 = 25.25. This results in a new gain crossover of 0.43 rad/s
of the low frequency asymptote, 0.9, and the breakpoints and slopes of (and new phase margin of 19°). To find the steady state error, study
the asymptotes: how the Laplace transforms of the controll error relates to that of the
Frequency [rad/s] 0.033 0.33 1 reference:
Slope 0 -1 -2 -3 E(S) _ 1 0 (
- ref 5)
The phase curve is drawn based on a couple of samples: 1+ K1G(s)
Frequency [rad/s] | 0.033 | 0.1 0.2 0.5 1.0 which with O,e¢(s) = & gives
Phase —52° | —94° | —123° | —169° | —205° 5
The Bode plot i.n Figure gives that the gain crossover frequency and lim e(t) = lim sE(s) = a 0.042-a
the phase margin are undefined, but we have a gain margin: t—00 50 1+ K;-09
wp =0.61rad/s A, =50.5
b) Without the internal feedback we get the transfer function defined by
A gain margin of 2 is obtained when
1
L 0(s) = W (s) =: G(s)W(s)

50.5 - 2 (1 + 0.533)(1 + %)(1 + 0.533)
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and thus
B 1
VI+ (5o 2V + (553)2 V1 + (59)°

with low frequency asymptote

|G (iw)]

|G(iw)] = 1, w — 0

and

— arctan —— — arctan —

arg G(iw) = — arctan 033 5

w w w
0.033 A

The gain is drawn approximatively based on a known gain at some point
of the low frequency asymptote, 1, and the breakpoints and slopes of the
asymptotes:

Frequency [rad/s] 0.033 0.1 0.33
Slope 0 -1 -2 -3
The phase curve is drawn based on a couple of samples:
Frequency [rad/s] | 0.033 0.1 0.2 0.4
Phase —69° | —134° | —174° | —212°

The Bode plot in Figure gives that, again, the gain crossover fre-
quency and phase margin are undefined, but we have a gain margin:

wp =0.22rad/s An =19

A gain margin of 2 is obtained when K - % = %, which leads to K7 = 9.5.
This results in a new gain crossover of 0.15 rad/s (and a new phase margin
of 21°). As above, we get the controll error for step references:

lim e(?) = 0.095a

t—o0

“1+95-1"

We conclude that due to the internal feedback, the system in a) is faster
(higher bandwidth) as well as more precise (smaller stationary error).

7.2 Consider the block diagram in Figure [7.2a] The change in tank volume per
time unit is given by

d

A—
dt

h(t) = (t) —v(t)
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2 3
1- = —
—  05-= = |
202 S== VK
O o i s o -~ I R 1
2 0055 e e
0.02 ‘ ‘
0.01 5
I T T
-60° Ve | |
3 -90° i i
= -120° ~ —
G
20 -150° . -8
< -180° 1. 41 ,}S
210° ’
\ FTTT \ P
0.02 0.03 0.050.07 0.1 0.2 0.3 0507 1
wp = 0.22 w [rad/s]
0.154
Figure 7.1b
v
Ff
0 s h
+ AR 2= I
Figure 7.2a
or, equivalently,
A-s-H(s)=X(s)—V(s)
which gives
1
H(s) = — -V
(5) = - (X(5) = V(5))
Furthermore,
X(s) = Gy(s)U(s)
where 1
Gy(s) = ——
() =13 5/2



2)

We let the input u(t) be a function of v(¢) only, that is,

U(s) = Fr(s)V(s)

The level h(t) as a function of v(t) then becomes

H(s) = - (G(s)Fils) = DV (5)
If we choose )
Fi(s) = Gols) =1+s/2

the level becomes independent of v(t), but to get the controller Stu uses,
we remove the derivative term:

Ff(S) =1
The level as a function of v(t) then becomes

H(s) = Ais(l +1s/2 ~DV(s) = *i 1 +1s/2v(s)

With V(s) = 0.1/s this yields

0.1 1 01 /1 1
H - - @@ - _ T ____
)= —asiss2 ~ 24 (5 2+s>

that is
0.1

—— (1
A- 2(
which gives the steady state error —0.05/A.

h(t) =

_ €—2t)

We now choose the input u(t) to be a function of both h(t) and v(t), that
is, we add the term —Kh(t) to the control law from a). (See Figure )
Thus

u(t) = —Kh(t) + v(t)

or, equivalently,
U(s)=—KH(s)+ V(s)
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F ‘1
+

v
AT 2 h
0 Kl = Q) Gy ) G

+\F =1 + +

Figure 7.2b
This gives
AsH(s) = Gy(s)(—KH(s) + V(s)) — V(s)
(As + KGy(s))H(s) = (Gv(s) — 1)V (s)

H(s) —s/2 B —s
V(s) A/2-s2+As+ K  A(s?2+2s+2K/A)

To select K, we may compard?|

2+ 25+ 2K/A=0
with the standard equation
52 + 2Cwps +wi =0
which gives
wi=2-K/A Cwo =1

To obtain approximately 5% overshoot we choose ¢ = 0.707, and from

VAJ(2K) = ¢ = 0.707

we get K = A. Hence,
—s

H(s) = A(s?+2s+2)

Vi(s)

If v(t) is a step of amplitude 0.1, the final level becomes

. . -5 0.1
A M) = sl ) = i sy s

*Note that any K > 0 results in a stable closed loop system, and that the steady state error
computations below are independent of the particular value of K. Hence, selecting K is not
necessary for the solution of this problem.



that is, there will be no steady state error in the level for a step distur- v
bance. F;
Gy
v
Fy + y
T K O 6 =0
Gy —
-1
-
+
Gy ) Y Figure 7.3b
+
Figure 7.3a

c) A block diagram of the system with both feedforward and feedback is
shown in Figure The output is now given by

7.3 a) A block diagram of the system is given in Figure The output is

given by Y =G,V +GU = (Gy + G, Fy)V — G, KY

Y = (Gy + Gy Fy)V

where
where 5 3 B b
_ _ G(s) =
Gu(s) - S—|—3 GV(S) - S+4 U(S) S+3
Chose Ft such that (Gy + G, F;)V = 0: The transfer function from V to Y is given by
Fr=——Y—_ Gy + Gy Ft s+d  2(s+4)
G, 2 4 Y(s)=——V(s) = ——V(s
(s44) TN [y s (®)
Compute the controller. >> s = t£( ’s’ ); _ 3(1-b/2)(s+3)
>Gu=2/(s+3);  (s+4)(s+3)+ Kb(s+4) (s)
>>Gv =3/ (s +4);
>> F = - Gv / Gu; This is stable for K > 0 and b > 0. The final value theorem can therefore
b) If v(t) = 2sinwt then be used (with V(s) = 1):
t) = 2 |F¢(i i t+ Fe(d 1-0/2 1 1-0/2
u(t) = 2 |Fi(iw)| sin(wt + arg Fi(iw)) lim y(t) = lim sY(s) = lim 5 i( bé )(Sgb?’) o= 91(2 f}/{b)
The amplitude is then treo 50 =0 (s +4)(s+3) + Kb(s +4) s +
. 3 Jw2+9
Alw) = 2|Fi(iw)| = 2- Vo216 <3 7.4 a) The output is given by
Aw) = 3, w— © Y = (Gy + Gy Fy)V

69



where

Gy(s 4(s+1
Py _Co8) A5+ 1)
Gu(s) 3(s+2)(s+5)
Create the system and the >> s = tf( ’s’ );
feedforward controller. >Gv=4/(C(s+2)/ (s+5);
> Gu=3/(s+1);
>> F = - Gv / Gu;
The constant to replace F(s) is given by
~ 4
Fy=F;(0) = ——
f=F(0) =~

The output is then given by

(12 4 40(s+ 1) — (s +2)(s +5)
Y(s) = ( 30G+1) 5126+ 5)> ) = G620 +5)
_ —45% +12s V(s)
C10(s+1)(s+2)(s+5)
Taking the Laplace transform of v(t) = —1—0.1¢ we get V(s) = —1 — %}

1_
The final value theorem then gives (verify that the system is stablse)

)~ (101
t—o00 s=0 10(s+1)(s+2)(s+5) s 82
=2 o1y = —0.012
100

Vi(s)
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>> F
>> G
>t =(0:0

Create the system with the
controller and create the
disturbance signal.

-4/30;

F *x Gu + Gv;

.001 : 20 ).°;

>> v = -1 - 0.1%t;

>> 1sim( G, v,

t )

Linear Simulation Results

Amplitude

-0.07

c) With the P controller the output is given by

12

. . . . . . .
6 8 10 12 14 16 18 20
Time (sec)

4

which means that

40(s+1)—4(s+2)(s+5)

Yis)+ (_ 306+

(s+2)(s+5)) Vis)

—0.4s% +1.2s

10(s+1)(s+2)(s+5) ( _
K 5)
1+ 3+1

S

Y(s) =

Using the same disturbance, V(s) = _% _
gives (verify that the system is stable)

(s +3K+1)(s+2)(s+5)

V(s)

%7 the final value theorem

. . —0.4s5* +1.2s
A vt = finys
1.2
=" . (-0.1)=—
(3K +1)-10 (=0.1)

1 01
(s+3K +1)(s+2)(s+5) (_s a 32>

0.012
3K +1




Create the new closed loop >> K = 1; Simulate the output. >> Gc = minreal( Gv / (1 + K * Gu ) );

system with different values >> Gc = minreal( G/ (1 + K * Gu ) ); >> 1sim( Gec, v, t )
on K. >> 1sim( Gc, v, t )
Linear Simulation Results
0.04 . . . . . . . . . Time (sec)
Time (sec)
. . . . . G1GoF,
d) When only a P controller is used we have the following relationship be- 75 a) i) Y=GiG(F,R-F)Y)=Y=—"——R.
. 1 + Gl G2Fy
tween the disturbance and the output GG F
Svar: _T1M2e e
3 4 1+G4 Gsz
Y(s)=——=KY(s)+ ———V(s)
(s+1) (s+2)(s+5) G2(1+ G1Fy)
which means that + GiGaly
Svar: Go(1 + G Fy)
Y(s) = 4(s+1) () " 14+ G1GoF,
B 2 K+1 .. NS . R
(54 2)(s +5)(s + 3K +1) a) Enligt boken (eller sa inses det fran éverforingsfunktionen ovan) sa elimin-
2
Again using the same disturbance, V(s) = —5 — 57, a carcful inspection eras d om Fy(s) = —1/Gi(s). T detta fallet alltsé Fy(s) = —> 22+ L
of Y'(s) gives that there is no final value of y, hence the final value theorem o s+2
does not apply[] However, the possibility to simulate the system remains. (Detta val av Fy(s) kan dock ej implementeras eftersom det har de-
riverande verkan for hoga frekvenser.) For att eliminera konstanta
*If it is assumed that the final value exists, a contradiction follows since then the final value storningar récker det att framkoppla med den statiska forstarkningen av
theorem would apply, but give Ff(s), d.vs. Ff (O) — _1/2.
lim y(t) = lim A+ 1) (_ 1_ E)
troo 0 7s—>08(s+2)(5+5)(s+3K+1) s 82
4(s+1) s+01

0 (5+2)(5+5)(s+3K+1) s
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8 State Space Description

8.1 According to Solution [2.1] the differential equation for the motor is gives the (nonlinear) state space description
b+ 16=Ku i1 =2y = fi(z,u)
T g : ,
where Ty =0 = —3 sinf — 7 cosf = —wisinzy —ucoszy =: fo(z,u)
fRathaky _ 1 ka _
JR., 1 JR., where w? = g/f. We get that
Introduce the state variables z; and x5 according to 9
| ooy
=40 =40 x
I To % _
This gives the state space equations ou
0 .
i =0 =, %: (—wgcosxl + usinz; 0)
. 1. 1 0
To=0=——0+Ku=——x9+ Ku £:—cosasl
T T ou
In matrix form we get Introduce 1A = 1 — T, TaA = T3, ua = u, and ya = y — w. Linearization
0 ) 0 around x; = m, xo = 0 and u = 0 gives
I_<0 _1/T>I+(K)u TiA = Zaa
y=(1 0)= Fon = wiria + ua
where 27 = (1’1 1’2). Ya = T1A
8.2 We start with the differential equations 8.3 Introduce the state variables
00 + gsin@ + 2 cosf =0 T1=y w2=0 w3=2
The state variables According to the figure, the variables are related as
xr1 = 0 T = 9 1
X =Y(s) = —(M, Ky X
input 1(s) (s) s( 1(s) + K2X5(s))
Z 1
u=7 Xa(s) = 0(s) = ~(Xs(s) — Xa(s))
1
and output . X3(s) = Z(s) = g(Kll(s) — K2 Xs(s))
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Inverse Laplace transformation gives, in the time domain,

Sﬁ‘l(t) = KQ.TQ(t) + M](t)
Ea(t) = —a1(t) + a3(?)
Ig(t) = 7K2132(t) + Kll(t)

In matrix notation this becomes

0 K, 0 0 1
it)y=(-1 0o 1]z@)+| 0 |i®)+ 0] M@®)
0 —K, 0 K 0

y(t)=(1 0 0)a(t)

8.4 a) " ,
d

@y(t) + 6@y(t) + 11%;,(7:) + 6y(t) = 6u(t)

The state variables
w1(t) =y wa(t) =9 as(t) =7
gives
L1 (t) = 22(t)
Lo(t) = x5(t)
a(t) = T2(t) = —6ii(t) = 119(¢) = 6y(t) + 6u(r)
= —6a(t) — 1aa(t) — 6o (t) + 6u(t)

In matrix form we get

a3 d? d?

@y(t) + @y(t) + 5%y(t) +3y(t) = 4@1@) + %u(t) + 2u(t)
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If we introduce x1(t) = y(t) in the equation and collect all terms without
differentiation on the right hand side we get

L0+ L a5 L) - 1L ) = L) = —30(0) + 20()
s’ e’ 't ez "\ T Ton Y
that is

% ((;itzacl(t) + %xl(t) + 521 (t) — 4%u(t) — u(t)) = —3x1(¢) + 2u(t)

Now introduce the expression within the parenthesis as a new state vari-

able
za(t) = %xl(t) + %xl(t) + 521 (t) — 4%u(t) — u(t)

that is
o (t) = =31 (t) + 2u(t) (8.1)

Repeating this procedure yields

d d
a(axl(t) + x1(t) — 4u(t)) = zo(t) — 5z (t) + u(t) (8.2)

and we can introduce

x3(t) = gxl(t) + x1(t) — 4u(t)

St
that is
Z1(t) = x3(t) — x1(¢) + 4u(t) (8.3)
Equation (8.1)), (8.2), and (8.3) define the state space equations
-1 0 1 4
zt)=1-3 0 0)z(®)+|2]u()
-5 1 0 1

c¢) Partial fraction expansion of

25+ 3

Y(s) = s2+554+6

Uls)



gives
1 3
Y(s) = —
(5) = ~—5U(s) + —=U(s)
Introducing the state variables
() =~ 15 U(s) Xols) = —=U(s)
! s+2 ? s+3
gives

1(t) = —2a1(t) — u(t)
da(t) = —3ws(t) + 3u(t)

in the time domain. Furthermore, we have

y(t) = 21 (t) + z2(t)

In matrix form

8.5 The impulse response

gives the transfer function

(5) = 2 3
5= s+1 s+4
The output can then be written
2 3
Y(s) = U U
() = UG+ U)
Xl(s) XQ(S)

Defining the state variables as above gives

sX1(s) + X1(s) =2U(s)
sXo(s) +4Xa(s) = 3U(s)
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which in time domain can be written as
Z1(t) = —z1(t) + 2u(t)
Li?z(t) —41[72 (t) + 3u(t)
y(t) = z1(t) + 22(t)

8.6 The transfer function is given by

G(s)=C(sI - A)"'B
<) ()

~erere 200 1) ()

S

(s+2)(s+3)

8.7

z(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

The state space equations have the general solution

t
z(t) = et (1) —I—/ A=) Bu(s) ds
to
The input signal v is constant, that is, u(t) = ug, on the interval (¢to,tq + T).
This implies

to+T
z(to+T) = e Ta(ty) + </ eAlto+T—9) ds) Buy

to

where
to+T
AT and / eAlto+tT—s) 45 B
to

are constant matrices.



8.8 a) Introduce the state variables z1 = h, xo = fot(href — h)dr and z3 =

fot (hyet —h) d7. This gives the following expressions for the control signals

UL = Nyt — T1 + T2

U = Npet — T1 + 23

by using these expressions we can eliminate u; and uy form h+h = uy +us.

This gives
&1 = =21 + Ayt — T1 + T2 + hyer — 21 + 23
By taking the Laplace transform on the expressions for x5 and zs we
obtain
H.o¢(s) — H(s
(o) = Pt~ H(
H, - H
Xg(S) — ef(S)S (5)

Inverse Laplace transformation gives

i‘2 = href — I

T3 = href — I

In matrix notation this becomes

-3 11 2
it)=-1 0 0)z@)+ 1] het(t)
-1.0 0 1

h(t)y=(1 0 0)a(t)

b) The observability matrix is

c 1 0 0
O=|CA|=(-3 1 1
CA? 7T -3 =3

A vector which span the null space of a matrix must satisfy Oz = 0.

1 0 0 0 0
-3 1 1 -1 =10
7T -3 -3 1 0

This means in practise that you can’t say if it is u; or us or a combination
of the two which fills the tank.
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c) With hyes =0 and u; = fhfn+f0t —h — ndTt we get

i’g = —X1— N
T3 = —x1
and
Ty =-—r1 — 21 — N+ T2 — 21+ T3
this gives in matrix form
-3 1 1 -1
zt)=(-1 0 0|z +|-1]n()
-1 0 0 0

h(t)=(1 0 0)=z(t)

8.9 The controllability matrix is

S=(B AB)= G _01>

Since det S = —1 # 0 the system is controllable and it is possible to control
the system from the origin to ™ = (1 3) within 4 seconds.

8.10 a) The controllability matrix becomes

1 -2 4
S=(B AB A’B)=[-1 3 -9
2 —6 18

and det S = 0 since rank § = 2. The controllable subspace is spanned by

1 -2
-1, 3
2 —6
The observability matrix is
C 1 3 1.5
O=|(CA)=-2 -3 -15
CA? 4 3 1.5



with det O = 0. Solving for the unobservable subspace
Oz =0
gives (Gauss elimination)

xr1+3x9+1.523=0

3x9+1.523=0
T =0
Introducing z3 = a gives zo = —0.5a and z" = (0 —0.5a a), that is,

the silent (unobservable) subspace is spanned by
0

-1
2

The controllability matrix becomes

0 0 0
S=(4 -8 16
-2 8 =32

with rank & = 2. The controllable subspace is spanned by, for example,

0 0
4 -8
-2 8
The observability matrix is
0 3 0
O=|3 -6 0
-9 12 0

Solving for the unobservable subspace Ox = 0 gives
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The unobservable subspace is spanned by

0
0
1

8.11 a)
= r=1—¢"
= x5 =0.5(e* - 1)

il = =2 +u
To =2T0 +u
b) The system is not asymptotically stable since o3 — oo ast — oo, but

input-output stable because the transfer function has its pole in the com-
plex left hand plane.
1
5= (1

The system is controllable.

1 O
O:(—l 0) detO =0

—1
2) detS =3

The system is not observable. Ox = 0 has solutions

()

This implies that the second component of the state vector cannot be seen
in the output.

d) Because the second component of the state vector has unconstrained
growth and this is not reflected in the output, the system will finally
collapse.

8.12
G(s)=C(sI - A)™'B

SR NORCS =

This gives poles in 1+ iy/2 and zeros in —1.



8.13

a) For pendulum 1 we have

2 cos(¢1) + gy = sin(¢y)
and for pendulum 2 )
Zcos(¢2) + ¢2 = sin(¢2)
Linearization gives
i+ ag = ¢y
Pt =2

Consider # as an input to the system (the acceleration of the trolley ~
the force applied to the system). Introduce the state variables

T1=¢1 Tz=¢1 T3=¢P2 T4= 2

This gives the state space equations

Lt'lz.l‘z

. 1 U

X9 = —T1 — —
« «Q

T3 = Tq

In matrix form

0 1 0 0 1 0
. |1 0 0 O [ -1/«
=10 00 1]|a| | 0
0 0 1 0 x4 -1
b) The controllability matrix becomes
0 -1/ 0 —1/a?
[ -1/a O —1/a? 0 1 1.,
-1 0 -1 0

Thus, the system is controllable except for the case o = 1, that is, when
the two pendulums have the same lengths. If the pendulums have different
lengths they react differently to the input, but if they have the same length
there is no possibility to act upon them separately using the input.

7

8.14 The figure gives

1
X (s) = G 1)U(s) =  sXi(s) = —X1(s) + U(s)
and
1
Xa(s) = m(U(s) +Xi(s)) = sXa(s) = —-3Xa(s)+U(s) + X1(s)

Inverse Laplace transformation gives

¢1:—$1+u

To = —3T2+ 21 +u

In matrix form this becomes

y=(1 1)z
8.15 a) Mass balance gives
d(V
(Vea) =Vra +qca,in — qca
dt
d(v
<dtcB) =Vrg +qcp
By using ra = fklci and rg = =34 the following expression is obtained
d .
VRt = —Vhick + geain — gea
dﬁ - Vk‘lci e
a3 @B

b) Linearization around ¢}, cf, and c} ;, gives
—q—3kic}V
A fean _ (52 0 (ean) L (v),
dt \cBa kici 2/ \¢cB.a 0

=00 (52)



8.16 a)
. —ka ka2 0
x—( ko1 —ki2 Tk )
Yy = (0 1) T
with
xr = (Il .’,EQ)T
b) The poles of the system are the eigenvalues of the A-matrix,
—ka1 k12
A=
( ka1 —k12>

which are the zeros of the characteristic polynomial

ka1 A+ k2

= A2+ (k12 + ko1)\ + korkia — karkio = A\ + k12 + ko1 )

det(M — A) = ‘

= ()\ + k‘21)<)\ + k12) — kork12

i.e. the poles are 0 and —(kj2 + ko1). Hence, the system contains an
integrator (the pole at the origin) and is thus not stable.

¢) The observability matrix is

C 0 1
0= (CA> = (k21 —/m)

with determinant —ks;. Le. the system is observable (the determinant is
non-zero) precisely when ko; # 0. If ka3 = 0 we are not able to observe
state x1 by measuring xs.

d) The nonlinear state space is given by

. Vmaxz2
= —k‘ _—
T 2171 + Rt + 29
. VmaXmQ
= —— - k K
T TRy A

e) The relation is shown in Figure
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Vmaz T """ "/""/"/"=""7/7"/7// 0000000

Vimaz _|

|
I
I
I
i
i
i
|
I
K T2

Figure 8.16a

f) We have the nonlinear state space description

. Vmaxx2
= —]{j —_—
1 2121 + Far + 29
Vmaxe
Py = ——— = 4 ko + K
2T TRy g AT RY

and the stationary point
T
zo = (72,;;; KM) , up=0.

The A-matrix of the linearized system is given by the Jacobian of the
dynamics (w.r.t =) evaluated at the stationary point. The Jacobian is

Of1 of1 _k21 I‘/(;xlaxKM2
Tl = {55 05 | = {4, i,

o1 Oxo - (K1\4+12)2

which gives us

—ka1 X}'}""‘
A= Jg(xo,up) = - vk
4K\

Similarly, we get the B-matrix, with x = z¢ and u = uy, as

#=(8) ()



Introduce xao = x — xg, ua = u — ug. The linear approximation of the
system around xg, ug is then given by

A = Az + Bua.

g)
—ko1 k12 0 0
= kot —(ki2+ks2) ko |z+ | K |u
Yy = (0 1 0) T

h) The observability matrix is given by

C
O=|CA
C A2
Consider
—ka1 k12 0 —ka1 k12 0
A2 = ko —(k12+ks2) ko ko1 —(ki2 +ks2)  kos
0 k3o —ka3 0 k32 —ka3
k * k
= | —koi(kor + k12 + k32)  *  —kos(kos + k12 + ka2)
k *k k

where * represent elements that are not of interest. The observability
matrix thus becomes

0 1 0
O = k21 —(]f12 + k32) k23
01 02 OS

with O1 = —ko1 (k21 + k12 + ks2), O2 = karkiz + (k12 + k32)? + koskso
and O3 = —koz (ka3 + k12 + k32). The determinant of O can be expanded
along the first row to obtain

ko1 ka3
—ka1 (ko1 + k12 + k32)  —kos(kaz + k12 + ks2)
= ko1kos(kag + k12 + k3a) — kaskai1 (ko1 + k12 + k32)
= karkaz(kaz — ka1).

det O = —
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I.e. the system is observable unless ko1 = 0 or kog = 0 or kog = ko1. The
first two cases mean that the corresponding state, x1 and x3 respectively,
do not influence x5 and would then not be visible in the output. In the
third case, ko3 = ko1, 1 and x3 do indeed influence x5 but they do it in
the exact same way and we can therefore not distinguish between them.

8.17 a) With ¢ =0 and u =1,
_ ka2 k12 3}
0_</€21 —k12—k2)x0+<0>

ooy = —ko1 k12 -t —k1 _ 1 —k1o — ko
kor  —ki2 — ko 0 ko1 (k12 + k2) — kairkio —k21

_ 1 k1 (k12 + ko)
kglk'g k1k21~

Thus, the stationary point is

T
Tn = ki(kiatks) ki
0 ka1ko ka ) *

b) The transfer function is computed as

-1
aw=cer-a7z=0 y (e ) (5)

k1ka
(5 + k21)(s + k12 + ko) — k1gkar

c¢) The final value theorem gives

kl k21 kl

- ko1 (kia + ko) — kiokar ko

lim y(t) = lg% sG(s)U(s) = G(0)

t—o0

Since the output is defined as y = xo, it approaches the stationary point
I’oyg.



8.18 a) A stationary point fulfills f(zg,ug) =0, y = h(zo,uo).

iz, u) = 22 = fi(xo,u0) = 220 =0

o ku(?) _ kug B
f2<xau)__mx%(t)+g:f2(m0au0)_ mx%o—i—g_o

Y =21 = Yo = T10

For any stationary y = x19 # 0, we can rewrite the second row as

ku, ma?
fg(.TQ,U()):— g —|—g=0 — Up =g 10
mi, k

This means that any position (any z19 # 0) can be a stationary point,
2

with the corresponding input ug = g™7*¢. The vertical velocity x5 has

to be zero.
b) Use
A = fo(xo,u0) B = fu(zo,uo)
C = hz(.’Eo,uO) D = hu(l'o,’u,o)
where
A= 2713(3307“0) %(xo,uo) B— (%j;(mo,uo)>
%ﬁ(xoauO) %(l‘o,uo) 92 (20, u0)

Differentiation gives the A matrix elements

filz,u) =29 = %(xo,uo) =0, and %(xo,uo) =1

0x1 O
Polor) = =R 97 ot =
STJ:??(QJO’UO) - m = %, and % =0
and the B matrix
oh _
% B _mlic% = %(”307“0) = —mz%().
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8.19 a)

We thus have the matrices A, B and C (already linear)
0 1 0
A= (29 0) B = ( kr2 )
Z10 mTio

c=(1 o)
and the linearized state space model is described by

Az = AAx + BAu

Ay = CAx.
Linjdrisera systemet runt jimvikspunkten y(t) = yo. Stationirt innebar
& =0, alltsd 0 = —ygug + v, eller uy = yz

Taylorutveckling av y = f(y,u) runt jamviktspunkten y = yo + Ay, u =
ug + Au, dar alltsd f(yo,uo) = 0 ger

v = Ay = f(yo + Ay, uo + Ay)

df (o, uo) A f (yo, uo)
783; Ay + ~ou Au

= 0—ugAy — yoAu = —yiAy — yoAu.
0

~  fyo,uo) +

Laplacetransformera det linjariserade systemet fran a).
sAY (s) = = =AY (s) — yoAU(s), dvs.
AY (s) = —Y%AU(s) = G(s)AU(s).

Yos+v

Det aterkopplade systemet fas fran

U(s) =
Y (s)

F(s)(Yo =Y (s))
G(s)U(s)

vilket ger



8.20

2)

Tis+1 *y(g)

F(S)G(S) _ TiS YoS+v
L+ F(s)G(s) 14 gmstl —Y5

TS Yos+v

G.(s) =

—Ky3(ris +1)

(7i5) (yos +v) — Kmisyg — Kyg
—Ky3(ris +1)

YoT;S2 + vTis — KTinS - Kyg '

Enligt t.ex. Routh’s algoritm, krav for stabilitet hos det aterkopplade
systemet dr K < 0 samt att v — Ky2 > 0 vilket d& &r uppfyllt for alla
v>0da T >0.

Systemet kan skrivas som

& = A(o)z + Bu

y=Cx
dér
-
_x2
[1 0
A(a) -2 a}
[1
B= __J
c=1[0 1]

Egenvirdena av systemmatrisen A ges av losningarna till den karakteris-
tiska ekvationen

aee )0 =aden ([, < ) e (10,2
=(1-s)(a—s5)=0

alltsd s; = 1 och sy = a. D4 egenvirdet s; > 0 ar systemet instabilt for
alla a.
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OBS! Notera att
det(A(a)) — sI) =0 < det(sI — A(a)) =0,

och att den senare formen ar den som vi anvant oftast i kursen for att
rikna ut den karakteristiska ekvationen. Av ekvivalensen foljer att bada
formerna &r ratt.

Systemet dr observerbart da observerbarhetsmatrisen

0= [Gf(aﬂ - [02 ;]

(8 )

ar systemet observerbart for alla c.
Systemet ar styrbart da styrbarhetsmatrisen

ej ar singuldr. Da

S=[B A(w)B] = {—11 —21— a}

ej ar singular. Da

det({_ll _21_(1}) 1 (—2—a)— (1) =-1—a

ar systemet styrbart precis da o # —1.



9 State Feedback

a) The control law

U = —Lx + Yref

gives the closed loop system
&= (A— BL)x + Byt

and the poles of the closed loop system are given by the eigenvalues of
A — BL.

A-BL= (‘12 _01> - (é) (h L) = (-21—11 —10—z2>

The characteristic equation is given by
det(s] —A+BL) =8>+ (2+11)s+1+1ly=0
Poles in { —3, —5 } implies that we will have the equation
(5+3)(s+5)=s>+8+15=0
Identification of the coefficients gives
lh=6 [=14
This gives the control law
U = —6x1 — 1429 + Yrer
Similarly, poles in { —10, —15} gives
lh=23 1p=149
corresponding to the control law
u = —23x1 — 14929 + Yot

One observes that the coefficients in the control law increase when the
poles are placed further into the left half plane. In a physical system, this
means that larger forces are required to realize to the control law.
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9.2

b) Employ an observer

where
_ (k1
= (i)

By combining the differential equations for the system and the observer
we obtain an equation for the estimation error, z =z — Z,

t=Az+ Bu— A% — Bu— K(Cx — C%) = (A— KCO)&

If K is chosen so that A — KC' gets eigenvalues in the complex left hand
plane, then Z(t) — 0 as t — oo. It is desirable that the estimation error
approaches zero faster than the dynamics of the system. Thus, one should
place the eigenvalues of the observer to the left of the poles of the closed
loop system, for example, in —20. Regarding the influence of the pole
placement, placing the poles too far into the left half plane will make the
observer unneccessary sensitive to measurement noise. The characteristic
equation is given by

det(s] —A+KC)=s>+(2+k)s+1—ky=0
Two poles in —20 corresponds to the equation
5% +40s + 400 = 0
Identification of the coefficients gives
k1 =38 ko=-399

The resulting observer becomes

- (12 01> . (3) et (_?;gg) (y—(1 0)2)

a) Introduce the state variables

(E1:Z" 1'2:0 1’3:0



The figure gives the state equations

1

X1 (S) = gK2X2(8)
1

Xg(s) = gKlU(S)
Inverse Laplace transformation gives
L'Ul(t) = Kgxg(t) L'Ug(t) = l‘3(t) $3(t) = Klu(t)

In matrix form we get

0 Ko O 0
z)=(0 0 1]x@+| 0 |ul)
0 0 O K

Since it is assumed that all states are measurable we apply a state feedback
u=—Lx+ Yref
which gives the closed loop system

& = (A— BL)x + Byyer

where
0 Ko 0
A— BL = 0 0 1
—Klll —K1l2 —K1l3

The characteristic equation
det(sI — A+ BL) = s* + K1l35% + Kilps + KoKl =0
All three poles in —0.5 implies that we will have the equation
(s +0.5)% = 8% + 1.55% + 0.755 + 0.125 = 0

Identification of the coefficients gives

1
Iy = 5 I3 = 5

l =
LT 8K K, 4K, 2K,
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c¢) If only x; is measurable we have
y=(1 0 0)=x
Employ the observer
2(t) = Az(t) + Bu(t) + K(y(t) — Ci(t))

where

The characteristic equation is
det(sI — A+ KC) = s> + ky5* + koKys + k3Ky = 0

To get a similar behavior as in a), the poles of the observer are placed to
the left of the poles of the closed loop system, for example, in —2. This
pole placement corresponds to the equation

$34+652+1254+8=0
Identification of the coefficients gives

by =6 ky=12/Ks ks=8/K>

9.3 Introduce the state variables
r1=0 a9=w

This gives the state equations
. 0 1 0 0
(0 ) () ()

uw=—Lx+ 1g0ret = —110 — low + lpB,er

a) The feedback

gives

0 1
A_BL_ (—Clll —(Cllz—l—l/T))



The characteristic equation
1
det(sI — A+ BL) = %+ (lacy + =)s + 11y = 0
T

Poles in 1/7(—1 % i) corresponds to

1—i 141

(s+—)(s+

2 2
2
— 2+ 254220
)=3s 7_5 =

Identification of the coefficients gives

2 1
h=—5 lb=—

017'2 TC1

This gives the closed loop system

: 0 1 0 0
= (o )2+ (0) 0 (3)7

At steady state, that is, when &1 = &9 = 0, we should have 6 = 0, when
T =0. £; = 0 implies that zo = 0, and 22 = 0 then gives

-2
ot c1lobhres =0

so that
- 2
07 o2
The resulting control law becomes
2 1 2
U= w0+ b
1T TC1

Introduce the integrated control error as an extra state:
T3 = eref -0

The new state equations become

0 1 0 0 0 0
=10 =1/t Ofla+|c|ut+|c]|T+|0] bt
-1 0 0 0 0 1
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Using the feedback law
u = 7119 — lgw — Z3LE3

we get the state derivative term

0 0 0 0
C1 u = —Clll —Cllg —0113 X
0 0 0 0

and hence the closed loop system

0 1 0 0 0
T = 70111 71/7’ - Cllz 76113 x4+ | c2 T + 0 eref
-1 0 0 0 1

The poles of the closed loop system are the eigenvalues of the “A” matrix,
that is, they are given by the characteristic equation

-A 1 0
det —Clll —1/7’ — Cllg - A —0113 =0
-1 0 -

Writing out and changing sign yields
1
)\3 -+ (Cllg + ;))\2 + Clll/\ - Cllg =0

Poles in { £(—1+1), (—2)} correspond to the equation

4 6 4
)\34‘*)\24‘72)\4’*3:0
T T T
where the coefficients may be identified as:
6 3 4
h=—% b=— L=-—"%3
1T 1T 1T

The resulting control law becomes (note that the static gain is 1 by con-
struction, so there is no “ly” in this controller)

T3 = eref -0



9.4 The feedback u = —Lx + yer gives the closed loop system
&= (A— BL)x + Byyet
with characteristic equation
2+ (141 +1la)s+1, =0
Poles in { —2, —3 } implies that we will have the equation
(5+3)(s+2)=5"+55+6=0
Identification of the coefficients gives
h=6 lp=-2
and the control law becomes
u = —6x1 + 222 + Yret
Introduce the observer
2(t) = A% + Bu(t) + K(y(t) — Ci(t))

It is desirable that the estimation error converges to zero faster than the dy-
namics of the system. Thus, we should place the eigenvalues of the observer
to the left of the poles of the closed loop system, for example, in —4. The
characteristic equation of the observer is

2+ (1 4k —ko)s+k =0
and poles in —4 corresponds to the equation
s°+8s+16=0
Identification of coefficients gives
ky =16 k=9

The complete system, that is, the closed loop system with reconstructed states,
will have poles in { =2, —3 }, and the observer will have poles in { —4, —4 }.
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9.5 The system has the observability matrix

1 0 0 0
0 1 1 1
0_0013
0 0 0 4

that is, det O # 0. The system is observable and thus the poles of the observer
may be placed arbitrarily.

9.6 The system is described in matrix form by

2 1 0 1
z®)=11 =2 1 Jz@#)+[0]u)
0 1 -2 0

a) Arbitrary values of the states can be obtained if the system is controllable.
The controllability matrix becomes

and since det S = 1 the system is controllable and an arbitrary tempera-
ture profile can be obtained.

b) How the state decays depends on the poles of the closed loop system.
Poles in —3 will yield the desired result. The closed loop system,

&= (A— BL)x + Byyet

21—l —I
A—BL= 1 2 1
0 1 -2

has the characteristic equation
§°+ (6+11)s> + (10 + 4l +1o)s +4+ 3l + 202+ 13 =0
Poles in —3 implies that this coincide with the equation

(s+3)°%=5%4+9s2 + 275 +27=0



Identification of the coefficients gives 9.7 From Solution [9.2] we have the state space description

lh=3 lb=5 Il3=4 0 Ky O 0
zt)=10 0 1|z@®)+| 0 |u(t
Thus, the control law is given by ®) 0 0 0 ®) K, ®)
u = —3x1 — bro — 4T3 + Yref yt)=(1 0 0)x(t)
Check when the system is observable. The sensor at z1 corresponds to Introduce a reduced observer to estimate z3 from msy. The last row in the
C = (1 0 0)7 and results in state space description implies
0 0 1 is = Kyu+ K(xs — &3) = Kju+ K (iy — 23)
O=1-2 1 0 detO =1
5 —4 1 The estimation error becomes
The sensor at 3 corresponds to C' = (0 1 0), and results in Iy =13 — &3 =—Ki3
0 1 0 With a suitable choice of K, the estimation error can be made to decrease
Oo=|1 -2 1 det® =0 arbitrarily fast. To avoid differentiation of x5 we introduce
-4 6 —4

Z:fngIQ

which implies

0 0 1 b =d3— Kig=—K(z+ Kao) + Ku
o=1(0 1 =2 detO = -1
1 —4 5 This gives
N K K?
Ka(s) = —2U(s) + = Xa(s)

The system is hence observable when the sensor is placed at x; or x3,
but not with the sensor placed at x5. That is, the specifications may be
fulfilled with the sensor placed at x, or x3. If the sensor is placed at x1,
the characteristic equation of the observer is given by T

s+ K s+ K
which results in the block diagram in Figure

N
. : LS
74+ (64 k1)s” + (10 + 4k + k2)s + 4+ 3ky + 2ka + k3 =0
Placing the poles in —4 (which is somewhat faster than the nominal closed u — 1 . + 4
loop system) corresponds to the equation K, +@ — +@ 3
(s+4)% =5+ 1252 + 485+ 64 =0
Figure 9.7a

Identification of coefficients gives

k1 =6 ke=14 k3=14
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9.8

a) The equations
Tq=—q+ku
Ah=q—v
with &y =1, T'=0.5 and A =1 give, in state space form,

(1) =2 0) )+ ) ()

u=—lyq—Ilh+r

The feedback

gives the closed loop system

()= 0 ) () @) ()
with characteristic equation
(s +2+201)s+2 =5+ (2+2))s+2l,=0
Comparison with the desired characteristic equation
(s+2)?=5>+4s+4=0

gives
lh=1 Ilp=2

b) At steady state we have ¢ = 0 and h=0. With v = 0.1 and r = 0 we get

0= —4q —4h
0=q—0.1

which gives h = —0.1.

¢) In order to determine the feedforward controller we start from the de-
scription

Y(s) = Gi(s)R(s) + H(s)V (s)

The state space description

()= G0 )+ (0 ()

o)
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gives
1 s —4 0
H(s)=———(0 1
(#) s2+4s+4( )<1 s+4><—1>
_ (s+4)
T 244s+4
and

Gi(s) = @ (0 1) (i 5144) (g)
2

s2+4s+4

To eliminate v completely we shall choose the feedforward controller

R(s) = Fi(s)V (s)

where H(s)
s
Fio(s) = —

£(s) G (s)
The computations above give

(s+4) 1

Fi(s) = =—-s+2
£(s) 9 55T

Removing the differentiation term yields Fy(s) = 2 or
T =20
At steady state this gives

0=—4q9—4h+4v
O0=qg—v

that is h = 0.
d) Because ki # 1 the feedback u = —q — 2h + 2v gives, at steady state,

0= —2(1+ k1)q — 4k1h + 4k1v
O0=qg—v



which gives

h:

ki —1
v
2kq

Because k1 # 1 we get a steady state control error. In order to deter-
mine when the expression for h is valid we consider the stability. The
characteristic equation

s2 4+ (24 2ky)s +4k; =0

has both roots in the complex left hand plane for k; > 0, that is, the
expression is valid for all k; > 0.

e) Introduce the integral of the height as a new state

z(t):/oth(s)ds S i-h

With the state vector

this gives
-2 0 0 2k, 0
=11 0 O)xz+| O Ju+|-1]v
0 1 0 0 0
The state feedback u = —Lx gives
—2 =2kl —2k1ly —2kql3 0
T = 1 0 0 z+ | -1]o
0 1 0 0

The third equation gives h = 0 at steady state, independent of k; provided
L stabilizes the system.

9.9 The transfer function u to y is given by

1
Y(s) = C(sI — A)"'BU(s) = ?U(s)
In order to study the effect of the time delay we consider the block diagram
in Figure The block diagram corresponds to the situation where the
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r _|_C U a Lz

—sT

Figure 9.9a

observer uses the measured input (not the computed input). To determine the
effect of the time delay, we study the loop gain, G (s)e™*T, where G (s) is the
transfer function from U(s) to Z(s) = LX (s).

The equation for the observer

t=Aé+ Bu+ K(y — C#)
gives
X(s)= (s — A+ KC)"Y(BU(s) + KY (s))
= (s - A+ KC)"Y(BU(s) + KS—I,ZU(S))

Using this together with Z(s) = LX (s) gives
Z(s) = G1(s)U(s)

=L(sI -A+KC) (B + KS—IQ)U(S)

0 (O ()

1+ 2s
=~ U(s)
We shall analyze the stability using the Nyquist curv for G, = G1(s)e T,
that is,
. 1+12 .
Gy (iw)e T = i 12we*1‘”T

—w
The crossover frequency is obtained from

2
Gi(iwe)e weT| = X2 —_"7c —q
| (i) T| v 1+ 4dw?

5 =
We

*Using a Bode plot instead of the Nyquist curve would perhaps be more straightforward.
However, for no particular reason, we use the Nyquist curve here.



or
We=1\/24+ NG
The phase of G, is

o)

arg (G1(iw)e = —m + arctan 2w — wT

In order to obtain a stable closed loop system it is required that
—7 + arctan 2w, — w L > —7
which gives
arctan 2w¢

=0.65s

We

9.10 a) The observability matrix:

2 1
O:(—Q—f—a 0) detO=2—-a

The system is observable (and the poles of the observer can be placed
arbitrarily) when a # 2.

A-KC:(_l_Zkl 1—2k2>

1—k1 —2—ke

We desire that the eigenvalues be { =5, —10 }. Use that the determinant is
the product of the eigenvalues and the tracd?is the sum of the eigenvalues:

5k1 + 3k +1 =50
—2k1 —ka—3=-15

which gives
k1 =-13 ko =38

b) The equation for the estimation error is
(t) = (A - KO)&(t) — Ko(t)
The transfer function from v to Zp is

13s — 12

where C7 = (1 O).

*The trace of a matrix is the sum of its diagonal elements.
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9.11 a) According to the initial value theorem we have that

y(0) = lim sG(s)U(s)

5§—00

For a step input, that is, U(s) = 1/s, we get

9(0) = lim s-sG(s)U(s) = lim s(1 = s/a) = —6—2

5—00 5—00 (1 + %)2 «

Hence ¢(0) decreases as « decreases, that is, as the zero of the system
approaches the origin.

b) No. This problem is caused by a RHP zero and it is impossible to move
the zeros with state feedback.

9.12 A very fast closed loop system:

e implies that the poles are far into the LHP which implies a need for
generating large input signals.

e casily becomes unstable in case of model uncertainties.
e becomes sensitive to measurement noise.

e has a sensitivity function with a large peak.

9.13 a) The system G(s) = C(sI — A+ BL)™! B has poles where
det(s] — A+ BL) =35>+ (5—1; +2l2)s + 5+ 6ly = 0
The poles in —2 £ i implies the characteristic equation
(s+2+i)(s+2—i)=s>+4s+5=0
Identification of coefficients gives

Lh=1 lb=0



9.14

b) The closed loop system is given by

The condition y(t) = 0 gives x1 + x2 = 0, and hence @1 = —&5. From the
state equations we get

—2x1+ 20 — 1T =21 + 229 — 21 &

—3r1 =x9—T
Together with ©1 + z2 = 0 we get £1 = —x9 = /2 and
=21 =2(—2x +x2 —7) = =51
Since 7(t) = e** we have a = —5. Moreover, for y(t) to be zero for all ¢,

the system must start in the initial condition z1(0) = —x2(0) = r(0)/2.

a) Enter the transfer function >> s = tf( ’s’ );
and generate the state space > G=ss(1/ (s*x (s+1)))

model. a =
x1 x2
x1 -1 -0
x2 1 0
b =
ul
x1 1
x2
c =
x1 x2
yi 0 1
d =
ul
yl O

Continuous-time model.
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We hence have the state space representation

i(t) = (_11 8) z(t) + ((1)) u(t)
y(t) = (0 1)a(t)

From the last equation we have z5(t) = y
angle. From the first equation we have @
angular velocity.

t), that is, xo is the motor
) = x1(t), that is, x; is the

(
t



b) Compute feedback gains. >

> L = place( G.a, G.b, [ -2.2 -2.1 1] );
This time, the gain lo is >> Gec0 = ss( G.a - G.b * L, G.b, G.c, 0 );
computed by explicitly con- >> 1.0 =1/ dcgain( GcO );

structing a system with >> Gc = GcO * 1_0;

lo = 1 first, and then cor-
recting by the inverse of

that system’s static gain.
Note that if we don’t need
lo, this approach simpli-
fies to Gc = GcO / dcgain(
GcO ). However, we do
need lp in order to compute
the control signal.

Note that although 1_0 * GcO and GcO * 1_0 implement the same trans-
fer function, the states of the two implementations will differ. To obtain
the correct states the factor Iy must inserted at the input side of G¢g, that
is, as the right operand when the systems are connected in series using

the operator *.

Calculate the step response
and the corresponding con-
trol signal of the closed
loop system. To calcu-
late the control signal mag-
nitude use [y, t, x 1 =
step( Gc ). The function
step will in this case return
y, the output of the closed
loop system, t the time vec-
tor, and z the states of
the system. To compute
the control signal, use that
u(t) = lor(t) — Lz(t), where
r(t) = 1. Then plot the re-
sult.

> [y, t, x]
> u=10-x
>> plot( t, vy,

t, u,
>> grid
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Compute a new feedback.
This time, we compute the
gain lp by using the formula
for the static gain of the sys-
tem with lp = 1 (put s =0
in the generic expression for
the transfer function).

Calculate the step response
and the corresponding con-
trol signal. Plot the result.

>> L

= place( G.a, G.Db,
> 1.0 =

1/ ...

[ -1+i -1-i ] );

( G.c * inv( -G.a + G.b*L ) * G.b );
>> Gc = ss( G.a - G.b *xL, G.b x 1_0,

G.c, 0);

> [y, t, x1
> u=10-x
>> plot( t, vy,

t, u,
>> grid

= step( Gc, 10 );
* L.7;
J

05f

-05
0

The step responses have approximately the same rise and settling times.
By choosing the closed loop poles complex, and hence allowing a small

overshoot in the step response, we have however reduced the maximum
value of the input signal significantly.



¢) Case (i): Compute the feed-
back gain L, lp, and the
closed loop system.

Simulate the system and
plot the result.

Compute the closed loop
poles. This time, via the
eigenvalues of the “A” ma-
trix.

Case (ii): Repeat, this time
with larger weight on the
motor angle.

>> L = 1gr( G.a, G.b, diag([ 01 1), 1);
> 10=1/.

(G.c*lnv(—Ga+Gb*L)*Gb)
>> Gc = ss( G.a - G.b *x L, G.b x 1_0,

G.c, 0);

> [y, t, x] = step( Gec, 10 );
> u=10-xx*UL.>;
>> plot( t, y, -7,
t, u, ’-.7 );
>> grid

1.2

0.8

0.6

0.4

0.2

>> eig( Gc.a )

ans =
-0.8660 + 0.5000i
-0.8660 - 0.5000i

V

L = 1qr( G.a, G.b, diag([ 0 10 1), 1 );
10=1/ ...

( G.c * inv( -G.a + G.b*xL ) * G.b );
>> Gc =ss( G.a-G.b*xL, G.b x1_0,

G.c, 0);
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Simulate the system and
plot the result. The step re-
sponse is now significantly
faster.

Compute the closed loop
poles. This time using
a dedicated command from
the toolbox. The poles
are now further away from
the origin and the relative
damping is slightly reduced.

Case (iii): Repeat, this time
with smaller weight on the
motor angle.

> [y, t, x ] = step( Gec, 10 );
> u=10-xx*xL.>;
>> plot( t, y, ’-7,
t, u, ’-.7 );
>> grid

35

>> pole( Gc )

ans =
-1.3532 + 1.15371
-1.35632 - 1.15371

L = 1qr( G.a, G.b, diag([ 0 0.1 1), 1 );
1.0=1/ ...

( G.c * inv( -G.a + G.b*xL ) * G.b );
>> Gc = ss( G.a-G.b*xL, G.b *x 10,

G.c, 0);



Simulate the system and > [y, t, x]1 = step( Gec, 10 ); Simulate the system and > [y, t, x ] = step( Gec, 10 );

plot the result. The step re- > u=10-xx*L."; plot the result. Then we >u=10-xx*xUL.";
sponse is now much slower. >> plot( t, y, >=7, ... also plot the states, 1 and  >> plot( t, y, -7, ..
t, u, ’-.7 ); Z2, in two different dia- t, u, ’-.7 );
>> grid grams. >> grid
>> figure
1 >> subplot( 2, 1, 1 );
osf ] >> plot( t, x(:,1) );
sl | >> grid; ylabel( ’x1’ );
>> subplot( 2, 1, 2 );
arl 1 >> plot( t, x(:,2) );
ook : : i >> grid; ylabel( ’x2’ );
051 - .
04r - N - 0‘9,‘\ 4
03FN g o.af\\ 4
02f \\\\ 7] orr \\ i
01f \\\\\\\“ A 061 \\ : . 1
R T S S e A R B osr 1
0.4k \« q
\
Compute the closed loop  >> pole( Gc ) . " |
poles. We now get two  ans = o o2r R i
real closed loop poles, where -0.9420 . E E ol L i
the pole in —0.34 causes the -0.3357 ~ ~ ' . e
slow step response. B R AL o 1 2 3 4 5 6 7 8 9 10

Increasing the weight on the angular velocity forces the motor to move
If we start from case (i) and increase the matrix called R in the call slower, and then also the step response becomes slower.

to 1qr, the closed loop system gradually becomes slower, since we put
an increasing weight on the control signal magnitude. When we reach

R = 10 we get exactly the same result as for case (i). Since it is the 9.15 Introduce the state variables
“ratio” between Q and R that determines the closed loop properties we get
the same feedback gain if we scale Q and R by the same scalar. x1(t) = q(t) x2(t) = m(t)

This gives the state space description

Compute feedback gains, >> L = 1qr( G.a, G.b, diag([ 1 1 1), 1);
adjust static gain, and com- >>1.0=1/ ... (t) = —0.05 0 (1) + 1 u(t)
pute closed loop system. ( G.c * inv( -G.a + G.b*L ) * G.b ); 0.06 —0.02 0
>> Gc =ss( G.a-G.b*xL, G.b x10, ... H=(0 1)zt
G.c, 0); y(t) ( ) (t)
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2)

The system has the controllability matrix

1 —0.05
§=(B AB):(O 0.05>

det S = 0.05
Thus, the system is controllable.

The control law
u(t) = —La(t)

gives the closed loop system
z(t) = (A — BL)x(t)

and the poles of the closed loop system is given by the eigenvalues of

A-BL.
_(-0.05-1;  —Iy
A-BL= < 0.05 —0.02)

The characteristic equation is given by
det(s] — A+ BL) = s* + (0.07 + [1)s + 0.001 + 0.02; + 0.05l5 = 0
Both poles in —0.1 implies that we shall have the equation
(5+0.1)? =5 +0.25+0.01 =0
Identification of the coefficients gives
[, =013 [,=0.128

This gives the control law

u(t) = —0.13z1(t) — 0.128x4(t)

It is desirable that the estimation error converges to zero faster than the
dynamics of the system. Thus, we should place the eigenvalues of the
observer to the left of the poles of the closed loop system. To avoid large
amplification of the measurement noise the poles of the observer should
not be placed too far into the left hand plane.
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)

Only y(t) = x2(t) is measurable. Employ the observer

2(t) = Az(t) + Bu(t) + K (y(t) — C(t))
k1
w= (i)

det(sI — A+ KC) = 5% + (0.07 + ky)s 4 0.05k; 4 0.05k5 4 0.001

where

The characteristic equation is

Both poles in —0.2 implies that we shall have the equation
s°+0.4s+0.04=0
Identification of the coefficients gives

k1 =045 ko =0.33

9.16 Are the specifications 1-4 fulfilled?

M

The bandwidth is wp &~ 1.1 < 5 which is seen from the gain curve of the
closed loop system.

The bandwidth requirement is not fulfilled.

Stability despite model errors and disturbances?

We have Y(s) = ke "*G(s)U(s) + E(s) instead of Y(s) = G(s)U(s).
The factor x thus represents the gain uncertainty, while the factor e=7¢
represents a phase uncertainty. These uncertainties are also present (with
the same magnitudes) in the loop gain G, = FG.

Looking in the Nyquist curve of G, where amplitudes near 1 are easiest to
read, one can see that there is always just one intersection with |G, (iw)| =
1, independently of the present uncertainties in gain and phase. Thus the
stability criterion based on the Bode plot applies.

The uncertain phase lag is w7 at the frequency w. Thus the maximum
negative phase lag occurs for 7* = 0.3 s.

Next, we must find the worst case gain crossover frequency in order to see
if the worst case phase lag causes instability by reducing the phase margin



below 0. Study the amplitude and phase curves for the loop gain G,(s).
Since the phase of G, is decreasing, higher gain crossover will always be
more critical since it both means a smaller phase margin to begin with,
and also a bigger phase lag due to the worst case time delay.

From the gain curve of G, it is clear that higher values of k are more crit-
ical since those give the higher gain crossovers. By very careful inspection
of the gain curve, one can see that the most critical value, k* = 1.1, leads
to w} =~ 2.3rad/s < 3rad/s, and ¢} > 55°.

Combining the worst case x (leading to the w} and ¢ above) with the
worst case and 7% = 0.3 s results in a total worst case phase margin of at
least 55° — wiT* = 55° —3rad/s-0.3s = 55° — 0.9 rad ~ 3° > 0. Thus
the system is guaranteed to be stable.

The system is stable despite the model errors.

Remark: The robustness criterion Vw : |Q(iw)| < m is sufficient but

not necessary to show stability.

Both the Bode plot and the Nyquist curve of the loop gain tells us that
the loop gain does not contain an integration which could remove static
errors. This implies the model errors will influence the static gain. The
details of this argument follow.

With u = Fyr — Fyy, the closed loop system is

F(s)G(s)

G = T RGEE)

The real closed loop system is

_ F(s)re™™°G(s)
Gels) = 1+ Fy(s)ke~T5G(s)

Since the system is stable (see [2) the final value theorem gives the final
value of the step response as

lim y"(t) = lir%s -GY(s) -
s5—>

t—o0

which cannot be 1 for all possible values of .

The gain will be different from 1 for some possible value of x.
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9.17

2]

)

If e(t) is measurement noise, then the complementary sensitivity function,
T(s), should be checked. If e(t) is process noise, then the sensitivity
function, S(s), should be checked. Both T'(s) and S(s) have peaks > 1 at
exactly w = 10 rad/s, which implies the both measurement and process
noise are amplified.

The (measurement) noise is amplified by the system.

The linearized system is given by

. (0 1 -1 o
x—(_l _3>:17+(1)u—.Ax+Bu

Using the state feedback law u = —Lz = —l1x1 — laxo gives
i=A+B(-Le)=(A-BLe=( 0 1Tk},
-1 _ll _3—l2

The poles of this closed loop system are given by the eigenvalues of A—BL,
which are the roots of the characteristic polynomial

s—1l; —1-1
1+ s+3+10
= (S—ll)(8+3+12)—(1+l1)(—1—12)
=5+ (-lhi+l+3)s—2+l+1

P(s) =det(sI — (A— BL)) = det <

To place the poles in { —2, —4 }, P(s) must be the polynomial
(s +2)(s+4)=s>+65+8

This gives the system of equations

—l1+1024+3=6
—2l1+1lo+1=8
which has the solution
li=—-4 lh=-1
The state feedback law thus becomes u = —Lx = 4x1 + 5.



9.18

b)

a)

If only x5 is measured, the output equation is given by
Y =1x9 = (O 1)36::0:10

Given y (z2) and u, x; can be estimated if the system is observable. The
observability matrix becomes

C 0 1
o-(5)= (" 1) o=

Hence the system is observable and z; can be estimated using an observer.

It is essential that the input u is known since w is required in the observer
design to get an asymptotically vanishing state estimation error.

If v is unknown but constant, we can introduce a third state z3 = u
which has the dynamics @3 = 0. Introducing 2™ = (xl T2 xg), the
system dynamics can be rewritten as

0 1 -1
z=|(-1 -3 1
0 0 0

y:(O 1 O)z::éz

Z:ZAZ

The observability matrix becomes

(e} 0 1 0
O=[CA|=(-1 -3 1 det O =1
CA? 3 8 -2

(Tip: det(O) # 0 can be established without computing the determinant,
by checking that the rows of O are linearly independent.) The fact that
the system is observable means that x; (and also u) can be estimated
from measurements of zs using an observer of the form

F=A2+K(y—C2)=(A-KC)2+ Ky

where the observer gain K is selected so that the observer poles, that is,
the eigenvalues of A — KC, are all in the left half plane.

The system is described by

(5 e (e )
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A P controller corresponds to u = K(r — x1), this means that the closed
loop system is given by

- 0 1 + 0 4 1

Tk o) k)" 0) "
The poles to the closed loop system are given by

s -1
det (1 +K s ) =0
which leads to s? + 1 + K = 0. The poles are pure complex and thus the
system doesn’t have a well defined stationary error or speed of response.
A linear combination of r and x5 is given by
u = lo?“ — lzﬂfg

with this controller the closed loop is

(4 D ()

The poles to the closed loop system are given by

S -1
det <1 s+l2) =0

which means s? + lss + 1 = 0. The poles can be placed with I5 as

—1 12 —
s=_—2 2 —4
2 4
We have that £ = 0 at stationary which gives that zo = —w and x; =

lor — loxo if w = 0. If we select [ = 1 then the stationary error will be
zero. If w # 0 and [y = 1 then there will be stationary error of size low.

Introduce a new state xs = w to estimate the unknown signal. The
extended system is described by



Create an observer to estimate the states
t=(A-KC)%+ Bu+ Ky
the poles of the observer can be placed with
det(sI — (A—-KC))=0

which gives s + kos? + (1 — k1)s — k3 = 0. Place the poles for example in
—2, that is, seek the polynomial s + 6524 12s+8 = 0. Comparison gives

ki =—-11 ky=6 k3=-8

Now, let u = lgr — la%o — I323. At stationary we have I3 = w = —2s, so
with I3 = I we have x1 = lyr, and with [y = 1 there will be no error.

9.19 a) Overforingsfunktionerna finnes genom:

i X(5)G1 (5)(U(5) — Ga(5)X(5)) = G (5)U(5) — G (5)Ga(s) X (5)
= X(8)(1+ G1(s)Ga(s) = G1(s)U(s)

= X(s) = ﬁ%ws)
= Gx(S) = ﬁ%z(s)
ii. Y(s) =G —4(s)U(s) + Gs5(s)X(s) = Ga(s)U(s) + G3(s)Gx (s)U(s)

= (Gals) + 1505550 (5)

G1(s)G3(s
:G(8)=G4(5)+%

b) Vi kan skriva G(s) = 52 som

S

5+2_ s+2 . b1s + by
2 $240s+0  s2+ay1s+as

G(s) =

Detta kan nu skrivas enkelt pa t.ex. styrbar kanonisk form:

2 :(‘fl —gz)ﬁ(g)uzwﬂ@u

As By
C

97

eller alternativt (det réicker med att svara med en korrekt form for att fa
full poéng) pa observerbar kanonisk form:

. _[—a1 0 b1 o 0 1 1
o= ) ()= ) ()
—— ~—~—

AO BO

Ett system ar en minimal realisation om det ar bade styrbart och observer-
bart. Darfor méste styrbarhetsmatrisen (S) och observerbarhetsmatrisen
(O) ha full rang.

det S =det (|, ASBS]>:det([(1) ]):1;&0

0
a0 —aer ([ ) =aer (|3 g]l) — 1#0

Alternativt om en observerbar kanonisk representation anvéinds:

detS = det ([Bo AOBD]> = det ( [; g] ) =440

der0 —aet (|5 ) =aer (|5 §]) =120

I bada fallen har styrbarhetsmatrisen och observerbarhetsmatrisen full
rang, eftersom determianterna &r skillda fran noll. Darfor ar systemet en
minimal realisation.

Med tillstandsaterkopplingen u(t) = —Lx(t) + lor(t), blir tillstandsekva-
tionen
%(t) = Ax(t) + Bu(t) = (A — BL)x(t) + lor(t)

Polerna ges da av egenvérden till (A — BL), dvs. genom den karakteris-
tiska ekvationen:

det(s] — (Ay — B,L)) = det ( B ﬂ ~( [(1) 8} - H 1] )) _

:det([sjlll Zj:|> 282"‘118"‘12:0



Onskade poler i {—1, —1} ger féljande karakteristiska ekvation:
(s+1)*=s>+2s+1
Genom att identifiera kofficienter erhalles:

h=2 I=1

Notera: Detta kunde dven inses snabbt genom att uppmérksamma att for

system skrivna pa styrbar kanonisk form &r koefficienterna i den 6nskade
karakteristiska ekvationen samma som parametrarna [; i L-matrisen for
aterkopplingen.

Systemet fran r(t) ir Y (s) = C(sI — (A — BL)) ' BloR(s). Den statiska
forstarkningen erhéalles d& s = 0, vilket medfor:

1 1

lo= Cy(—A, + B;L)"'B, 2

Pa liknande sdtt kan L och [y erhéllas om kanonisk observerbar form
nyttjas, dvs. (4,, By, Cy). Da blir

1

] -3

L= .

N
[N[e:]

En observator infors i systemet enligt:
x(t) = Az(t) + Bu(t) + K(y(t) — C&(t))

Polerna ges nu av egenvirden till (A — KC):

det(sz—(As—Kcs))zdetqg ﬂ—([(l) 8]—{’]2} 1 2])>:

_ 8+k1 2]{}2 2 _
_det<|:k2_1 8+2k2:|>_5 +(k‘1+2]€2)5+2]€1—0

Onskade poler i {—10, —10} till observatoren ger féljande karakteristiska
ekvation:
(s 4+ 1)% = s* +20s + 100

Och genom koefficientidentifiering erhélles:

ki=50 ky=-15 = K=[50 —15]"
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P& likande sédtt kan K erhallas om kanonisk observerbar form nyttjas.
For system skrivna pa observerbar kanonisk form &r koefficienterna i
den onskade karakteristiska ekvationen samma som parametrarna k; i
K-matrisen for observatoren, dvs.

K =1[20 100]"



11 Implementation

11.1 Inverse Laplace transformation of

lm@zKNiﬁgE@
gives the differential equation
a(t) + bNu(t) = KNé(t) + bK Ne(t) (11.1)
At time t — T we have
Wt —T)+bNu(t—T)=KNeé(t—T)+bKNe(t—T) (11.2)

By replacing 4(t) and é(¢) in (11.1) and (11.2)) with Au(t) and Age(t), re-

spectively, and then adding the equations we get

Agu(t) + Agu(t = T) + bNu(t) + bNu(t — T')
= KNAe(t) + KNAwe(t —T) +bKNe(t) + bKNe(t —T)

Tustins formula

S(Buult) + Ault — T)) = (u(t) — u(t ~ 7))
now gives
%(u(t) —ult—T)) + bN(u(t) + ult — T))

_ %KN(e(t) —e(t = T)) + bEN(e(t) + e(t — T))

Inserting the numerical values, K =2, T = 0.1, N =10 and b = 0.1, we get

20(u(t) —u(t —1T)) + (u(t) +u(t —T))
=400(e(t) —e(t —T)) +2(e(t) + et —1T))

which gives
19 402 398
=-u(t-T)+ — ——e(t-T
u(t) 21u(t ) 51 e(t) 51 e(t )

that is
u(t) = 0.905u(t — T') + 19.14e(t) — 18.95e(t — T')
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11.2

11.3

a) Consider the differential equation

during the sampling interval kT < t < kT + T. The input is constant
during the sampling interval, u(t) = ug, which gives

y(t) = ug
By integrating the left- and right-hand sides from ¢t = kT to t = kT + T

we get
kT+T

y(kT +T) —y(kT) = / ug dt = Tuy,

kT
With the notation yg+1 = y(kT + T') and yi = y(kT') this gives
Yk+1 — Y = Tug

b) The feedback
gives

that is
gk = (1= KT)%°
The closed loop system is asymptotically stable if

lye] = 0, t = o0

This gives the condition
1-KT|<1

or, equivalently, 0 < K < %

a) Because the prefilter is linear, the signal prior to sampling may be written

y(t) = yo(t) + 1 (1)



where y;(t) stems from the disturbance u(t) = sinwst. After all tran- gives T = T'/m. Inserting this in the expression for A in a), we get the
sients have disappeared, we get answer 1
A= —m———
y1(t) = Asin(wst + @) 14+ (woT/7)?
where 11.4 Pl-regulatorn ges av
1 K
A=G(iw2)| = —F——ms F(s):K—i—T—.
1 —+ (LUQTl)Q IS
® = arg G(iws) = — arctan ws T} Regulatorn ar alltsa
Tru(t) = KTré(t) + Ke(t).
Let us introduce the notation w; = c.us — Wy Where. ws denotes t}}e sa'meling Euler bakt ger
frequency, ws = 2w /T. When y; () is sampled with the sampling interval
T, we get Tr(u(t) —u(t —1)) = KTy(e(t) —e(t — 1)) + Ke(t)
kT) = Asi kKT + ®) = Asi s —w)kT + @ KT+ K
D1 (KT) = Asin(wohT + ®) = Asin((w - w)kT + @) ) = ut— 1)+ KK ko),
= Asin(2km — w1 kT + @) = Asin(—w kT + D) Ty
= —Asin(w kT — ) = Asin(w kT + 7 — P) Vii dentifierar K =Ty = 1.
= Asin(wi1 kT + ¢)
Svar: K =17 = 1.
that is
= 1 11.5 a) Vi borjar med att skriva modellen pé tillstdndsform, & = f(z,u). Om
1+ (w2T1)? tillstdndsvektorn véljs som
2
w1 = i — W2 0
T r=| 2z
@ =7+ arctan wyT) 3
The bandwidth of the filter is obtained from the relation kan ekvationerna skrivas
. 1 1 71 = Ku = fi(z,u
Gliwn)] = s = = ) e
V14 (wsTh) V2 T = x3 = fo(x,u)
. m . m
which gives wg = 1/T7. The signal ug is in the interval 0 < w < «/T, and T3 = —————>gsinry + 72I2K2U2 = f3(z,u)
o A m+J/r m+J/r
this gives the specification
T 1
T < R Vid jamviktspunkten géller f(xzo,ug) = 0, vilket ger
1
The limiting case zo=1[0 2z 0
m_1 ug =0
T - T1 0—=Y
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for valfri konstant zp, dd ug = 0y = 29 = 0 enligt uppgiften. Vi véljer
zo = 0 i fortsédttningen. Jakobianerna blir

0 0 0
g—f = 0 0 1
v i —%gcosxl %K2u2 0
of K
90 | 10
u i 1—70K2xgu
I jamviktspunkten far vi
[0 o0 0
9]
Aza—f(xo,uo): 0 0 1
v | —29 0 0
[ K
B = ﬁ(xo,uo) = 0
ou 0

Beteckna Az = x — xg och Au = u — ug. Det linjariserade systemet ges
da av )
Ax = ANz + BAu.

b) Omy =0sd y= Ku. For kT <t < (k+ 1)T, har vi
y(t) = Kuk.
Integrerar vi 6ver samplingsintervallet fas
kT+T

y(kT +T) —y(kT) = / Kugdt = TKuy
kT

Med y(kT) = yy, fas
Yr+1 = Yk + TKuy.
c) Med u, = —Kpyg, far vi ypp1 = (1 — K,TK)ys.

For asymptotisk stabilitet (yx — 0, k — o0) kréivs |1 — K,TK| < 1. Detta
ger oss 0 < K, < %
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